summaryrefslogtreecommitdiff
path: root/plugins/freeimage/Source/FreeImage/WuQuantizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/freeimage/Source/FreeImage/WuQuantizer.cpp')
-rw-r--r--plugins/freeimage/Source/FreeImage/WuQuantizer.cpp538
1 files changed, 0 insertions, 538 deletions
diff --git a/plugins/freeimage/Source/FreeImage/WuQuantizer.cpp b/plugins/freeimage/Source/FreeImage/WuQuantizer.cpp
deleted file mode 100644
index c11840d4cd..0000000000
--- a/plugins/freeimage/Source/FreeImage/WuQuantizer.cpp
+++ /dev/null
@@ -1,538 +0,0 @@
-///////////////////////////////////////////////////////////////////////
-// C Implementation of Wu's Color Quantizer (v. 2)
-// (see Graphics Gems vol. II, pp. 126-133)
-//
-// Author: Xiaolin Wu
-// Dept. of Computer Science
-// Univ. of Western Ontario
-// London, Ontario N6A 5B7
-// wu@csd.uwo.ca
-//
-// Algorithm: Greedy orthogonal bipartition of RGB space for variance
-// minimization aided by inclusion-exclusion tricks.
-// For speed no nearest neighbor search is done. Slightly
-// better performance can be expected by more sophisticated
-// but more expensive versions.
-//
-// The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of
-// additional documentation and a cure to a previous bug.
-//
-// Free to distribute, comments and suggestions are appreciated.
-///////////////////////////////////////////////////////////////////////
-
-///////////////////////////////////////////////////////////////////////
-// History
-// -------
-// July 2000: C++ Implementation of Wu's Color Quantizer
-// and adaptation for the FreeImage 2 Library
-// Author: Hervé Drolon (drolon@infonie.fr)
-// March 2004: Adaptation for the FreeImage 3 library (port to big endian processors)
-// Author: Hervé Drolon (drolon@infonie.fr)
-///////////////////////////////////////////////////////////////////////
-
-#include "Quantizers.h"
-#include "FreeImage.h"
-#include "Utilities.h"
-
-///////////////////////////////////////////////////////////////////////
-
-// Size of a 3D array : 33 x 33 x 33
-#define SIZE_3D 35937
-
-// 3D array indexation
-#define INDEX(r, g, b) ((r << 10) + (r << 6) + r + (g << 5) + g + b)
-
-#define MAXCOLOR 256
-
-// Constructor / Destructor
-
-WuQuantizer::WuQuantizer(FIBITMAP *dib) {
- width = FreeImage_GetWidth(dib);
- height = FreeImage_GetHeight(dib);
- pitch = FreeImage_GetPitch(dib);
- m_dib = dib;
-
- gm2 = NULL;
- wt = mr = mg = mb = NULL;
- Qadd = NULL;
-
- // Allocate 3D arrays
- gm2 = (float*)malloc(SIZE_3D * sizeof(float));
- wt = (LONG*)malloc(SIZE_3D * sizeof(LONG));
- mr = (LONG*)malloc(SIZE_3D * sizeof(LONG));
- mg = (LONG*)malloc(SIZE_3D * sizeof(LONG));
- mb = (LONG*)malloc(SIZE_3D * sizeof(LONG));
-
- // Allocate Qadd
- Qadd = (WORD *)malloc(sizeof(WORD) * width * height);
-
- if(!gm2 || !wt || !mr || !mg || !mb || !Qadd) {
- if(gm2) free(gm2);
- if(wt) free(wt);
- if(mr) free(mr);
- if(mg) free(mg);
- if(mb) free(mb);
- if(Qadd) free(Qadd);
- throw FI_MSG_ERROR_MEMORY;
- }
- memset(gm2, 0, SIZE_3D * sizeof(float));
- memset(wt, 0, SIZE_3D * sizeof(LONG));
- memset(mr, 0, SIZE_3D * sizeof(LONG));
- memset(mg, 0, SIZE_3D * sizeof(LONG));
- memset(mb, 0, SIZE_3D * sizeof(LONG));
- memset(Qadd, 0, sizeof(WORD) * width * height);
-}
-
-WuQuantizer::~WuQuantizer() {
- if(gm2) free(gm2);
- if(wt) free(wt);
- if(mr) free(mr);
- if(mg) free(mg);
- if(mb) free(mb);
- if(Qadd) free(Qadd);
-}
-
-
-// Histogram is in elements 1..HISTSIZE along each axis,
-// element 0 is for base or marginal value
-// NB: these must start out 0!
