diff options
Diffstat (limited to 'plugins/MirOTR/Libgcrypt/cipher/primegen.c')
-rw-r--r-- | plugins/MirOTR/Libgcrypt/cipher/primegen.c | 515 |
1 files changed, 260 insertions, 255 deletions
diff --git a/plugins/MirOTR/Libgcrypt/cipher/primegen.c b/plugins/MirOTR/Libgcrypt/cipher/primegen.c index b869bee839..e46bf184e0 100644 --- a/plugins/MirOTR/Libgcrypt/cipher/primegen.c +++ b/plugins/MirOTR/Libgcrypt/cipher/primegen.c @@ -31,7 +31,7 @@ #include "cipher.h" #include "ath.h" -static gcry_mpi_t gen_prime (unsigned int nbits, int secret, int randomlevel, +static gcry_mpi_t gen_prime (unsigned int nbits, int secret, int randomlevel, int (*extra_check)(void *, gcry_mpi_t), void *extra_check_arg); static int check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds, @@ -132,7 +132,7 @@ static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1; /* An object and a list to build up a global pool of primes. See save_pool_prime and get_pool_prime. */ -struct primepool_s +struct primepool_s { struct primepool_s *next; gcry_mpi_t prime; /* If this is NULL the entry is not used. */ @@ -141,9 +141,20 @@ struct primepool_s }; struct primepool_s *primepool; /* Mutex used to protect access to the primepool. */ -static ath_mutex_t primepool_lock = ATH_MUTEX_INITIALIZER; +static ath_mutex_t primepool_lock; +gcry_err_code_t +_gcry_primegen_init (void) +{ + gcry_err_code_t ec; + + ec = ath_mutex_init (&primepool_lock); + if (ec) + return gpg_err_code_from_errno (ec); + return ec; +} + /* Save PRIME which has been generated at RANDOMLEVEL for later use. Needs to be called while primepool_lock is being hold. Note @@ -163,12 +174,12 @@ save_pool_prime (gcry_mpi_t prime, gcry_random_level_t randomlevel) /* Remove some of the entries. Our strategy is removing the last third from the list. */ int i; - + for (i=0, item2 = primepool; item2; item2 = item2->next) { if (i >= n/3*2) { - gcry_mpi_release (item2->prime); + _gcry_mpi_release (item2->prime); item2->prime = NULL; if (!item) item = item2; @@ -177,12 +188,12 @@ save_pool_prime (gcry_mpi_t prime, gcry_random_level_t randomlevel) } if (!item) { - item = gcry_calloc (1, sizeof *item); + item = xtrycalloc (1, sizeof *item); if (!item) { /* Out of memory. Silently giving up. */ - gcry_mpi_release (prime); - return; + _gcry_mpi_release (prime); + return; } item->next = primepool; primepool = item; @@ -195,7 +206,7 @@ save_pool_prime (gcry_mpi_t prime, gcry_random_level_t randomlevel) /* Return a prime for the prime pool or NULL if none has been found. The prime needs to match NBITS and randomlevel. This function needs - to be called why the primepool_look is being hold. */ + to be called with the primepool_look is being hold. */ static gcry_mpi_t get_pool_prime (unsigned int nbits, gcry_random_level_t randomlevel) { @@ -359,13 +370,13 @@ prime_generate_internal (int need_q_factor, fbits = (pbits - req_qbits -1) / n; qbits = pbits - n * fbits; } - + if (DBG_CIPHER) log_debug ("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n", pbits, req_qbits, qbits, fbits, n); /* Allocate an integer to old the new prime. */ - prime = gcry_mpi_new (pbits); + prime = mpi_new (pbits); /* Generate first prime factor. */ q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL); @@ -373,9 +384,9 @@ prime_generate_internal (int need_q_factor, /* Generate a specific Q-Factor if requested. */ if (need_q_factor) q_factor = gen_prime (req_qbits, is_secret, randomlevel, NULL, NULL); - + /* Allocate an array to hold all factors + 2 for later usage. */ - factors = gcry_calloc (n + 2, sizeof (*factors)); + factors = xtrycalloc (n + 2, sizeof (*factors)); if (!factors) { err = gpg_err_code_from_errno (errno); @@ -383,7 +394,7 @@ prime_generate_internal (int need_q_factor, } /* Allocate an array to track pool usage. */ - pool_in_use = gcry_malloc (n * sizeof *pool_in_use); + pool_in_use = xtrymalloc (n * sizeof *pool_in_use); if (!pool_in_use) { err = gpg_err_code_from_errno (errno); @@ -391,10 +402,10 @@ prime_generate_internal (int need_q_factor, } for (i=0; i < n; i++) pool_in_use[i] = -1; - + /* Make a pool of 3n+5 primes (this is an arbitrary value). We - require at least 30 primes for are useful selection process. - + require