diff options
Diffstat (limited to 'plugins/FreeImage/src/LibJPEG/jquant1.c')
-rw-r--r-- | plugins/FreeImage/src/LibJPEG/jquant1.c | 857 |
1 files changed, 857 insertions, 0 deletions
diff --git a/plugins/FreeImage/src/LibJPEG/jquant1.c b/plugins/FreeImage/src/LibJPEG/jquant1.c new file mode 100644 index 0000000000..9d11f70669 --- /dev/null +++ b/plugins/FreeImage/src/LibJPEG/jquant1.c @@ -0,0 +1,857 @@ +/* + * jquant1.c + * + * Copyright (C) 1991-1996, Thomas G. Lane. + * Modified 2011 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains 1-pass color quantization (color mapping) routines. + * These routines provide mapping to a fixed color map using equally spaced + * color values. Optional Floyd-Steinberg or ordered dithering is available. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + +#ifdef QUANT_1PASS_SUPPORTED + + +/* + * The main purpose of 1-pass quantization is to provide a fast, if not very + * high quality, colormapped output capability. A 2-pass quantizer usually + * gives better visual quality; however, for quantized grayscale output this + * quantizer is perfectly adequate. Dithering is highly recommended with this + * quantizer, though you can turn it off if you really want to. + * + * In 1-pass quantization the colormap must be chosen in advance of seeing the + * image. We use a map consisting of all combinations of Ncolors[i] color + * values for the i'th component. The Ncolors[] values are chosen so that + * their product, the total number of colors, is no more than that requested. + * (In most cases, the product will be somewhat less.) + * + * Since the colormap is orthogonal, the representative value for each color + * component can be determined without considering the other components; + * then these indexes can be combined into a colormap index by a standard + * N-dimensional-array-subscript calculation. Most of the arithmetic involved + * can be precalculated and stored in the lookup table colorindex[]. + * colorindex[i][j] maps pixel value j in component i to the nearest + * representative value (grid plane) for that component; this index is + * multiplied by the array stride for component i, so that the + * index of the colormap entry closest to a given pixel value is just + * sum( colorindex[component-number][pixel-component-value] ) + * Aside from being fast, this scheme allows for variable spacing between + * representative values with no additional lookup cost. + * + * If gamma correction has been applied in color conversion, it might be wise + * to adjust the color grid spacing so that the representative colors are + * equidistant in linear space. At this writing, gamma correction is not + * implemented by jdcolor, so nothing is done here. + */ + + +/* Declarations for ordered dithering. + * + * We use a standard 16x16 ordered dither array. The basic concept of ordered + * dithering is described in many references, for instance Dale Schumacher's + * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). + * In place of Schumacher's comparisons against a "threshold" value, we add a + * "dither" value to the input pixel and then round the result to the nearest + * output value. The dither value is equivalent to (0.5 - threshold) times + * the distance between output values. For ordered dithering, we assume that + * the output colors are equally spaced; if not, results will probably be + * worse, since the dither may be too much or too little at a given point. + * + * The normal calculation would be to form pixel value + dither, range-limit + * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. + * We can skip the separate range-limiting step by extending the colorindex + * table in both directions. + */ + +#define ODITHER_SIZE 16 /* dimension of dither matrix */ +/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ +#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ +#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ + +typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; +typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; + +static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { + /* Bayer's order-4 dither array. Generated by the code given in + * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. + * The values in this array must range from 0 to ODITHER_CELLS-1. + */ + { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, + { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, + { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, + { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, + { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, + { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, + { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, + { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, + { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, + { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, + { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, + { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, + { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, + { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, + { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, + { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } +}; + + +/* Declarations