-
-// Build 3-D color histogram of counts, r/g/b, c^2
-void
-WuQuantizer::Hist3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2, int ReserveSize, RGBQUAD *ReservePalette) {
- int ind = 0;
- int inr, ing, inb, table[256];
- int i;
- unsigned y, x;
-
- for(i = 0; i < 256; i++)
- table[i] = i * i;
-
- for(y = 0; y < height; y++) {
- BYTE *bits = FreeImage_GetScanLine(m_dib, y);
-
- for(x = 0; x < width; x++) {
- inr = (bits[FI_RGBA_RED] >> 3) + 1;
- ing = (bits[FI_RGBA_GREEN] >> 3) + 1;
- inb = (bits[FI_RGBA_BLUE] >> 3) + 1;
- ind = INDEX(inr, ing, inb);
- Qadd[y*width + x] = (WORD)ind;
- // [inr][ing][inb]
- vwt[ind]++;
- vmr[ind] += bits[FI_RGBA_RED];
- vmg[ind] += bits[FI_RGBA_GREEN];
- vmb[ind] += bits[FI_RGBA_BLUE];
- m2[ind] += (float)(table[bits[FI_RGBA_RED]] + table[bits[FI_RGBA_GREEN]] + table[bits[FI_RGBA_BLUE]]);
- bits += 3;
- }
- }
-
- if( ReserveSize > 0 ) {
- int max = 0;
- for(i = 0; i < SIZE_3D; i++) {
- if( vwt[i] > max ) max = vwt[i];
- }
- max++;
- for(i = 0; i < ReserveSize; i++) {
- inr = (ReservePalette[i].rgbRed >> 3) + 1;
- ing = (ReservePalette[i].rgbGreen >> 3) + 1;
- inb = (ReservePalette[i].rgbBlue >> 3) + 1;
- ind = INDEX(inr, ing, inb);
- wt[ind] = max;
- mr[ind] = max * ReservePalette[i].rgbRed;
- mg[ind] = max * ReservePalette[i].rgbGreen;
- mb[ind] = max * ReservePalette[i].rgbBlue;
- gm2[ind] = (float)max * (float)(table[ReservePalette[i].rgbRed] + table[ReservePalette[i].rgbGreen] + table[ReservePalette[i].rgbBlue]);
- }
- }
-}
-
-
-// At conclusion of the histogram step, we can interpret
-// wt[r][g][b] = sum over voxel of P(c)
-// mr[r][g][b] = sum over voxel of r*P(c) , similarly for mg, mb
-// m2[r][g][b] = sum over voxel of c^2*P(c)
-// Actually each of these should be divided by 'ImageSize' to give the usual
-// interpretation of P() as ranging from 0 to 1, but we needn't do that here.
-
-
-// We now convert histogram into moments so that we can rapidly calculate
-// the sums of the above quantities over any desired box.
