summaryrefslogtreecommitdiff
path: root/plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c')
-rw-r--r--plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c535
1 files changed, 0 insertions, 535 deletions
diff --git a/plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c b/plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c
deleted file mode 100644
index e41e205e1d..0000000000
--- a/plugins/MirOTR/libgcrypt-1.4.6/mpi/mpih-div.c
+++ /dev/null
@@ -1,535 +0,0 @@
-/* mpih-div.c - MPI helper functions
- * Copyright (C) 1994, 1996, 1998, 2000,
- * 2001, 2002 Free Software Foundation, Inc.
- *
- * This file is part of Libgcrypt.
- *
- * Libgcrypt is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as
- * published by the Free Software Foundation; either version 2.1 of
- * the License, or (at your option) any later version.
- *
- * Libgcrypt is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
- *
- * Note: This code is heavily based on the GNU MP Library.
- * Actually it's the same code with only minor changes in the
- * way the data is stored; this is to support the abstraction
- * of an optional secure memory allocation which may be used
- * to avoid revealing of sensitive data due to paging etc.
- */
-
-#include <config.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include "mpi-internal.h"
-#include "longlong.h"
-
-#ifndef UMUL_TIME
-#define UMUL_TIME 1
-#endif
-#ifndef UDIV_TIME
-#define UDIV_TIME UMUL_TIME
-#endif
-
-/* FIXME: We should be using invert_limb (or invert_normalized_limb)
- * here (not udiv_qrnnd).
- */
-
-mpi_limb_t
-_gcry_mpih_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
- mpi_limb_t divisor_limb)
-{
- mpi_size_t i;
- mpi_limb_t n1, n0, r;
- int dummy;
-
- /* Botch: Should this be handled at all? Rely on callers? */
- if( !dividend_size )
- return 0;
-
- /* If multiplication is much faster than division, and the
- * dividend is large, pre-invert the divisor, and use
- * only multiplications in the inner loop.
- *
- * This test should be read:
- * Does it ever help to use udiv_qrnnd_preinv?
- * && Does what we save compensate for the inversion overhead?
- */
- if( UDIV_TIME > (2 * UMUL_TIME + 6)
- && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
- int normalization_steps;
-
- count_leading_zeros( normalization_steps, divisor_limb );
- if( normalization_steps ) {
- mpi_limb_t divisor_limb_inverted;
-
- divisor_limb <<= normalization_steps;
-
- /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
- * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
- * most significant bit (with weight 2**N) implicit.
- *
- * Special case for DIVISOR_LIMB == 100...000.
- */
- if( !(divisor_limb << 1) )
- divisor_limb_inverted = ~(mpi_limb_t)0;
- else
- udiv_qrnnd(divisor_limb_inverted, dummy,
- -divisor_limb, 0, divisor_limb);
-
- n1 = dividend_ptr[dividend_size - 1];
- r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
-
- /* Possible optimization:
- * if (r == 0
- * && divisor_limb > ((n1 << normalization_steps)
- * | (dividend_ptr[dividend_size - 2] >> ...)))
- * ...one division less...
- */
- for( i = dividend_size - 2; i >= 0; i--) {
- n0 = dividend_ptr[i];
- UDIV_QRNND_PREINV(dummy, r, r,
- ((n1 << normalization_steps)
- | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
- divisor_limb, divisor_limb_inverted);
- n1 = n0;
- }
- UDIV_QRNND_PREINV(dummy, r, r,
- n1 << normalization_steps,
- divisor_limb, divisor_limb_inverted);
- return r >> normalization_steps;
- }
- else {
- mpi_limb_t divisor_limb_inverted;
-
- /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
- * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
- * most significant bit (with weight 2**N) implicit.
- *
- * Special case for DIVISOR_LIMB == 100...000.