for Floyd-Steinberg dithering. + * + * Errors are accumulated into the array fserrors[], at a resolution of + * 1/16th of a pixel count. The error at a given pixel is propagated + * to its not-yet-processed neighbors using the standard F-S fractions, + * ... (here) 7/16 + * 3/16 5/16 1/16 + * We work left-to-right on even rows, right-to-left on odd rows. + * + * We can get away with a single array (holding one row's worth of errors) + * by using it to store the current row's errors at pixel columns not yet + * processed, but the next row's errors at columns already processed. We + * need only a few extra variables to hold the errors immediately around the + * current column. (If we are lucky, those variables are in registers, but + * even if not, they're probably cheaper to access than array elements are.) + * + * The fserrors[] array is indexed [component#][position]. + * We provide (#columns + 2) entries per component; the extra entry at each + * end saves us from special-casing the first and last pixels. + * + * Note: on a wide image, we might not have enough room in a PC's near data + * segment to hold the error array; so it is allocated with alloc_large. + */ + +#if BITS_IN_JSAMPLE == 8 +typedef INT16 FSERROR; /* 16 bits should be enough */ +typedef int LOCFSERROR; /* use 'int' for calculation temps */ +#else +typedef INT32 FSERROR; /* may need more than 16 bits */ +typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ +#endif + +typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ + + +/* Private subobject */ + +#define MAX_Q_COMPS 4 /* max components I can handle */ + +typedef struct { + struct jpeg_color_quantizer pub; /* public fields */ + + /* Initially allocated colormap is saved here */ + JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ + int sv_actual; /* number of entries in use */ + + JSAMPARRAY colorindex; /* Precomputed mapping for speed */ + /* colorindex[i][j] = index of color closest to pixel value j in component i, + * premultiplied as described above. Since colormap indexes must fit into + * JSAMPLEs, the entries of this array will too. + */ + boolean is_padded; /* is the colorindex padded for odither? */ + + int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ + + /* Variables for ordered dithering */ + int row_index; /* cur row's vertical index in dither matrix */ + ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ + + /* Variables for Floyd-Steinberg dithering */ + FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ + boolean on_odd_row; /* flag to remember which row we are on */ +} my_cquantizer; + +typedef my_cquantizer * my_cquantize_ptr; + + +/* + * Policy-making subroutines for create_colormap and create_colorindex. + * These routines determine the colormap to be used. The rest of the module + * only assumes that the colormap is orthogonal. + * + * * select_ncolors decides how to divvy up the available colors + * among the components. + * * output_value defines the set of representative values for a component. + * * largest_input_value defines the mapping from input values to + * representative values for a component. + * Note that the latter two routines may impose different policies for + * different components, though this is not currently done. + */ + + +LOCAL(int) +select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) +/* Determine allocation of desired colors to components, */ +/* and fill in Ncolors[] array to indicate choice. */ +/* Return value is total number of colors (product of Ncolors[] values). */ +{ + int nc = cinfo->out_color_components; /* number of color components */ + int max_colors = cinfo->desired_number_of_colors; + int total_colors, iroot, i, j; + boolean changed; + long temp; + static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; + + /* We can allocate at least the nc'th root of max_colors per component. */ + /* Compute floor(nc'th root of max_colors). */ + iroot = 1; + do { + iroot++; + temp = iroot; /* set temp = iroot ** nc */ + for (i = 1; i < nc; i++) + temp *= iroot; + } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ + iroot--; /* now iroot = floor(root) */ + + /* Must have at least 2 color values per component */ + if (iroot < 2) + ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); + + /* Initialize to iroot color values for each component */ + total_colors = 1; + for (i = 0; i < nc; i++) { + Ncolors[i] = iroot; + total_colors *= iroot; + } + /* We may be able to increment the count for one or more components without + * exceeding max_colors, though we know not all can be incremented. + * Sometimes, the first component can be incremented more than once! + * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) + * In RGB colorspace, try to increment G first, then R, then B. + */ + do { + changed = FALSE; + for (i = 0; i < nc; i++) { + j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); + /* calculate new total_colors if Ncolors[j] is incremented */ + temp = total_colors / Ncolors[j]; + temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ + if (temp > (long) max_colors) + break; /* won't fit, done with this pass */ + Ncolors[j]++; /* OK, apply the increment */ + total_colors = (int) temp; + changed = TRUE; + } + } while (changed); + + return total_colors; +} + + +LOCAL(int) +output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) +/* Return j'th output value, where j will range from 0 to maxj */ +/* The output values must fall in 0..MAXJSAMPLE in increasing order */ +{ + /* We always provide values 0 and MAXJSAMPLE for each component; + * any additional values are equally spaced between these limits. + * (Forcing the upper and lower values to the limits ensures that + * dithering can't produce a color outside the selected gamut.) + */ + return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); +} + + +LOCAL(int) +largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) +/* Return largest input value that should map to j'th output value */ +/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ +{ + /* Breakpoints are halfway between values returned by output_value */ + return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); +} + + +/* + * Create the colormap. + */ + +LOCAL(void) +create_colormap (j_decompress_ptr cinfo) +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + JSAMPARRAY colormap; /* Created colormap */ + int total_colors; /* Number of distinct output colors */ + int i,j,k, nci, blksize, blkdist, ptr, val; + + /* Select number of colors for each component */ + total_colors = select_ncolors(cinfo, cquantize->Ncolors); + + /* Report selected color counts */ + if (cinfo->out_color_components == 3) + TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, + total_colors, cquantize->Ncolors[0], + cquantize->Ncolors[1], cquantize->Ncolors[2]); + else + TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); + + /* Allocate and fill in the colormap. */ + /* The colors are ordered in the map in standard row-major order, */ + /* i.e. rightmost (highest-indexed) color changes most rapidly. */ + + colormap = (*cinfo->mem->alloc_sarray) + ((j_common_ptr) cinfo, JPOOL_IMAGE, + (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); + + /* blksize is number of adjacent repeated entries for a component */ + /* blkdist is distance between groups of identical entries for a component */ + blkdist = total_colors; + + for (i = 0; i < cinfo->out_color_components; i++) { + /* fill in colormap entries for i'th color component */ + nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ + blksize = blkdist / nci; + for (j = 0; j < nci; j++) { + /* Compute j'th output value (out of nci) for component */ + val = output_value(cinfo, i, j, nci-1); + /* Fill in all colormap entries that have this value of this component */ + for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { + /* fill in blksize entries beginning at ptr */ + for (k = 0; k < blksize; k++) + colormap[i][ptr+k] = (JSAMPLE) val; + } + } + blkdist = blksize; /* blksize of this color is blkdist of next */ + } + + /* Save the colormap in private storage, + * where it will survive color quantization mode changes. + */ + cquantize->sv_colormap = colormap; + cquantize->sv_actual = total_colors; +} + + +/* + * Create the color index table. + */ + +LOCAL(void) +create_colorindex (j_decompress_ptr cinfo) +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + JSAMPROW indexptr; + int i,j,k, nci, blksize, val, pad; + + /* For ordered dither, we pad the color index tables by MAXJSAMPLE in + * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). + * This is not necessary in the other dithering modes. However, we + * flag whether it was done in case user changes dithering mode. + */ + if (cinfo->dither_mode == JDITHER_ORDERED) { + pad = MAXJSAMPLE*2; + cquantize->is_padded = TRUE; + } else { + pad = 0; + cquantize->is_padded = FALSE; + } + + cquantize->colorindex = (*cinfo->mem->alloc_sarray) + ((j_common_ptr) cinfo, JPOOL_IMAGE, + (JDIMENSION) (MAXJSAMPLE+1 + pad), + (JDIMENSION) cinfo->out_color_components); + + /* blksize is number of adjacent repeated entries for a component */ + blksize = cquantize->sv_actual; + + for (i = 0; i < cinfo->out_color_components; i++) { + /* fill in colorindex entries for i'th color component */ + nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ + blksize = blksize / nci; + + /* adjust colorindex pointers to provide padding at negative indexes. */ + if (pad) + cquantize->colorindex[i] += MAXJSAMPLE; + + /* in loop, val = index of current output value, */ + /* and k = largest j that maps to current val */ + indexptr = cquantize->colorindex[i]; + val = 0; + k = largest_input_value(cinfo, i, 0, nci-1); + for (j = 0; j <= MAXJSAMPLE; j++) { + while (j > k) /* advance val if past boundary */ + k = largest_input_value(cinfo, i, ++val, nci-1); + /* premultiply so that no multiplication