diff options
Diffstat (limited to 'protocols/Sametime/src/glib/gvariant-serialiser.c')
-rw-r--r-- | protocols/Sametime/src/glib/gvariant-serialiser.c | 1687 |
1 files changed, 1687 insertions, 0 deletions
diff --git a/protocols/Sametime/src/glib/gvariant-serialiser.c b/protocols/Sametime/src/glib/gvariant-serialiser.c new file mode 100644 index 0000000000..68128e2da1 --- /dev/null +++ b/protocols/Sametime/src/glib/gvariant-serialiser.c @@ -0,0 +1,1687 @@ +/* + * Copyright © 2007, 2008 Ryan Lortie + * Copyright © 2010 Codethink Limited + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 02111-1307, USA. + * + * Author: Ryan Lortie <desrt@desrt.ca> + */ + +/* Prologue {{{1 */ +#include "config.h" + +#include "gvariant-serialiser.h" + +#include <glib/gtestutils.h> +#include <glib/gstrfuncs.h> +#include <glib/gtypes.h> + +#include <string.h> + + +/* GVariantSerialiser + * + * After this prologue section, this file has roughly 2 parts. + * + * The first part is split up into sections according to various + * container types. Maybe, Array, Tuple, Variant. The Maybe and Array + * sections are subdivided for element types being fixed or + * variable-sized types. + * + * Each section documents the format of that particular type of + * container and implements 5 functions for dealing with it: + * + * n_children: + * - determines (according to serialised data) how many child values + * are inside a particular container value. + * + * get_child: + * - gets the type of and the serialised data corresponding to a + * given child value within the container value. + * + * needed_size: + * - determines how much space would be required to serialise a + * container of this type, containing the given children so that + * buffers can be preallocated before serialising. + * + * serialise: + * - write the serialised data for a container of this type, + * containing the given children, to a buffer. + * + * is_normal: + * - check the given data to ensure that it is in normal form. For a + * given set of child values, there is exactly one normal form for + * the serialised data of a container. Other forms are possible + * while maintaining the same children (for example, by inserting + * something other than zero bytes as padding) but only one form is + * the normal form. + * + * The second part contains the main entry point for each of the above 5 + * functions and logic to dispatch it to the handler for the appropriate + * container type code. + * + * The second part also contains a routine to byteswap serialised + * values. This code makes use of the n_children() and get_child() + * functions above to do its work so no extra support is needed on a + * per-container-type basis. + * + * There is also additional code for checking for normal form. All + * numeric types are always in normal form since the full range of + * values is permitted (eg: 0 to 255 is a valid byte). Special checks + * need to be performed for booleans (only 0 or 1 allowed), strings + * (properly nul-terminated) and object paths and signature strings + * (meeting the DBus specification requirements). + */ + +/* < private > + * GVariantSerialised: + * @type_info: the #GVariantTypeInfo of this value + * @data: the serialised data of this value, or %NULL + * @size: the size of this value + * + * A structure representing a GVariant in serialised form. This + * structure is used with #GVariantSerialisedFiller functions and as the + * primary interface to the serialiser. See #GVariantSerialisedFiller + * for a description of its use there. + * + * When used with the serialiser API functions, the following invariants + * apply to all #GVariantTypeSerialised structures passed to and + * returned from the serialiser. + * + * @type_info must be non-%NULL. + * + * @data must be properly aligned for the type described by @type_info. + * + * If @type_info describes a fixed-sized type then @size must always be + * equal to the fixed size of that type. + * + * For fixed-sized types (and only fixed-sized types), @data may be + * %NULL even if @size is non-zero. This happens when a framing error + * occurs while attempting to extract a fixed-sized value out of a + * variable-sized container. There is no data to return for the + * fixed-sized type, yet @size must be non-zero. The effect of this + * combination should be as if @data were a pointer to an + * appropriately-sized zero-filled region. + */ + +/* < private > + * g_variant_serialised_check: + * @serialised: a #GVariantSerialised struct + * + * Checks @serialised for validity according to the invariants described + * above. + */ +static void +g_variant_serialised_check (GVariantSerialised serialised) +{ + gsize fixed_size; + guint alignment; + + g_assert (serialised.type_info != NULL); + g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size); + + if (fixed_size) + g_assert_cmpint (serialised.size, ==, fixed_size); + else + g_assert (serialised.size == 0 || serialised.data != NULL); + + /* Depending on the native alignment requirements of the machine, the + * compiler will insert either 3 or 7 padding bytes after the char. + * This will result in the sizeof() the struct being 12 or 16. + * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get + * the alignment bits that we "care about" being zero: in the + * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we + * care about 3 bits. + */ + alignment &= sizeof (struct { + char a; + union { + guint64 x; + void *y; + gdouble z; + } b; + } + ) - 9; + + /* Some OSes (FreeBSD is a known example) have a malloc() that returns + * unaligned memory if you request small sizes. 