-
-// Compute cumulative moments
-void
-WuQuantizer::M3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2) {
- unsigned ind1, ind2;
- BYTE i, r, g, b;
- LONG line, line_r, line_g, line_b;
- LONG area[33], area_r[33], area_g[33], area_b[33];
- float line2, area2[33];
-
- for(r = 1; r <= 32; r++) {
- for(i = 0; i <= 32; i++) {
- area2[i] = 0;
- area[i] = area_r[i] = area_g[i] = area_b[i] = 0;
- }
- for(g = 1; g <= 32; g++) {
- line2 = 0;
- line = line_r = line_g = line_b = 0;
- for(b = 1; b <= 32; b++) {
- ind1 = INDEX(r, g, b); // [r][g][b]
- line += vwt[ind1];
- line_r += vmr[ind1];
- line_g += vmg[ind1];
- line_b += vmb[ind1];
- line2 += m2[ind1];
- area[b] += line;
- area_r[b] += line_r;
- area_g[b] += line_g;
- area_b[b] += line_b;
- area2[b] += line2;
- ind2 = ind1 - 1089; // [r-1][g][b]
- vwt[ind1] = vwt[ind2] + area[b];
- vmr[ind1] = vmr[ind2] + area_r[b];
- vmg[ind1] = vmg[ind2] + area_g[b];
- vmb[ind1] = vmb[ind2] + area_b[b];
- m2[ind1] = m2[ind2] + area2[b];
- }
- }
- }
-}
-
-// Compute sum over a box of any given statistic
-LONG
-WuQuantizer::Vol( Box *cube, LONG *mmt ) {
- return( mmt[INDEX(cube->r1, cube->g1, cube->b1)]
- - mmt[INDEX(cube->r1, cube->g1, cube->b0)]
- - mmt[INDEX(cube->r1, cube->g0, cube->b1)]
- + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
- - mmt[INDEX(cube->r0, cube->g1, cube->b1)]
- + mmt[INDEX(cube->r0, cube->g1, cube->b0)]
- + mmt[INDEX(cube->r0, cube->g0, cube->b1)]
- - mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
-}
-
-// The next two routines allow a slightly more efficient calculation
-// of Vol() for a proposed subbox of a given box. The sum of Top()
-// and Bottom() is the Vol() of a subbox split in the given direction
-// and with the specified new upper bound.
-
-
-// Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1
-// (depending on dir)
-
-LONG
-WuQuantizer::Bottom(Box *cube, BYTE dir, LONG *mmt) {
- switch(dir)
- {
- case FI_RGBA_RED:
- return( - mmt[INDEX(cube->r0, cube->g1, cube->b1)]
- + mmt[INDEX(cube->r0, cube->g1, cube->b0)]
- + mmt[INDEX(cube->r0, cube->g0, cube->b1)]
- - mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
- break;
- case FI_RGBA_GREEN:
- return( - mmt[INDEX(cube->r1, cube->g0, cube->b1)]
- + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
- + mmt[INDEX(cube->r0, cube->g0, cube->b1)]
- - mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
- break;
- case FI_RGBA_BLUE:
- return( - mmt[INDEX(cube->r1, cube->g1, cube->b0)]
- + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
- + mmt[INDEX(cube->r0, cube->g1, cube->b0)]
- - mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
- break;
- }
-
- return 0;
-}
-
-
-// Compute remainder of Vol(cube, mmt), substituting pos for
-// r1, g1, or b1 (depending on dir)
-
-LONG
-WuQuantizer::Top(Box *cube, BYTE dir, int pos, LONG *mmt) {
- switch(dir)
- {
- case FI_RGBA_RED:
- return( mmt[INDEX(pos, cube->g1, cube->b1)]
- -mmt[INDEX(pos, cube->g1, cube->b0)]
- -mmt[INDEX(pos, cube->g0, cube->b1)]
- +mmt[INDEX(pos, cube->g0, cube->b0)] );
- break;
- case FI_RGBA_GREEN:
- return( mmt[INDEX(cube->r1, pos, cube->b1)]
- -mmt[INDEX(cube->r1, pos, cube->b0)]
- -mmt[INDEX(cube->r0, pos, cube->b1)]
- +mmt[INDEX(cube->r0, pos, cube->b0)] );
- break;
- case FI_RGBA_BLUE:
- return( mmt[INDEX(cube->r1, cube->g1, pos)]
- -mmt[INDEX(cube->r1, cube->g0, pos)]
- -mmt[INDEX(cube->r0, cube->g1, pos)]
- +mmt[INDEX(cube->r0, cube->g0, pos)] );
- break;
- }
-
- return 0;
-}
-
-// Compute the weighted variance of a box
-// NB: as with the raw statistics, this is really the variance * ImageSize
-
-float
-WuQuantizer::Var(Box *cube) {
- float dr = (float) Vol(cube, mr);
- float dg = (float) Vol(cube, mg);
- float db = (float) Vol(cube, mb);
- float xx = gm2[INDEX(cube->r1, cube->g1, cube->b1)]
- -gm2[INDEX(cube->r1, cube->g1, cube->b0)]
- -gm2[INDEX(cube->r1, cube->g0, cube->b1)]
- +gm2[INDEX(cube->r1, cube->g0, cube->b0)]
- -gm2[INDEX(cube->r0, cube->g1, cube->b1)]
- +gm2[INDEX(cube->r0, cube->g1, cube->b0)]
- +gm2[INDEX(cube->r0, cube->g0, cube->b1)]
- -gm2[INDEX(cube->r0, cube->g0, cube->b0)];
-
- return (xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,wt));
-}
-
-// We want to minimize the sum of the variances of two subboxes.