needed in main processing */ + indexptr[j] = (JSAMPLE) (val * blksize); + } + /* Pad at both ends if necessary */ + if (pad) + for (j = 1; j <= MAXJSAMPLE; j++) { + indexptr[-j] = indexptr[0]; + indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; + } + } +} + + +/* + * Create an ordered-dither array for a component having ncolors + * distinct output values. + */ + +LOCAL(ODITHER_MATRIX_PTR) +make_odither_array (j_decompress_ptr cinfo, int ncolors) +{ + ODITHER_MATRIX_PTR odither; + int j,k; + INT32 num,den; + + odither = (ODITHER_MATRIX_PTR) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(ODITHER_MATRIX)); + /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). + * Hence the dither value for the matrix cell with fill order f + * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). + * On 16-bit-int machine, be careful to avoid overflow. + */ + den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); + for (j = 0; j < ODITHER_SIZE; j++) { + for (k = 0; k < ODITHER_SIZE; k++) { + num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) + * MAXJSAMPLE; + /* Ensure round towards zero despite C's lack of consistency + * about rounding negative values in integer division... + */ + odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); + } + } + return odither; +} + + +/* + * Create the ordered-dither tables. + * Components having the same number of representative colors may + * share a dither table. + */ + +LOCAL(void) +create_odither_tables (j_decompress_ptr cinfo) +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + ODITHER_MATRIX_PTR odither; + int i, j, nci; + + for (i = 0; i < cinfo->out_color_components; i++) { + nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ + odither = NULL; /* search for matching prior component */ + for (j = 0; j < i; j++) { + if (nci == cquantize->Ncolors[j]) { + odither = cquantize->odither[j]; + break; + } + } + if (odither == NULL) /* need a new table? */ + odither = make_odither_array(cinfo, nci); + cquantize->odither[i] = odither; + } +} + + +/* + * Map some rows of pixels to the output colormapped representation. + */ + +METHODDEF(void) +color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, + JSAMPARRAY output_buf, int num_rows) +/* General case, no dithering */ +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + JSAMPARRAY colorindex = cquantize->colorindex; + register int pixcode, ci; + register JSAMPROW ptrin, ptrout; + int row; + JDIMENSION col; + JDIMENSION width = cinfo->output_width; + register int nc = cinfo->out_color_components; + + for (row = 0; row < num_rows; row++) { + ptrin = input_buf[row]; + ptrout = output_buf[row]; + for (col = width; col > 0; col--) { + pixcode = 0; + for (ci = 0; ci < nc; ci++) { + pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); + } + *ptrout++ = (JSAMPLE) pixcode; + } + } +} + + +METHODDEF(void) +color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, + JSAMPARRAY output_buf, int num_rows) +/* Fast path for out_color_components==3, no dithering */ +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + register int pixcode; + register JSAMPROW ptrin, ptrout; + JSAMPROW colorindex0 = cquantize->colorindex[0]; + JSAMPROW colorindex1 = cquantize->colorindex[1]; + JSAMPROW colorindex2 = cquantize->colorindex[2]; + int row; + JDIMENSION col; + JDIMENSION width = cinfo->output_width; + + for (row = 0; row < num_rows; row++) { + ptrin = input_buf[row]; + ptrout = output_buf[row]; + for (col = width; col > 0; col--) { + pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); + pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); + pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); + *ptrout++ = (JSAMPLE) pixcode; + } + } +} + + +METHODDEF(void) +quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, + JSAMPARRAY output_buf, int num_rows) +/* General case, with ordered dithering */ +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + register JSAMPROW input_ptr; + register JSAMPROW output_ptr; + JSAMPROW colorindex_ci; + int * dither; /* points to active row of dither matrix */ + int row_index, col_index; /* current indexes into dither matrix */ + int nc = cinfo->out_color_components; + int ci; + int row; + JDIMENSION col; + JDIMENSION width = cinfo->output_width; + + for (row = 0; row < num_rows; row++) { + /* Initialize output values to 0 so can process components separately */ + FMEMZERO((void FAR *) output_buf[row], + (size_t) (width * SIZEOF(JSAMPLE))); + row_index = cquantize->row_index; + for (ci = 0; ci < nc; ci++) { + input_ptr = input_buf[row] + ci; + output_ptr = output_buf[row]; + colorindex_ci = cquantize->colorindex[ci]; + dither = cquantize->odither[ci][row_index]; + col_index = 0; + + for (col = width; col > 0; col--) { + /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, + * select output value, accumulate into output code for this pixel. + * Range-limiting need not be done explicitly, as we have extended + * the colorindex table to produce the right answers for out-of-range + * inputs. The maximum dither