at least 30 primes for are useful selection process. + Fixme: We need to research the best formula for sizing the pool. */ m = n * 3 + 5; @@ -402,7 +413,7 @@ prime_generate_internal (int need_q_factor, m += 5; if (m < 30) m = 30; - pool = gcry_calloc (m , sizeof (*pool)); + pool = xtrycalloc (m , sizeof (*pool)); if (! pool) { err = gpg_err_code_from_errno (errno); @@ -428,7 +439,7 @@ prime_generate_internal (int need_q_factor, } /* Init m_out_of_n(). */ - perms = gcry_calloc (1, m); + perms = xtrycalloc (1, m); if (!perms) { err = gpg_err_code_from_errno (errno); @@ -443,7 +454,7 @@ prime_generate_internal (int need_q_factor, is_locked = 1; for (i = 0; i < n; i++) { - perms[i] = 1; + perms[i] = 1; /* At a maximum we use strong random for the factors. This saves us a lot of entropy. Given that Q and possible Q-factor are also used in the final prime @@ -520,15 +531,15 @@ prime_generate_internal (int need_q_factor, if (i == n) { /* Ran out of permutations: Allocate new primes. */ - gcry_free (perms); + xfree (perms); perms = NULL; progress ('!'); - goto next_try; + goto next_try; } } /* Generate next prime candidate: - p = 2 * q [ * q_factor] * factor_0 * factor_1 * ... * factor_n + 1. + p = 2 * q [ * q_factor] * factor_0 * factor_1 * ... * factor_n + 1. */ mpi_set (prime, q); mpi_mul_ui (prime, prime, 2); @@ -553,7 +564,7 @@ prime_generate_internal (int need_q_factor, } else count1 = 0; - + if (nprime > pbits) { if (++count2 > 20) @@ -575,25 +586,25 @@ prime_generate_internal (int need_q_factor, if (DBG_CIPHER) { progress ('\n'); - log_mpidump ("prime : ", prime); - log_mpidump ("factor q: ", q); + log_mpidump ("prime ", prime); + log_mpidump ("factor q", q); if (need_q_factor) - log_mpidump ("factor q0: ", q_factor); + log_mpidump ("factor q0", q_factor); for (i = 0; i < n; i++) - log_mpidump ("factor pi: ", factors[i]); + log_mpidump ("factor pi", factors[i]); log_debug ("bit sizes: prime=%u, q=%u", mpi_get_nbits (prime), mpi_get_nbits (q)); if (need_q_factor) - log_debug (", q0=%u", mpi_get_nbits (q_factor)); + log_printf (", q0=%u", mpi_get_nbits (q_factor)); for (i = 0; i < n; i++) - log_debug (", p%d=%u", i, mpi_get_nbits (factors[i])); - progress('\n'); + log_printf (", p%d=%u", i, mpi_get_nbits (factors[i])); + log_printf ("\n"); } if (ret_factors) { /* Caller wants the factors. */ - factors_new = gcry_calloc (n + 4, sizeof (*factors_new)); + factors_new = xtrycalloc (n + 4, sizeof (*factors_new)); if (! factors_new) { err = gpg_err_code_from_errno (errno); @@ -603,7 +614,7 @@ prime_generate_internal (int need_q_factor, if (all_factors) { i = 0; - factors_new[i++] = gcry_mpi_set_ui (NULL, 2); + factors_new[i++] = mpi_set_ui (NULL, 2); factors_new[i++] = mpi_copy (q); if (need_q_factor) factors_new[i++] = mpi_copy (q_factor); @@ -624,14 +635,14 @@ prime_generate_internal (int need_q_factor, factors_new[i] = mpi_copy (factors[i]); } } - + if (g) { /* Create a generator (start with 3). */ gcry_mpi_t tmp = mpi_alloc (mpi_get_nlimbs (prime)); gcry_mpi_t b = mpi_alloc (mpi_get_nlimbs (prime)); gcry_mpi_t pmin1 = mpi_alloc (mpi_get_nlimbs (prime)); - + if (need_q_factor) err = GPG_ERR_NOT_IMPLEMENTED; else @@ -644,11 +655,7 @@ prime_generate_internal (int need_q_factor, { mpi_add_ui (g, g, 1); if (DBG_CIPHER) - { - log_debug ("checking g:"); - gcry_mpi_dump (g); - log_printf ("\n"); - } + log_printmpi ("checking g", g); else progress('^'); for (i = 0; i < n + 2; i++) @@ -656,13 +663,13 @@ prime_generate_internal (int need_q_factor, mpi_fdiv_q (tmp, pmin1, factors[i]); /* No mpi_pow(), but it is okay to use this with mod prime. */ - gcry_mpi_powm (b, g, tmp, prime); + mpi_powm (b, g, tmp, prime); if (! mpi_cmp_ui (b, 1)) break; } if (DBG_CIPHER) progress('\n'); - } + } while (i < n + 2); mpi_free (factors[n+1]); @@ -671,7 +678,7 @@ prime_generate_internal (int need_q_factor, mpi_free (pmin1); } } - + if (! DBG_CIPHER) progress ('\n'); @@ -699,13 +706,13 @@ prime_generate_internal (int need_q_factor, if (is_locked && ath_mutex_unlock (&primepool_lock)) err = GPG_ERR_INTERNAL; is_locked = 0; - gcry_free (pool); + xfree (pool); } - gcry_free (pool_in_use); + xfree (pool_in_use); if (factors) - gcry_free (factors); /* Factors