- */
- if( !(divisor_limb << 1) )
- divisor_limb_inverted = ~(mpi_limb_t)0;
- else
- udiv_qrnnd(divisor_limb_inverted, dummy,
- -divisor_limb, 0, divisor_limb);
-
- i = dividend_size - 1;
- r = dividend_ptr[i];
-
- if( r >= divisor_limb )
- r = 0;
- else
- i--;
-
- for( ; i >= 0; i--) {
- n0 = dividend_ptr[i];
- UDIV_QRNND_PREINV(dummy, r, r,
- n0, divisor_limb, divisor_limb_inverted);
- }
- return r;
- }
- }
- else {
- if( UDIV_NEEDS_NORMALIZATION ) {
- int normalization_steps;
-
- count_leading_zeros(normalization_steps, divisor_limb);
- if( normalization_steps ) {
- divisor_limb <<= normalization_steps;
-
- n1 = dividend_ptr[dividend_size - 1];
- r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
-
- /* Possible optimization:
- * if (r == 0
- * && divisor_limb > ((n1 << normalization_steps)
- * | (dividend_ptr[dividend_size - 2] >> ...)))
- * ...one division less...
- */
- for(i = dividend_size - 2; i >= 0; i--) {
- n0 = dividend_ptr[i];
- udiv_qrnnd (dummy, r, r,
- ((n1 << normalization_steps)
- | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
- divisor_limb);
- n1 = n0;
- }
- udiv_qrnnd (dummy, r, r,
- n1 << normalization_steps,
- divisor_limb);
- return r >> normalization_steps;
- }
- }
- /* No normalization needed, either because udiv_qrnnd doesn't require
- * it, or because DIVISOR_LIMB is already normalized. */
- i = dividend_size - 1;
- r = dividend_ptr[i];
-
- if(r >= divisor_limb)
- r = 0;
- else
- i--;
-
- for(; i >= 0; i--) {
- n0 = dividend_ptr[i];
- udiv_qrnnd (dummy, r, r, n0, divisor_limb);
- }
- return r;
- }
-}
-
-/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
- * the NSIZE-DSIZE least significant quotient limbs at QP
- * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
- * non-zero, generate that many fraction bits and append them after the
- * other quotient limbs.
- * Return the most significant limb of the quotient, this is always 0 or 1.
- *
- * Preconditions:
- * 0. NSIZE >= DSIZE.
- * 1. The most significant bit of the divisor must be set.
- * 2. QP must either not overlap with the input operands at all, or
- * QP + DSIZE >= NP must hold true. (This means that it's
- * possible to put the quotient in the high part of NUM, right after the
- * remainder in NUM.
- * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
- */
-
-mpi_limb_t
-_gcry_mpih_divrem( mpi_ptr_t qp, mpi_size_t qextra_limbs,
- mpi_ptr_t np, mpi_size_t nsize,
- mpi_ptr_t dp, mpi_size_t dsize)
-{
- mpi_limb_t most_significant_q_limb = 0;
-
- switch(dsize) {
- case 0:
- /* We are asked to divide by zero, so go ahead and do it! (To make
- the compiler not remove this statement, return the value.) */
- return 1 / dsize;
-
- case 1:
- {
- mpi_size_t i;
- mpi_limb_t n1;
- mpi_limb_t d;
-
- d = dp[0];
- n1 = np[nsize - 1];
-
- if( n1 >= d ) {
- n1 -= d;
- most_significant_q_limb = 1;
- }
-
- qp += qextra_limbs;
- for( i = nsize - 2; i >= 0; i--)
- udiv_qrnnd( qp[i], n1, n1, np[i], d );
- qp -= qextra_limbs;
-
- for( i = qextra_limbs - 1; i >= 0; i-- )
- udiv_qrnnd (qp[i], n1, n1, 0, d);
-
- np[0] = n1;
- }
- break;
-
- case 2:
- {
- mpi_size_t i;
- mpi_limb_t n1, n0, n2;
- mpi_limb_t d1, d0;
-
- np += nsize - 2;
- d1 = dp[1];