'malloc (1);', for + * example, has been seen to return pointers aligned to 6 mod 16. + * + * Check if this is a small allocation and return without enforcing + * the alignment assertion if this is the case. + */ + if (serialised.size <= alignment) + return; + + g_assert_cmpint (alignment & (gsize) serialised.data, ==, 0); +} + +/* < private > + * GVariantSerialisedFiller: + * @serialised: a #GVariantSerialised instance to fill + * @data: data from the children array + * + * This function is called back from g_variant_serialiser_needed_size() + * and g_variant_serialiser_serialise(). It fills in missing details + * from a partially-complete #GVariantSerialised. + * + * The @data parameter passed back to the function is one of the items + * that was passed to the serialiser in the @children array. It + * represents a single child item of the container that is being + * serialised. The information filled in to @serialised is the + * information for this child. + * + * If the @type_info field of @serialised is %NULL then the callback + * function must set it to the type information corresponding to the + * type of the child. No reference should be added. If it is non-%NULL + * then the callback should assert that it is equal to the actual type + * of the child. + * + * If the @size field is zero then the callback must fill it in with the + * required amount of space to store the serialised form of the child. + * If it is non-zero then the callback should assert that it is equal to + * the needed size of the child. + * + * If @data is non-%NULL then it points to a space that is properly + * aligned for and large enough to store the serialised data of the + * child. The callback must store the serialised form of the child at + * @data. + * + * If the child value is another container then the callback will likely + * recurse back into the serialiser by calling + * g_variant_serialiser_needed_size() to determine @size and + * g_variant_serialiser_serialise() to write to @data. + */ + +/* PART 1: Container types {{{1 + * + * This section contains the serialiser implementation functions for + * each container type. + */ + +/* Maybe {{{2 + * + * Maybe types are handled depending on if the element type of the maybe + * type is a fixed-sized or variable-sized type. Although all maybe + * types themselves are variable-sized types, herein, a maybe value with + * a fixed-sized element type is called a "fixed-sized maybe" for + * convenience and a maybe value with a variable-sized element type is + * called a "variable-sized maybe". + */ + +/* Fixed-sized Maybe {{{3 + * + * The size of a maybe value with a fixed-sized element type is either 0 + * or equal to the fixed size of its element type. The case where the + * size of the maybe value is zero corresponds to the "Nothing" case and + * the case where the size of the maybe value is equal to the fixed size + * of the element type corresponds to the "Just" case; in that case, the + * serialised data of the child value forms the entire serialised data + * of the maybe value. + * + * In the event that a fixed-sized maybe value is presented with a size + * that is not equal to the fixed size of the element type then the + * value must be taken to be "Nothing". + */ + +static gsize +gvs_fixed_sized_maybe_n_children (GVariantSerialised value) +{ + gsize element_fixed_size; + + g_variant_type_info_query_element (value.type_info, NULL, + &element_fixed_size); + + return (element_fixed_size == value.size) ? 1 : 0; +} + +static GVariantSerialised +gvs_fixed_sized_maybe_get_child (GVariantSerialised value, + gsize index_) +{ + /* the child has the same bounds as the + * container, so just update the type. + */ + value.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_ref (value.type_info); + + return value; +} + +static gsize +gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + if (n_children) + { + gsize element_fixed_size; + + g_variant_type_info_query_element (type_info, NULL, + &element_fixed_size); + + return element_fixed_size; + } + else + return 0; +} + +static void +gvs_fixed_sized_maybe_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + if (n_children) + { + GVariantSerialised child = { NULL, value.data, value.size }; + + gvs_filler (&child, children[0]); + } +} + +static gboolean +gvs_fixed_sized_maybe_is_normal (GVariantSerialised value) +{ + if (value.size > 0) + { + gsize element_fixed_size; + + g_variant_type_info_query_element (value.type_info, + NULL, &element_fixed_size); + + if (value.size != element_fixed_size) + return FALSE; + + /* proper element size: "Just". recurse to the child. */ + value.type_info = g_variant_type_info_element (value.type_info); + + return g_variant_serialised_is_normal (value); + } + + /* size of 0: "Nothing" */ + return TRUE; +} + +/* Variable-sized Maybe + * + * The size of a maybe value with a variable-sized element type is + * either 0 or strictly greater than 0. The case where the size of the + * maybe value is zero corresponds to the "Nothing" case and the case + * where the size of the maybe value is greater than zero corresponds to + * the "Just" case; in that case, the serialised data of the child value + * forms the first part of the serialised data of the maybe value and is + * followed by a single zero byte. This zero byte is always appended, + * regardless of any zero bytes that may already be at the end of the + * serialised ata of the child value. + */ + +static gsize +gvs_variable_sized_maybe_n_children (GVariantSerialised value) +{ + return (value.size > 0) ? 1 : 0; +} + +static GVariantSerialised +gvs_variable_sized_maybe_get_child (GVariantSerialised value, + gsize index_) +{ + /* remove the padding byte and update the type. */ + value.