-// The sum(c^2) terms can be ignored since their sum over both subboxes
-// is the same (the sum for the whole box) no matter where we split.
-// The remaining terms have a minus sign in the variance formula,
-// so we drop the minus sign and MAXIMIZE the sum of the two terms.
-
-float
-WuQuantizer::Maximize(Box *cube, BYTE dir, int first, int last , int *cut, LONG whole_r, LONG whole_g, LONG whole_b, LONG whole_w) {
- LONG half_r, half_g, half_b, half_w;
- int i;
- float temp;
-
- LONG base_r = Bottom(cube, dir, mr);
- LONG base_g = Bottom(cube, dir, mg);
- LONG base_b = Bottom(cube, dir, mb);
- LONG base_w = Bottom(cube, dir, wt);
-
- float max = 0.0;
-
- *cut = -1;
-
- for (i = first; i < last; i++) {
- half_r = base_r + Top(cube, dir, i, mr);
- half_g = base_g + Top(cube, dir, i, mg);
- half_b = base_b + Top(cube, dir, i, mb);
- half_w = base_w + Top(cube, dir, i, wt);
-
- // now half_x is sum over lower half of box, if split at i
-
- if (half_w == 0) { // subbox could be empty of pixels!
- continue; // never split into an empty box
- } else {
- temp = ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;
- }
-
- half_r = whole_r - half_r;
- half_g = whole_g - half_g;
- half_b = whole_b - half_b;
- half_w = whole_w - half_w;
-
- if (half_w == 0) { // subbox could be empty of pixels!
- continue; // never split into an empty box
- } else {
- temp += ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;
- }
-
- if (temp > max) {
- max=temp;
- *cut=i;
- }
- }
-
- return max;
-}
-
-bool
-WuQuantizer::Cut(Box *set1, Box *set2) {
- BYTE dir;
- int cutr, cutg, cutb;
-
- LONG whole_r = Vol(set1, mr);
- LONG whole_g = Vol(set1, mg);
- LONG whole_b = Vol(set1, mb);
- LONG whole_w = Vol(set1, wt);
-
- float maxr = Maximize(set1, FI_RGBA_RED, set1->r0+1, set1->r1, &cutr, whole_r, whole_g, whole_b, whole_w);
- float maxg = Maximize(set1, FI_RGBA_GREEN, set1->g0+1, set1->g1, &cutg, whole_r, whole_g, whole_b, whole_w);
- float maxb = Maximize(set1, FI_RGBA_BLUE, set1->b0+1, set1->b1, &cutb, whole_r, whole_g, whole_b, whole_w);
-
- if ((maxr >= maxg) && (maxr >= maxb)) {
- dir = FI_RGBA_RED;
-
- if (cutr < 0) {
- return false; // can't split the box
- }
- } else if ((maxg >= maxr) && (maxg>=maxb)) {
- dir = FI_RGBA_GREEN;
- } else {
- dir = FI_RGBA_BLUE;
- }
-
- set2->r1 = set1->r1;
- set2->g1 = set1->g1;
- set2->b1 = set1->b1;
-
- switch (dir) {
- case FI_RGBA_RED:
- set2->r0 = set1->r1 = cutr;
- set2->g0 = set1->g0;
- set2->b0 = set1->b0;
- break;
-
- case FI_RGBA_GREEN:
- set2->g0 = set1->g1 = cutg;
- set2->r0 = set1->r0;
- set2->b0 = set1->b0;
- break;
-
- case FI_RGBA_BLUE:
- set2->b0 = set1->b1 = cutb;
- set2->r0 = set1->r0;
- set2->g0 = set1->g0;
- break;
- }
-
- set1->vol = (set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0);
- set2->vol = (set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0);