is +- MAXJSAMPLE; this sets the + * required amount of padding. + */ + *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; + input_ptr += nc; + output_ptr++; + col_index = (col_index + 1) & ODITHER_MASK; + } + } + /* Advance row index for next row */ + row_index = (row_index + 1) & ODITHER_MASK; + cquantize->row_index = row_index; + } +} + + +METHODDEF(void) +quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, + JSAMPARRAY output_buf, int num_rows) +/* Fast path for out_color_components==3, with ordered dithering */ +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + register int pixcode; + register JSAMPROW input_ptr; + register JSAMPROW output_ptr; + JSAMPROW colorindex0 = cquantize->colorindex[0]; + JSAMPROW colorindex1 = cquantize->colorindex[1]; + JSAMPROW colorindex2 = cquantize->colorindex[2]; + int * dither0; /* points to active row of dither matrix */ + int * dither1; + int * dither2; + int row_index, col_index; /* current indexes into dither matrix */ + int row; + JDIMENSION col; + JDIMENSION width = cinfo->output_width; + + for (row = 0; row < num_rows; row++) { + row_index = cquantize->row_index; + input_ptr = input_buf[row]; + output_ptr = output_buf[row]; + dither0 = cquantize->odither[0][row_index]; + dither1 = cquantize->odither[1][row_index]; + dither2 = cquantize->odither[2][row_index]; + col_index = 0; + + for (col = width; col > 0; col--) { + pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + + dither0[col_index]]); + pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + + dither1[col_index]]); + pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + + dither2[col_index]]); + *output_ptr++ = (JSAMPLE) pixcode; + col_index = (col_index + 1) & ODITHER_MASK; + } + row_index = (row_index + 1) & ODITHER_MASK; + cquantize->row_index = row_index; + } +} + + +METHODDEF(void) +quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, + JSAMPARRAY output_buf, int num_rows) +/* General case, with Floyd-Steinberg dithering */ +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + register LOCFSERROR cur; /* current error or pixel value */ + LOCFSERROR belowerr; /* error for pixel below cur */ + LOCFSERROR bpreverr; /* error for below/prev col */ + LOCFSERROR bnexterr; /* error for below/next col */ + LOCFSERROR delta; + register FSERRPTR errorptr; /* => fserrors[] at column before current */ + register JSAMPROW input_ptr; + register JSAMPROW output_ptr; + JSAMPROW colorindex_ci; + JSAMPROW colormap_ci; + int pixcode; + int nc = cinfo->out_color_components; + int dir; /* 1 for left-to-right, -1 for right-to-left */ + int dirnc; /* dir * nc */ + int ci; + int row; + JDIMENSION col; + JDIMENSION width = cinfo->output_width; + JSAMPLE *range_limit = cinfo->sample_range_limit; + SHIFT_TEMPS + + for (row = 0; row < num_rows; row++) { + /* Initialize output values to 0 so can process components separately */ + FMEMZERO((void FAR *) output_buf[row], + (size_t) (width * SIZEOF(JSAMPLE))); + for (ci = 0; ci < nc; ci++) { + input_ptr = input_buf[row] + ci; + output_ptr = output_buf[row]; + if (cquantize->on_odd_row) { + /* work right to left in this row */ + input_ptr += (width-1) * nc; /* so point to rightmost pixel */ + output_ptr += width-1; + dir = -1; + dirnc = -nc; + errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ + } else { + /* work left to right in this row */ + dir = 1; + dirnc = nc; + errorptr = cquantize->fserrors[ci]; /* => entry before first column */ + } + colorindex_ci = cquantize->colorindex[ci]; + colormap_ci = cquantize->sv_colormap[ci]; + /* Preset error values: no error propagated to first pixel from left */ + cur = 0; + /* and no error propagated to row below yet */ + belowerr = bpreverr = 0; + + for (col = width; col > 0; col--) { + /* cur holds the error propagated from the previous pixel on the + * current line. Add the error propagated from the previous line + * to form the complete error correction term for this pixel, and + * round the error term (which is expressed * 16) to an integer. + * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct + * for either sign of the error value. + * Note: errorptr points to *previous* column's array entry. + */ + cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); + /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. + * The maximum error is +- MAXJSAMPLE; this sets the required size + * of the range_limit array. + */ + cur += GETJSAMPLE(*input_ptr); + cur = GETJSAMPLE(range_limit[cur]); + /* Select output value, accumulate into output code for this pixel */ + pixcode = GETJSAMPLE(colorindex_ci[cur]); + *output_ptr += (JSAMPLE) pixcode; + /* Compute actual representation error at this pixel */ + /* Note: we can do this even though we don't have the final */ + /* pixel code, because the colormap is orthogonal. */ + cur -= GETJSAMPLE(colormap_ci[pixcode]); + /* Compute error fractions to be propagated to adjacent pixels. + * Add these into the running sums, and simultaneously shift the + * next-line error sums left by 1 column. + */ + bnexterr = cur; + delta = cur * 2; + cur += delta; /* form error * 3 */ + errorptr[0] = (FSERROR) (bpreverr + cur); + cur += delta; /* form error * 5 */ + bpreverr = belowerr + cur; + belowerr = bnexterr; + cur += delta; /* form error * 7 */ + /* At this point cur contains the 7/16 error value to be propagated + * to the next pixel on the current line, and all the errors for the + * next line have been shifted over. We are therefore ready to move on. + */ + input_ptr += dirnc; /* advance input ptr to next column */ + output_ptr += dir; /* advance output ptr to next column */ + errorptr += dir; /* advance errorptr to current column */ + } + /* Post-loop cleanup: we must unload the final error value into the + * final fserrors[] entry. Note we need not unload belowerr because + * it is for the dummy column before or after the actual array. + */ + errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ + } + cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); + } +} + + +/* + * Allocate workspace for Floyd-Steinberg errors. + */ + +LOCAL(void) +alloc_fs_workspace (j_decompress_ptr cinfo) +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + size_t arraysize; + int i; + + arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); + for (i = 0; i < cinfo->out_color_components; i++) { + cquantize->fserrors[i] = (FSERRPTR) + (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); + } +} + + +/* + * Initialize for one-pass color quantization. + */ + +METHODDEF(void) +start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) +{ + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; + size_t arraysize; + int i; + + /* Install my colormap. */ + cinfo->colormap = cquantize->sv_colormap; + cinfo->actual_number_of_colors = cquantize->sv_actual; + + /* Initialize for desired dithering mode. */ + switch (cinfo->dither_mode) { + case JDITHER_NONE: + if (cinfo->out_color_components == 3) + cquantize->pub.color_quantize = color_quantize3; + else + cquantize->pub.color_quantize = color_quantize; + break; + case JDITHER_ORDERED: + if (cinfo->out_color_components == 3) + cquantize->pub.color_quantize = quantize3_ord_dither; + else + cquantize->pub.color_quantize = quantize_ord_dither; + cquantize->row_index = 0; /* initialize state for ordered dither */ + /* If user changed to ordered dither from another mode, + * we must recreate the color index table with padding. + * This will cost extra space, but probably isn't very likely. + */ + if (! cquantize->is_padded) + create_colorindex(cinfo); + /* Create ordered-dither tables if we didn't already. */ + if (cquantize->odither[0] == NULL) + create_odither_tables(cinfo); + break; + case JDITHER_FS: + cquantize->pub.color_quantize = quantize_fs_dither; + cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ + /* Allocate Floyd-Steinberg workspace if didn't already. */ + if (cquantize->fserrors[0] == NULL) + alloc_fs_workspace(cinfo); + /* Initialize the propagated errors to zero. */ + arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); + for (i = 0; i < cinfo->out_color_components; i++) + FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize); + break; + default: + ERREXIT(cinfo, JERR_NOT_COMPILED); + break; + } +} + + +/* + * Finish up at the end of the pass. + */ + +METHODDEF(void) +finish_pass_1_quant (j_decompress_ptr cinfo) +{ + /* no work in 1-pass case */ +} + + +/* + * Switch to a new external colormap between output passes. + * Shouldn't get to this module! + */ + +METHODDEF(void) +new_color_map_1_quant (j_decompress_ptr cinfo) +{ + ERREXIT(cinfo, JERR_MODE_CHANGE); +} + + +/* + * Module initialization routine for 1-pass color quantization. + */ + +GLOBAL(void) +jinit_1pass_quantizer (j_decompress_ptr cinfo) +{ + my_cquantize_ptr cquantize; + + cquantize = (my_cquantize_ptr) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(my_cquantizer)); + cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; + cquantize->pub.start_pass = start_pass_1_quant; + cquantize->pub.finish_pass = finish_pass_1_quant; + cquantize->pub.new_color_map = new_color_map_1_quant; + cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ + cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ + + /* Make sure my internal arrays won't overflow */ + if (cinfo->out_color_components > MAX_Q_COMPS) + ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); + /* Make sure colormap indexes can be represented by JSAMPLEs */ + if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) + ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); + + /* Create the colormap and color index table. */ + create_colormap(cinfo); + create_colorindex(cinfo); + + /* Allocate Floyd-Steinberg workspace now if requested. + * We do this now since it is FAR storage and may affect the memory + * manager's space calculations. If the user changes to FS dither + * mode in a later pass, we will allocate the space then, and will + * possibly overrun the max_memory_to_use setting. + */ + if (cinfo->dither_mode == JDITHER_FS) + alloc_fs_workspace(cinfo); +} + +#endif /* QUANT_1PASS_SUPPORTED */ |