are shallow copies. */ + xfree (factors); /* Factors are shallow copies. */ if (perms) - gcry_free (perms); + xfree (perms); mpi_free (val_2); mpi_free (q); @@ -723,7 +730,7 @@ prime_generate_internal (int need_q_factor, { for (i = 0; factors_new[i]; i++) mpi_free (factors_new[i]); - gcry_free (factors_new); + xfree (factors_new); } mpi_free (prime); } @@ -733,24 +740,27 @@ prime_generate_internal (int need_q_factor, /* Generate a prime used for discrete logarithm algorithms; i.e. this - prime will be public and no strong random is required. */ -gcry_mpi_t + prime will be public and no strong random is required. On success + R_PRIME receives a new MPI with the prime. On error R_PRIME is set + to NULL and an error code is returned. If RET_FACTORS is not NULL + it is set to an allocated array of factors on success or to NULL on + error. */ +gcry_err_code_t _gcry_generate_elg_prime (int mode, unsigned pbits, unsigned qbits, - gcry_mpi_t g, gcry_mpi_t **ret_factors) + gcry_mpi_t g, + gcry_mpi_t *r_prime, gcry_mpi_t **ret_factors) { - gcry_err_code_t err = GPG_ERR_NO_ERROR; - gcry_mpi_t prime = NULL; - - err = prime_generate_internal ((mode == 1), &prime, pbits, qbits, g, - ret_factors, GCRY_WEAK_RANDOM, 0, 0, - NULL, NULL); - - return prime; + *r_prime = NULL; + if (ret_factors) + *ret_factors = NULL; + return prime_generate_internal ((mode == 1), r_prime, pbits, qbits, g, + ret_factors, GCRY_WEAK_RANDOM, 0, 0, + NULL, NULL); } static gcry_mpi_t -gen_prime (unsigned int nbits, int secret, int randomlevel, +gen_prime (unsigned int nbits, int secret, int randomlevel, int (*extra_check)(void *, gcry_mpi_t), void *extra_check_arg) { gcry_mpi_t prime, ptest, pminus1, val_2, val_3, result; @@ -758,18 +768,18 @@ gen_prime (unsigned int nbits, int secret, int randomlevel, unsigned int x, step; unsigned int count1, count2; int *mods; - + /* if ( DBG_CIPHER ) */ /* log_debug ("generate a prime of %u bits ", nbits ); */ if (nbits < 16) log_fatal ("can't generate a prime with less than %d bits\n", 16); - mods = gcry_xmalloc( no_of_small_prime_numbers * sizeof *mods ); + mods = xmalloc (no_of_small_prime_numbers * sizeof *mods); /* Make nbits fit into gcry_mpi_t implementation. */ val_2 = mpi_alloc_set_ui( 2 ); val_3 = mpi_alloc_set_ui( 3); - prime = secret? gcry_mpi_snew ( nbits ): gcry_mpi_new ( nbits ); + prime = secret? mpi_snew (nbits): mpi_new (nbits); result = mpi_alloc_like( prime ); pminus1= mpi_alloc_like( prime ); ptest = mpi_alloc_like( prime ); @@ -777,10 +787,10 @@ gen_prime (unsigned int nbits, int secret, int randomlevel, for (;;) { /* try forvever */ int dotcount=0; - + /* generate a random number */ - gcry_mpi_randomize( prime, nbits, randomlevel ); - + _gcry_mpi_randomize( prime, nbits, randomlevel ); + /* Set high order bit to 1, set low order bit to 1. If we are generating a secret prime we are most probably doing that for RSA, to make sure that the modulus does have the @@ -789,17 +799,17 @@ gen_prime (unsigned int nbits, int secret, int randomlevel, if (secret) mpi_set_bit (prime, nbits-2); mpi_set_bit(prime, 0); - + /* Calculate all remainders. */ for (i=0; (x = small_prime_numbers[i]); i++ ) mods[i] = mpi_fdiv_r_ui(NULL, prime, x); - + /* Now try some primes starting with prime. */ - for(step=0; step < 20000; step += 2 ) + for(step=0; step < 20000; step += 2 ) { /* Check against all the small primes we have in mods. */ count1++; - for (i=0; (x = small_prime_numbers[i]); i++ ) + for (i=0; (x = small_prime_numbers[i]); i++ ) { while ( mods[i] + step >= x ) mods[i] -= x; @@ -808,15 +818,15 @@ gen_prime (unsigned int nbits, int secret, int randomlevel, } if ( x ) continue; /* Found a multiple of an already known prime. */ - + mpi_add_ui( ptest, prime, step ); /* Do a fast Fermat test now. */ count2++; mpi_sub_ui( pminus1, ptest, 1); - gcry_mpi_powm( result, val_2, pminus1, ptest ); + mpi_powm( result, val_2, pminus1, ptest ); if ( !mpi_cmp_ui( result, 1 ) ) - { + { /* Not composite, perform stronger tests */ if (is_prime(ptest, 5, &count2 )) { @@ -828,21 +838,21 @@ gen_prime (unsigned int nbits, int secret, int randomlevel, } if (extra_check && extra_check (extra_check_arg, ptest)) - { + { /* The extra check told