diff options
Diffstat (limited to 'plugins/FreeImage/src/LibJPEG/jfdctflt.c')
| -rw-r--r-- | plugins/FreeImage/src/LibJPEG/jfdctflt.c | 174 | 
1 files changed, 0 insertions, 174 deletions
diff --git a/plugins/FreeImage/src/LibJPEG/jfdctflt.c b/plugins/FreeImage/src/LibJPEG/jfdctflt.c deleted file mode 100644 index 74d0d862dc..0000000000 --- a/plugins/FreeImage/src/LibJPEG/jfdctflt.c +++ /dev/null @@ -1,174 +0,0 @@ -/* - * jfdctflt.c - * - * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2003-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a floating-point implementation of the - * forward DCT (Discrete Cosine Transform). - * - * This implementation should be more accurate than either of the integer - * DCT implementations.  However, it may not give the same results on all - * machines because of differences in roundoff behavior.  Speed will depend - * on the hardware's floating point capacity. - * - * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT - * on each column.  Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README).  The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs.  These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries.  The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with a fixed-point - * implementation, accuracy is lost due to imprecise representation of the - * scaled quantization values.  However, that problem does not arise if - * we use floating point arithmetic. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h"		/* Private declarations for DCT subsystem */ - -#ifdef DCT_FLOAT_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 -  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* - * Perform the forward DCT on one block of samples. - */ - -GLOBAL(void) -jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) -{ -  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; -  FAST_FLOAT tmp10, tmp11, tmp12, tmp13; -  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; -  FAST_FLOAT *dataptr; -  JSAMPROW elemptr; -  int ctr; - -  /* Pass 1: process rows. */ - -  dataptr = data; -  for (ctr = 0; ctr < DCTSIZE; ctr++) { -    elemptr = sample_data[ctr] + start_col; - -    /* Load data into workspace */ -    tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); -    tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); -    tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); -    tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); -    tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); -    tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); -    tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); -    tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); - -    /* Even part */ - -    tmp10 = tmp0 + tmp3;	/* phase 2 */ -    tmp13 = tmp0 - tmp3; -    tmp11 = tmp1 + tmp2; -    tmp12 = tmp1 - tmp2; - -    /* Apply unsigned->signed conversion */ -    dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ -    dataptr[4] = tmp10 - tmp11; - -    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ -    dataptr[2] = tmp13 + z1;	/* phase 5 */ -    dataptr[6] = tmp13 - z1; - -    /* Odd part */ - -    tmp10 = tmp4 + tmp5;	/* phase 2 */ -    tmp11 = tmp5 + tmp6; -    tmp12 = tmp6 + tmp7; - -    /* The rotator is modified from fig 4-8 to avoid extra negations. */ -    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ -    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ -    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ -    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ - -    z11 = tmp7 + z3;		/* phase 5 */ -    z13 = tmp7 - z3; - -    dataptr[5] = z13 + z2;	/* phase 6 */ -    dataptr[3] = z13 - z2; -    dataptr[1] = z11 + z4; -    dataptr[7] = z11 - z4; - -    dataptr += DCTSIZE;		/* advance pointer to next row */ -  } - -  /* Pass 2: process columns. */ - -  dataptr = data; -  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { -    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; -    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; -    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; -    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; -    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; -    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; -    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; -    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - -    /* Even part */ - -    tmp10 = tmp0 + tmp3;	/* phase 2 */ -    tmp13 = tmp0 - tmp3; -    tmp11 = tmp1 + tmp2; -    tmp12 = tmp1 - tmp2; - -    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ -    dataptr[DCTSIZE*4] = tmp10 - tmp11; - -    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ -    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ -    dataptr[DCTSIZE*6] = tmp13 - z1; - -    /* Odd part */ - -    tmp10 = tmp4 + tmp5;	/* phase 2 */ -    tmp11 = tmp5 + tmp6; -    tmp12 = tmp6 + tmp7; - -    /* The rotator is modified from fig 4-8 to avoid extra negations. */ -    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ -    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ -    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ -    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ - -    z11 = tmp7 + z3;		/* phase 5 */ -    z13 = tmp7 - z3; - -    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ -    dataptr[DCTSIZE*3] = z13 - z2; -    dataptr[DCTSIZE*1] = z11 + z4; -    dataptr[DCTSIZE*7] = z11 - z4; - -    dataptr++;			/* advance pointer to next column */ -  } -} - -#endif /* DCT_FLOAT_SUPPORTED */  | 