- d0 = dp[0];
- n1 = np[1];
- n0 = np[0];
-
- if( n1 >= d1 && (n1 > d1 || n0 >= d0) ) {
- sub_ddmmss (n1, n0, n1, n0, d1, d0);
- most_significant_q_limb = 1;
- }
-
- for( i = qextra_limbs + nsize - 2 - 1; i >= 0; i-- ) {
- mpi_limb_t q;
- mpi_limb_t r;
-
- if( i >= qextra_limbs )
- np--;
- else
- np[0] = 0;
-
- if( n1 == d1 ) {
- /* Q should be either 111..111 or 111..110. Need special
- * treatment of this rare case as normal division would
- * give overflow. */
- q = ~(mpi_limb_t)0;
-
- r = n0 + d1;
- if( r < d1 ) { /* Carry in the addition? */
- add_ssaaaa( n1, n0, r - d0, np[0], 0, d0 );
- qp[i] = q;
- continue;
- }
- n1 = d0 - (d0 != 0?1:0);
- n0 = -d0;
- }
- else {
- udiv_qrnnd (q, r, n1, n0, d1);
- umul_ppmm (n1, n0, d0, q);
- }
-
- n2 = np[0];
- q_test:
- if( n1 > r || (n1 == r && n0 > n2) ) {
- /* The estimated Q was too large. */
- q--;
- sub_ddmmss (n1, n0, n1, n0, 0, d0);
- r += d1;
- if( r >= d1 ) /* If not carry, test Q again. */
- goto q_test;
- }
-
- qp[i] = q;
- sub_ddmmss (n1, n0, r, n2, n1, n0);
- }
- np[1] = n1;
- np[0] = n0;
- }
- break;
-
- default:
- {
- mpi_size_t i;
- mpi_limb_t dX, d1, n0;
-
- np += nsize - dsize;
- dX = dp[dsize - 1];
- d1 = dp[dsize - 2];
- n0 = np[dsize - 1];
-
- if( n0 >= dX ) {
- if(n0 > dX || _gcry_mpih_cmp(np, dp, dsize - 1) >= 0 ) {
- _gcry_mpih_sub_n(np, np, dp, dsize);
- n0 = np[dsize - 1];
- most_significant_q_limb = 1;
- }
- }
-
- for( i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
- mpi_limb_t q;
- mpi_limb_t n1, n2;
- mpi_limb_t cy_limb;
-
- if( i >= qextra_limbs ) {
- np--;
- n2 = np[dsize];
- }
- else {
- n2 = np[dsize - 1];
- MPN_COPY_DECR (np + 1, np, dsize - 1);
- np[0] = 0;
- }
-
- if( n0 == dX ) {
- /* This might over-estimate q, but it's probably not worth
- * the extra code here to find out. */
- q = ~(mpi_limb_t)0;
- }
- else {
- mpi_limb_t r;
-
- udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
- umul_ppmm(n1, n0, d1, q);
-
- while( n1 > r || (n1 == r && n0 > np[dsize - 2])) {
- q--;
- r += dX;
- if( r < dX ) /* I.e. "carry in previous addition?" */
- break;
- n1 -= n0 < d1;
- n0 -= d1;
- }
- }
-
- /* Possible optimization: We already have (q * n0) and (1 * n1)
- * after the calculation of q. Taking advantage of that, we
- * could make this loop make two iterations less. */
- cy_limb = _gcry_mpih_submul_1(np, dp, dsize, q);
-
- if( n2 != cy_limb ) {
- _gcry_mpih_add_n(np, np, dp, dsize);
- q--;
- }
-
- qp[i] = q;
- n0 = np[dsize - 1];
- }
- }
- }
-
- return most_significant_q_limb;
-}
-
-
-/****************
- * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
- * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
- * Return the single-limb remainder.
- * There are no constraints on the value of the divisor.
- *
- * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
- */
-
-mpi_limb_t
-_gcry_mpih_divmod_1( mpi_ptr_t quot_ptr,
- mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
- mpi_limb_t divisor_limb)
-{
- mpi_size_t i;
- mpi_limb_t n1, n0, r;
- int dummy;
-
- if( !dividend_size )
- return 0;
-
- /* If multiplication is much faster than division, and the
- * dividend is large, pre-invert the divisor, and use
- * only multiplications in the inner loop.