us that this prime is not of the caller's taste. */ progress ('/'); } else - { + { /* Got it. */ mpi_free(val_2); mpi_free(val_3); mpi_free(result); mpi_free(pminus1); mpi_free(prime); - gcry_free(mods); - return ptest; + xfree(mods); + return ptest; } } } @@ -872,7 +882,7 @@ check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds, for (i=0; (x = small_prime_numbers[i]); i++ ) { if ( mpi_divisible_ui( prime, x ) ) - return 0; + return !mpi_cmp_ui (prime, x); } /* A quick Fermat test. */ @@ -880,10 +890,10 @@ check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds, gcry_mpi_t result = mpi_alloc_like( prime ); gcry_mpi_t pminus1 = mpi_alloc_like( prime ); mpi_sub_ui( pminus1, prime, 1); - gcry_mpi_powm( result, val_2, pminus1, prime ); + mpi_powm( result, val_2, pminus1, prime ); mpi_free( pminus1 ); if ( mpi_cmp_ui( result, 1 ) ) - { + { /* Is composite. */ mpi_free( result ); progress('.'); @@ -924,7 +934,7 @@ is_prime (gcry_mpi_t n, int steps, unsigned int *count) unsigned nbits = mpi_get_nbits( n ); if (steps < 5) /* Make sure that we do at least 5 rounds. */ - steps = 5; + steps = 5; mpi_sub_ui( nminus1, n, 1 ); @@ -942,7 +952,7 @@ is_prime (gcry_mpi_t n, int steps, unsigned int *count) } else { - gcry_mpi_randomize( x, nbits, GCRY_WEAK_RANDOM ); + _gcry_mpi_randomize( x, nbits, GCRY_WEAK_RANDOM ); /* Make sure that the number is smaller than the prime and keep the randomness of the high bit. */ @@ -957,12 +967,12 @@ is_prime (gcry_mpi_t n, int steps, unsigned int *count) } gcry_assert (mpi_cmp (x, nminus1) < 0 && mpi_cmp_ui (x, 1) > 0); } - gcry_mpi_powm ( y, x, q, n); + mpi_powm ( y, x, q, n); if ( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) ) { for ( j=1; j < k && mpi_cmp( y, nminus1 ); j++ ) { - gcry_mpi_powm(y, y, a2, n); + mpi_powm(y, y, a2, n); if( !mpi_cmp_ui( y, 1 ) ) goto leave; /* Not a prime. */ } @@ -988,7 +998,7 @@ is_prime (gcry_mpi_t n, int steps, unsigned int *count) /* Given ARRAY of size N with M elements set to true produce a modified array with the next permutation of M elements. Note, that ARRAY is used in a one-bit-per-byte approach. To detected the last - permutation it is useful to intialize the array with the first M + permutation it is useful to initialize the array with the first M element set to true and use this test: m_out_of_n (array, m, n); for (i = j = 0; i < n && j < m; i++) @@ -996,7 +1006,7 @@ is_prime (gcry_mpi_t n, int steps, unsigned int *count) j++; if (j == m) goto ready; - + This code is based on the algorithm 452 from the "Collected Algorithms From ACM, Volume II" by C. N. Liu and D. T. Tang. */ @@ -1010,7 +1020,7 @@ m_out_of_n ( char *array, int m, int n ) /* Need to handle this simple case separately. */ if( m == 1 ) - { + { for (i=0; i < n; i++ ) { if ( array[i] ) @@ -1060,7 +1070,7 @@ m_out_of_n ( char *array, int m, int n ) else k1 = k2 + 1; } - else + else { /* M is even. */ if( !array[n-1] ) @@ -1069,7 +1079,7 @@ m_out_of_n ( char *array, int m, int n ) k2 = k1 + 1; goto leave; } - + if( !(j1 & 1) ) { k1 = n - j1; @@ -1080,7 +1090,7 @@ m_out_of_n ( char *array, int m, int n ) } scan: jp = n - j1 - 1; - for (i=1; i <= jp; i++ ) + for (i=1; i <= jp; i++ ) { i1 = jp + 2 - i; if( array[i1-1] ) @@ -1114,135 +1124,131 @@ m_out_of_n ( char *array, int m, int n ) non-zero, allocate a new, NULL-terminated array holding the prime factors and store it in FACTORS. FLAGS might be used to influence the prime number generation process. */ -gcry_error_t -gcry_prime_generate (gcry_mpi_t *prime, unsigned int prime_bits, - unsigned int factor_bits, gcry_mpi_t **factors, - gcry_prime_check_func_t cb_func, void *cb_arg, - gcry_random_level_t random_level, - unsigned int flags) +gcry_err_code_t +_gcry_prime_generate (gcry_mpi_t *prime, unsigned int prime_bits, + unsigned int factor_bits, gcry_mpi_t **factors, + gcry_prime_check_func_t cb_func, void *cb_arg, + gcry_random_level_t random_level, + unsigned int flags) { - gcry_err_code_t err = GPG_ERR_NO_ERROR; + gcry_err_code_t rc = 0; gcry_mpi_t *factors_generated = NULL; gcry_mpi_t prime_generated = NULL; unsigned int mode = 0; if (!prime) - return gpg_error (GPG_ERR_INV_ARG); - *prime = NULL; + return GPG_ERR_INV_ARG; + *prime = NULL; if (flags & GCRY_PRIME_FLAG_SPECIAL_FACTOR) mode = 1; /* Generate. */ - err = prime_generate_internal ((mode==1), &prime_generated, prime_bits, - factor_bits, NULL, - factors? &factors_generated : NULL, - random_level, flags, 1, - cb_func, cb_arg); + rc = prime_generate_internal ((mode==1), &prime_generated, prime_bits, + factor_bits, NULL, + factors? &factors_generated : NULL, + random_level, flags, 1, + cb_func, cb_arg); - if (! err) - if (cb_func) - { - /* Additional check. */ - if ( !cb_func (cb_arg, GCRY_PRIME_CHECK_AT_FINISH, prime_generated)) - { - /* Failed, deallocate resources. */ - unsigned int i; + if (!rc && cb_func) + { + /* Additional check. */ + if ( !cb_func (cb_arg, GCRY_PRIME_CHECK_AT_FINISH, prime_generated)) + { + /* Failed, deallocate resources. */ + unsigned int i; - mpi_free (prime_generated); - if (factors) - { - for (i = 0; factors_generated[i]; i++) - mpi_free (factors_generated[i]); - gcry_free (factors_generated); - } - err = GPG_ERR_GENERAL; - } - } + mpi_free (prime_generated); + if (factors) + { + for (i = 0; factors_generated[i]; i++) + mpi_free (factors_generated[i]); + xfree (factors_generated); + } + rc = GPG_ERR_GENERAL; + } + } - if (! err) + if (!rc) { if (factors) *factors = factors_generated; *prime = prime_generated; } - return gcry_error (err); + return rc; } -/* Check wether the number X is prime. */ -gcry_error_t -gcry_prime_check (gcry_mpi_t x, unsigned int flags) +/* Check whether the number X is prime. */ +gcry_err_code_t +_gcry_prime_check (gcry_mpi_t x, unsigned int flags) { - gcry_err_code_t err = GPG_ERR_NO_ERROR; - gcry_mpi_t val_2 = mpi_alloc_set_ui (2); /* Used by the Fermat test. */ - (void)flags; + switch (mpi_cmp_ui (x, 2)) + { + case 0: return 0; /* 2 is a prime */ + case -1: return GPG_ERR_NO_PRIME; /* Only numbers > 1 are primes. */ + } + /* We use 64 rounds because the prime we are going to test is not guaranteed to be a random one. */ - if (! check_prime (x, val_2, 64, NULL, NULL)) - err = GPG_ERR_NO_PRIME; - - mpi_free (val_2); + if (check_prime (x, mpi_const (MPI_C_TWO), 64, NULL, NULL)) + return 0; - return gcry_error (err); + return GPG_ERR_NO_PRIME; } /* Find a generator for PRIME where the factorization of (prime-1) is in the NULL terminated array FACTORS. Return the generator as a newly allocated MPI in R_G. If START_G is not NULL, use this as s atart for the search. Returns 0 on success.*/ -gcry_error_t -gcry_prime_group_generator (gcry_mpi_t *r_g, - gcry_mpi_t prime, gcry_mpi_t *factors, - gcry_mpi_t start_g) +gcry_err_code_t +_gcry_prime_group_generator (gcry_mpi_t *r_g, + gcry_mpi_t prime, gcry_mpi_t *factors, + gcry_mpi_t start_g) { - gcry_mpi_t tmp = gcry_mpi_new (0); - gcry_mpi_t b = gcry_mpi_new (0); - gcry_mpi_t pmin1 = gcry_mpi_new (0); - gcry_mpi_t g = start_g? gcry_mpi_copy (start_g) : gcry_mpi_set_ui (NULL, 3); + gcry_mpi_t tmp = mpi_new (0); + gcry_mpi_t b = mpi_new (0); + gcry_mpi_t pmin1 = mpi_new (0); + gcry_mpi_t g = start_g? mpi_copy (start_g) : mpi_set_ui (NULL, 3); int first = 1; int i, n; if (!factors || !r_g || !prime) - return gpg_error (GPG_ERR_INV_ARG); - *r_g = NULL; + return GPG_ERR_INV_ARG; + *r_g = NULL; for (n=0; factors[n]; n++) ; if (n < 2) - return gpg_error (GPG_ERR_INV_ARG); + return GPG_ERR_INV_ARG; - /* Extra sanity check - usually disabled. */ + /* Extra sanity check - usually disabled. */ /* mpi_set (tmp, factors[0]); */ /* for(i = 1; i < n; i++) */ /* mpi_mul (tmp, tmp, factors[i]); */ /* mpi_add_ui (tmp, tmp, 1); */ /* if (mpi_cmp (prime, tmp)) */ /* return gpg_error (GPG_ERR_INV_ARG); */ - - gcry_mpi_sub_ui (pmin1, prime, 1); - do + + mpi_sub_ui (pmin1, prime, 1); + do { if (first) first = 0; else - gcry_mpi_add_ui (g, g, 1); - + mpi_add_ui (g, g, 1); + if (DBG_CIPHER) - { - log_debug ("checking g:"); - gcry_mpi_dump (g); - log_debug ("\n"); - } + log_printmpi ("checking g", g); else progress('^'); - + for (i = 0; i < n; i++) { mpi_fdiv_q (tmp, pmin1, factors[i]); - gcry_mpi_powm (b, g, tmp, prime); + mpi_powm (b, g, tmp, prime); if (! mpi_cmp_ui (b, 1)) break; } @@ -1250,26 +1256,26 @@ gcry_prime_group_generator (gcry_mpi_t *r_g, progress('\n'); } while (i < n); - - gcry_mpi_release (tmp); - gcry_mpi_release (b); - gcry_mpi_release (pmin1); - *r_g = g; - return 0; + _gcry_mpi_release (tmp); + _gcry_mpi_release (b); + _gcry_mpi_release (pmin1); + *r_g = g; + + return 0; } /* Convenience function to release the factors array. */ void -gcry_prime_release_factors (gcry_mpi_t *factors) +_gcry_prime_release_factors (gcry_mpi_t *factors) { if (factors) { int i; - + for (i=0; factors[i]; i++) mpi_free (factors[i]); - gcry_free (factors); + xfree (factors); } } @@ -1279,11 +1285,11 @@ gcry_prime_release_factors (gcry_mpi_t *factors) static gcry_mpi_t find_x931_prime (const gcry_mpi_t pfirst) { - gcry_mpi_t val_2 = mpi_alloc_set_ui (2); + gcry_mpi_t val_2 = mpi_alloc_set_ui (2); gcry_mpi_t prime; - - prime = gcry_mpi_copy (pfirst); - /* If P is even add 1. */ + + prime = mpi_copy (pfirst); + /* If P is even add 1. */ mpi_set_bit (prime, 0); /* We use 64 Rabin-Miller rounds which is better and thus @@ -1299,7 +1305,7 @@ find_x931_prime (const gcry_mpi_t pfirst) } -/* Generate a prime using the algorithm from X9.31 appendix B.4. +/* Generate a prime using the algorithm from X9.31 appendix B.4. This function requires that the provided public exponent E is odd. XP, XP1 and XP2 are the seed values. All values are mandatory. @@ -1308,7 +1314,7 @@ find_x931_prime (const gcry_mpi_t pfirst) internal values P1 and P2 are saved at these addresses. On error NULL is returned. */ gcry_mpi_t -_gcry_derive_x931_prime (const gcry_mpi_t xp, +_gcry_derive_x931_prime (const gcry_mpi_t xp, const gcry_mpi_t xp1, const gcry_mpi_t xp2, const gcry_mpi_t e, gcry_mpi_t *r_p1, gcry_mpi_t *r_p2) @@ -1327,20 +1333,20 @@ _gcry_derive_x931_prime (const gcry_mpi_t xp, { gcry_mpi_t r1, tmp; - + /* r1 = (p2^{-1} mod p1)p2 - (p1^{-1} mod p2) */ tmp = mpi_alloc_like (p1); mpi_invm (tmp, p2, p1); mpi_mul (tmp, tmp, p2); r1 = tmp; - + tmp = mpi_alloc_like (p2); mpi_invm (tmp, p1, p2); mpi_mul (tmp, tmp, p1); mpi_sub (r1, r1, tmp); /* Fixup a negative value. */ - if (mpi_is_neg (r1)) + if (mpi_has_sign (r1)) mpi_add (r1, r1, p1p2); /* yp0 = xp + (r1 - xp mod p1*p2) */ @@ -1350,7 +1356,7 @@ _gcry_derive_x931_prime (const gcry_mpi_t xp, mpi_free (r1); /* Fixup a negative value. */ - if (mpi_cmp (yp0, xp) < 0 ) + if (mpi_cmp (yp0, xp) < 0 ) mpi_add (yp0, yp0, p1p2); } @@ -1378,15 +1384,15 @@ _gcry_derive_x931_prime (const gcry_mpi_t xp, */ { - gcry_mpi_t val_2 = mpi_alloc_set_ui (2); + gcry_mpi_t val_2 = mpi_alloc_set_ui (2); gcry_mpi_t gcdtmp = mpi_alloc_like (yp0); int gcdres; - + mpi_sub_ui (p1p2, p1p2, 1); /* Adjust for loop body. */ mpi_sub_ui (yp0, yp0, 1); /* Ditto. */ for (;;) { - gcdres = gcry_mpi_gcd (gcdtmp, e, yp0); + gcdres = mpi_gcd (gcdtmp, e, yp0); mpi_add_ui (yp0, yp0, 1); if (!gcdres) progress ('/'); /* gcd (e, yp0-1) != 1 */ @@ -1453,9 +1459,9 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, ; /* No seed value given: We are asked to generate it. */ else if (!seed || seedlen < qbits/8) return GPG_ERR_INV_ARG; - + /* Allocate a buffer to later compute SEED+some_increment. */ - seed_plus = gcry_malloc (seedlen < 20? 20:seedlen); + seed_plus = xtrymalloc (seedlen < 20? 20:seedlen); if (!seed_plus) { ec = gpg_err_code_from_syserror (); @@ -1465,10 +1471,10 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, val_2 = mpi_alloc_set_ui (2); value_n = (pbits - 1) / qbits; value_b = (pbits - 1) - value_n * qbits; - value_w = gcry_mpi_new (pbits); - value_x = gcry_mpi_new (pbits); + value_w = mpi_new (pbits); + value_x = mpi_new (pbits); - restart: + restart: /* Generate Q. */ for (;;) { @@ -1476,10 +1482,10 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, if (!seed) { seedlen = sizeof seed_help_buffer; - gcry_create_nonce (seed_help_buffer, seedlen); + _gcry_create_nonce (seed_help_buffer, seedlen); seed = seed_help_buffer; } - + /* Step 2: U = sha1(seed) ^ sha1((seed+1) mod 2^{qbits}) */ memcpy (seed_plus, seed, seedlen); for (i=seedlen-1; i >= 0; i--) @@ -1488,20 +1494,20 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, if (seed_plus[i]) break; } - gcry_md_hash_buffer (GCRY_MD_SHA1, value_u, seed, seedlen); - gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); + _gcry_md_hash_buffer (GCRY_MD_SHA1, value_u, seed, seedlen); + _gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); for (i=0; i < sizeof value_u; i++) value_u[i] ^= digest[i]; - + /* Step 3: Form q from U */ - gcry_mpi_release (prime_q); prime_q = NULL; - ec = gpg_err_code (gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG, - value_u, sizeof value_u, NULL)); + _gcry_mpi_release (prime_q); prime_q = NULL; + ec = _gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG, + value_u, sizeof value_u, NULL); if (ec) goto leave; mpi_set_highbit (prime_q, qbits-1 ); mpi_set_bit (prime_q, 0); - + /* Step 4: Test whether Q is prime using 64 round of Rabin-Miller. */ if (check_prime (prime_q, val_2, 64, NULL, NULL)) break; /* Yes, Q is prime. */ @@ -1509,21 +1515,21 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, /* Step 5. */ seed = NULL; /* Force a new seed at Step 1. */ } - + /* Step 6. Note that we do no use an explicit offset but increment SEED_PLUS accordingly. SEED_PLUS is currently SEED+1. */ counter = 0; /* Generate P. */ - prime_p = gcry_mpi_new (pbits); + prime_p = mpi_new (pbits); for (;;) { - /* Step 7: For k = 0,...n let - V_k = sha1(seed+offset+k) mod 2^{qbits} - Step 8: W = V_0 + V_1*2^160 + - ... + /* Step 7: For k = 0,...n let + V_k = sha1(seed+offset+k) mod 2^{qbits} + Step 8: W = V_0 + V_1*2^160 + + ... + V_{n-1}*2^{(n-1)*160} - + (V_{n} mod 2^b)*2^{n*160} + + (V_{n} mod 2^b)*2^{n*160} */ mpi_set_ui (value_w, 0); for (value_k=0; value_k <= value_n; value_k++) @@ -1541,11 +1547,11 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, if (seed_plus[i]) break; } - gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); - - gcry_mpi_release (tmpval); tmpval = NULL; - ec = gpg_err_code (gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG, - digest, sizeof digest, NULL)); + _gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); + + _gcry_mpi_release (tmpval); tmpval = NULL; + ec = _gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG, + digest, sizeof digest, NULL); if (ec) goto leave; if (value_k == value_n) @@ -1607,13 +1613,13 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, leave: - gcry_mpi_release (tmpval); - gcry_mpi_release (value_x); - gcry_mpi_release (value_w); - gcry_mpi_release (prime_p); - gcry_mpi_release (prime_q); - gcry_free (seed_plus); - gcry_mpi_release (val_2); + _gcry_mpi_release (tmpval); + _gcry_mpi_release (value_x); + _gcry_mpi_release (value_w); + _gcry_mpi_release (prime_p); + _gcry_mpi_release (prime_q); + xfree (seed_plus); + _gcry_mpi_release (val_2); return ec; } @@ -1631,7 +1637,7 @@ _gcry_generate_fips186_2_prime (unsigned int pbits, unsigned int qbits, value is stored at R_COUNTER and the seed actually used for generation is stored at R_SEED and R_SEEDVALUE. The hash algorithm used is stored at R_HASHALGO. - + Note that this function is very similar to the fips186_2 code. Due to the minor differences, other buffer sizes and for documentarion, we use a separate function. @@ -1652,7 +1658,7 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, gcry_mpi_t tmpval = NULL; /* Helper variable. */ int hashalgo; /* The id of the Approved Hash Function. */ int i; - + unsigned char value_u[256/8]; int value_n, value_b, value_j; int counter; @@ -1678,11 +1684,11 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, return GPG_ERR_INV_KEYLEN; /* Also check that the hash algorithm is available. */ - ec = gpg_err_code (gcry_md_test_algo (hashalgo)); + ec = _gcry_md_test_algo (hashalgo); if (ec) return ec; gcry_assert (qbits/8 <= sizeof digest); - gcry_assert (gcry_md_get_algo_dlen (hashalgo) == qbits/8); + gcry_assert (_gcry_md_get_algo_dlen (hashalgo) == qbits/8); /* Step 2: Check seedlen. */ @@ -1690,26 +1696,26 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, ; /* No seed value given: We are asked to generate it. */ else if (!seed || seedlen < qbits/8) return GPG_ERR_INV_ARG; - + /* Allocate a buffer to later compute SEED+some_increment and a few helper variables. */ - seed_plus = gcry_malloc (seedlen < sizeof seed_help_buffer? - sizeof seed_help_buffer : seedlen); + seed_plus = xtrymalloc (seedlen < sizeof seed_help_buffer? + sizeof seed_help_buffer : seedlen); if (!seed_plus) { ec = gpg_err_code_from_syserror (); goto leave; } val_2 = mpi_alloc_set_ui (2); - value_w = gcry_mpi_new (pbits); - value_x = gcry_mpi_new (pbits); + value_w = mpi_new (pbits); + value_x = mpi_new (pbits); /* Step 3: n = \lceil L / outlen \rceil - 1 */ value_n = (pbits + qbits - 1) / qbits - 1; /* Step 4: b = L - 1 - (n * outlen) */ value_b = pbits - 1 - (value_n * qbits); - restart: + restart: /* Generate Q. */ for (;;) { @@ -1718,12 +1724,12 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, { seedlen = qbits/8; gcry_assert (seedlen <= sizeof seed_help_buffer); - gcry_create_nonce (seed_help_buffer, seedlen); + _gcry_create_nonce (seed_help_buffer, seedlen); seed = seed_help_buffer; } - + /* Step 6: U = hash(seed) */ - gcry_md_hash_buffer (hashalgo, value_u, seed, seedlen); + _gcry_md_hash_buffer (hashalgo, value_u, seed, seedlen); /* Step 7: q = 2^{N-1} + U + 1 - (U mod 2) */ if ( !(value_u[qbits/8-1] & 0x01) ) @@ -1735,13 +1741,13 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, break; } } - gcry_mpi_release (prime_q); prime_q = NULL; - ec = gpg_err_code (gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG, - value_u, sizeof value_u, NULL)); + _gcry_mpi_release (prime_q); prime_q = NULL; + ec = _gcry_mpi_scan (&prime_q, GCRYMPI_FMT_USG, + value_u, sizeof value_u, NULL); if (ec) goto leave; mpi_set_highbit (prime_q, qbits-1 ); - + /* Step 8: Test whether Q is prime using 64 round of Rabin-Miller. According to table C.1 this is sufficient for all supported prime sizes (i.e. up 3072/256). */ @@ -1751,22 +1757,22 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, /* Step 8. */ seed = NULL; /* Force a new seed at Step 5. */ } - + /* Step 11. Note that we do no use an explicit offset but increment SEED_PLUS accordingly. */ memcpy (seed_plus, seed, seedlen); counter = 0; /* Generate P. */ - prime_p = gcry_mpi_new (pbits); + prime_p = mpi_new (pbits); for (;;) { - /* Step 11.1: For j = 0,...n let - V_j = hash(seed+offset+j) - Step 11.2: W = V_0 + V_1*2^outlen + - ... + /* Step 11.1: For j = 0,...n let + V_j = hash(seed+offset+j) + Step 11.2: W = V_0 + V_1*2^outlen + + ... + V_{n-1}*2^{(n-1)*outlen} - + (V_{n} mod 2^b)*2^{n*outlen} + + (V_{n} mod 2^b)*2^{n*outlen} */ mpi_set_ui (value_w, 0); for (value_j=0; value_j <= value_n; value_j++) @@ -1782,11 +1788,11 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, if (seed_plus[i]) break; } - gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); - - gcry_mpi_release (tmpval); tmpval = NULL; - ec = gpg_err_code (gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG, - digest, sizeof digest, NULL)); + _gcry_md_hash_buffer (GCRY_MD_SHA1, digest, seed_plus, seedlen); + + _gcry_mpi_release (tmpval); tmpval = NULL; + ec = _gcry_mpi_scan (&tmpval, GCRYMPI_FMT_USG, + digest, sizeof digest, NULL); if (ec) goto leave; if (value_j == value_n) @@ -1813,7 +1819,7 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, if (mpi_get_nbits (prime_p) >= pbits-1 && check_prime (prime_p, val_2, 64, NULL, NULL) ) break; /* Yes, P is prime, continue with Step 15. */ - + /* Step 11.9: counter = counter + 1, offset = offset + n + 1. If counter >= 4L goto Step 5. */ counter++; @@ -1824,9 +1830,9 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, /* Step 12: Save p, q, counter and seed. */ log_debug ("fips186-3 pbits p=%u q=%u counter=%d\n", mpi_get_nbits (prime_p), mpi_get_nbits (prime_q), counter); - log_printhex("fips186-3 seed:", seed, seedlen); - log_mpidump ("fips186-3 prime p", prime_p); - log_mpidump ("fips186-3 prime q", prime_q); + log_printhex ("fips186-3 seed", seed, seedlen); + log_printmpi ("fips186-3 p", prime_p); + log_printmpi ("fips186-3 q", prime_q); if (r_q) { *r_q = prime_q; @@ -1850,13 +1856,12 @@ _gcry_generate_fips186_3_prime (unsigned int pbits, unsigned int qbits, *r_hashalgo = hashalgo; leave: - gcry_mpi_release (tmpval); - gcry_mpi_release (value_x); - gcry_mpi_release (value_w); - gcry_mpi_release (prime_p); - gcry_mpi_release (prime_q); - gcry_free (seed_plus); - gcry_mpi_release (val_2); + _gcry_mpi_release (tmpval); + _gcry_mpi_release (value_x); + _gcry_mpi_release (value_w); + _gcry_mpi_release (prime_p); + _gcry_mpi_release (prime_q); + xfree (seed_plus); + _gcry_mpi_release (val_2); return ec; } - |