-
- return true;
-}
-
-
-void
-WuQuantizer::Mark(Box *cube, int label, BYTE *tag) {
- for (int r = cube->r0 + 1; r <= cube->r1; r++) {
- for (int g = cube->g0 + 1; g <= cube->g1; g++) {
- for (int b = cube->b0 + 1; b <= cube->b1; b++) {
- tag[INDEX(r, g, b)] = (BYTE)label;
- }
- }
- }
-}
-
-// Wu Quantization algorithm
-FIBITMAP *
-WuQuantizer::Quantize(int PaletteSize, int ReserveSize, RGBQUAD *ReservePalette) {
- BYTE *tag = NULL;
-
- try {
- Box cube[MAXCOLOR];
- int next;
- LONG i, weight;
- int k;
- float vv[MAXCOLOR], temp;
-
- // Compute 3D histogram
-
- Hist3D(wt, mr, mg, mb, gm2, ReserveSize, ReservePalette);
-
- // Compute moments
-
- M3D(wt, mr, mg, mb, gm2);
-
- cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;
- cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;
- next = 0;
-
- for (i = 1; i < PaletteSize; i++) {
- if(Cut(&cube[next], &cube[i])) {
- // volume test ensures we won't try to cut one-cell box
- vv[next] = (cube[next].vol > 1) ? Var(&cube[next]) : 0;
- vv[i] = (cube[i].vol > 1) ? Var(&cube[i]) : 0;
- } else {
- vv[next] = 0.0; // don't try to split this box again
- i--; // didn't create box i
- }
-
- next = 0; temp = vv[0];
-
- for (k = 1; k <= i; k++) {
- if (vv[k] > temp) {
- temp = vv[k]; next = k;
- }
- }
-
- if (temp <= 0.0) {
- PaletteSize = i + 1;
-
- // Error: "Only got 'PaletteSize' boxes"
-
- break;
- }
- }
-
- // Partition done
-
- // the space for array gm2 can be freed now
-
- free(gm2);
-
- gm2 = NULL;
-
- // Allocate a new dib
-
- FIBITMAP *new_dib = FreeImage_Allocate(width, height, 8);
-
- if (new_dib == NULL) {
- throw FI_MSG_ERROR_MEMORY;
- }
-
- // create an optimized palette
-
- RGBQUAD *new_pal = FreeImage_GetPalette(new_dib);
-
- tag = (BYTE*) malloc(SIZE_3D * sizeof(BYTE));
- if (tag == NULL) {
- throw FI_MSG_ERROR_MEMORY;
- }
- memset(tag, 0, SIZE_3D * sizeof(BYTE));
-
- for (k = 0; k < PaletteSize ; k++) {
- Mark(&cube[k], k, tag);
- weight = Vol(&cube[k], wt);
-
- if (weight) {
- new_pal[k].rgbRed = (BYTE)(((float)Vol(&cube[k], mr) / (float)weight) + 0.5f);
- new_pal[k].rgbGreen = (BYTE)(((float)Vol(&cube[k], mg) / (float)weight) + 0.5f);
- new_pal[k].rgbBlue = (BYTE)(((float)Vol(&cube[k], mb) / (float)weight) + 0.5f);
- } else {
- // Error: bogus box 'k'
-
- new_pal[k].rgbRed = new_pal[k].rgbGreen = new_pal[k].rgbBlue = 0;
- }
- }
-
- int npitch = FreeImage_GetPitch(new_dib);
-
- for (unsigned y = 0; y < height; y++) {
- BYTE *new_bits = FreeImage_GetBits(new_dib) + (y * npitch);
-
- for (unsigned x = 0; x < width; x++) {
- new_bits[x] = tag[Qadd[y*width + x]];
- }
- }
-
- // output 'new_pal' as color look-up table contents,
- // 'new_bits' as the quantized image (array of table addresses).
-
- free(tag);
-
- return (FIBITMAP*) new_dib;
- } catch(...) {
- free(tag);
- }
-
- return NULL;
-}