- *
- * This test should be read:
- * Does it ever help to use udiv_qrnnd_preinv?
- * && Does what we save compensate for the inversion overhead?
- */
- if( UDIV_TIME > (2 * UMUL_TIME + 6)
- && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
- int normalization_steps;
-
- count_leading_zeros( normalization_steps, divisor_limb );
- if( normalization_steps ) {
- mpi_limb_t divisor_limb_inverted;
-
- divisor_limb <<= normalization_steps;
-
- /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
- * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
- * most significant bit (with weight 2**N) implicit.
- */
- /* Special case for DIVISOR_LIMB == 100...000. */
- if( !(divisor_limb << 1) )
- divisor_limb_inverted = ~(mpi_limb_t)0;
- else
- udiv_qrnnd(divisor_limb_inverted, dummy,
- -divisor_limb, 0, divisor_limb);
-
- n1 = dividend_ptr[dividend_size - 1];
- r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
-
- /* Possible optimization:
- * if (r == 0
- * && divisor_limb > ((n1 << normalization_steps)
- * | (dividend_ptr[dividend_size - 2] >> ...)))
- * ...one division less...
- */
- for( i = dividend_size - 2; i >= 0; i--) {
- n0 = dividend_ptr[i];
- UDIV_QRNND_PREINV( quot_ptr[i + 1], r, r,
- ((n1 << normalization_steps)
- | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
- divisor_limb, divisor_limb_inverted);
- n1 = n0;
- }
- UDIV_QRNND_PREINV( quot_ptr[0], r, r,
- n1 << normalization_steps,
- divisor_limb, divisor_limb_inverted);
- return r >> normalization_steps;
- }
- else {
- mpi_limb_t divisor_limb_inverted;
-
- /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
- * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
- * most significant bit (with weight 2**N) implicit.
- */
- /* Special case for DIVISOR_LIMB == 100...000. */
- if( !(divisor_limb << 1) )
- divisor_limb_inverted = ~(mpi_limb_t) 0;
- else
- udiv_qrnnd(divisor_limb_inverted, dummy,
- -divisor_limb, 0, divisor_limb);
-
- i = dividend_size - 1;
- r = dividend_ptr[i];
-
- if( r >= divisor_limb )
- r = 0;
- else
- quot_ptr[i--] = 0;
-
- for( ; i >= 0; i-- ) {
- n0 = dividend_ptr[i];
- UDIV_QRNND_PREINV( quot_ptr[i], r, r,
- n0, divisor_limb, divisor_limb_inverted);
- }
- return r;
- }
- }
- else {
- if(UDIV_NEEDS_NORMALIZATION) {
- int normalization_steps;
-
- count_leading_zeros (normalization_steps, divisor_limb);
- if( normalization_steps ) {
- divisor_limb <<= normalization_steps;
-
- n1 = dividend_ptr[dividend_size - 1];
- r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
-
- /* Possible optimization:
- * if (r == 0
- * && divisor_limb > ((n1 << normalization_steps)
- * | (dividend_ptr[dividend_size - 2] >> ...)))
- * ...one division less...
- */
- for( i = dividend_size - 2; i >= 0; i--) {
- n0 = dividend_ptr[i];
- udiv_qrnnd (quot_ptr[i + 1], r, r,
- ((n1 << normalization_steps)
- | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
- divisor_limb);
- n1 = n0;
- }
- udiv_qrnnd (quot_ptr[0], r, r,
- n1 << normalization_steps,
- divisor_limb);
- return r >> normalization_steps;
- }
- }
- /* No normalization needed, either because udiv_qrnnd doesn't require
- * it, or because DIVISOR_LIMB is already normalized. */
- i = dividend_size - 1;
- r = dividend_ptr[i];
-
- if(r >= divisor_limb)
- r = 0;
- else
- quot_ptr[i--] = 0;
-
- for(; i >= 0; i--) {
- n0 = dividend_ptr[i];
- udiv_qrnnd( quot_ptr[i], r, r, n0, divisor_limb );
- }
- return r;
- }
-}
-
-