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_ref (value.type_info); + value.size--; + + /* if it's zero-sized then it may as well be NULL */ + if (value.size == 0) + value.data = NULL; + + return value; +} + +static gsize +gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + if (n_children) + { + GVariantSerialised child = { 0, }; + + gvs_filler (&child, children[0]); + + return child.size + 1; + } + else + return 0; +} + +static void +gvs_variable_sized_maybe_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + if (n_children) + { + GVariantSerialised child = { NULL, value.data, value.size - 1 }; + + /* write the data for the child. */ + gvs_filler (&child, children[0]); + value.data[child.size] = '\0'; + } +} + +static gboolean +gvs_variable_sized_maybe_is_normal (GVariantSerialised value) +{ + if (value.size == 0) + return TRUE; + + if (value.data[value.size - 1] != '\0') + return FALSE; + + value.type_info = g_variant_type_info_element (value.type_info); + value.size--; + + return g_variant_serialised_is_normal (value); +} + +/* Arrays {{{2 + * + * Just as with maybe types, array types are handled depending on if the + * element type of the array type is a fixed-sized or variable-sized + * type. Similar to maybe types, for convenience, an array value with a + * fixed-sized element type is called a "fixed-sized array" and an array + * value with a variable-sized element type is called a "variable sized + * array". + */ + +/* Fixed-sized Array {{{3 + * + * For fixed sized arrays, the serialised data is simply a concatenation + * of the serialised data of each element, in order. Since fixed-sized + * values always have a fixed size that is a multiple of their alignment + * requirement no extra padding is required. + * + * In the event that a fixed-sized array is presented with a size that + * is not an integer multiple of the element size then the value of the + * array must be taken as being empty. + */ + +static gsize +gvs_fixed_sized_array_n_children (GVariantSerialised value) +{ + gsize element_fixed_size; + + g_variant_type_info_query_element (value.type_info, NULL, + &element_fixed_size); + + if (value.size % element_fixed_size == 0) + return value.size / element_fixed_size; + + return 0; +} + +static GVariantSerialised +gvs_fixed_sized_array_get_child (GVariantSerialised value, + gsize index_) +{ + GVariantSerialised child = { 0, }; + + child.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_query (child.type_info, NULL, &child.size); + child.data = value.data + (child.size * index_); + g_variant_type_info_ref (child.type_info); + + return child; +} + +static gsize +gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + gsize element_fixed_size; + + g_variant_type_info_query_element (type_info, NULL, &element_fixed_size); + + return element_fixed_size * n_children; +} + +static void +gvs_fixed_sized_array_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + GVariantSerialised child = { 0, }; + gsize i; + + child.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_query (child.type_info, NULL, &child.size); + child.data = value.data; + + for (i = 0; i < n_children; i++) + { + gvs_filler (&child, children[i]); + child.data += child.size; + } +} + +static gboolean +gvs_fixed_sized_array_is_normal (GVariantSerialised value) +{ + GVariantSerialised child = { 0, }; + + child.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_query (child.type_info, NULL, &child.size); + + if (value.size % child.size != 0) + return FALSE; + + for (child.data = value.data; + child.data < value.data + value.size; + child.data += child.size) + { + if (!g_variant_serialised_is_normal (child)) + return FALSE; + } + + return TRUE; +} + +/* Variable-sized Array {{{3 + * + * Variable sized arrays, containing variable-sized elements, must be + * able to determine the boundaries between the elements. The items + * cannot simply be concatenated. Additionally, we are faced with the + * fact that non-fixed-sized values do not neccessarily have a size that + * is a multiple of their alignment requirement, so we may need to + * insert zero-filled padding. + * + * While it is possible to find the start of an item by starting from + * the end of the item before it and padding for alignment, it is not + * generally possible to do the reverse operation. For this reason, we + * record the end point of each element in the array. + * + * GVariant works in terms of "offsets". An offset is a pointer to a + * boundary between two bytes. In 4 bytes of serialised data, there + * would be 5 possible offsets: one at the start ('0'), one between each + * pair of adjacent bytes ('1', '2', '3') and one at the end ('4'). + * + * The numeric value of an offset is an unsigned integer given relative + * to the start of the serialised data of the array. Offsets are always + * stored in little endian byte order and are always only as big as they + * need to be. For example, in 255 bytes of serialised data, there are + * 256 offsets. All possibilities can be stored in an 8 bit unsigned + * integer. In 256 bytes of serialised data, however, there are 257 + * possible offsets so 16 bit integers must be used. The size of an + * offset is always a power of 2. + * + * The offsets are stored at the end of the serialised data of the + * array. They are simply concatenated on without any particular + * alignment. The size of the offsets is included in the size of the + * serialised data for purposes of determining the size of the offsets. + * This presents a possibly ambiguity; in certain cases, a particular + * value of array could have two different serialised forms. + * + * Imagine an array containing a single string of 253 bytes in length + * (so, 254 bytes including the nul terminator). Now the offset must be + * written. If an 8 bit offset is written, it will bring the size of + * the array's serialised data to 255 -- which means that the use of an + * 8 bit offset was valid. If a 16 bit offset is used then the total + * size of the array will be 256 -- which means that the use of a 16 bit + * offset was valid. Although both of these will be accepted by the + * deserialiser, only the smaller of the two is considered to be in + * normal form and that is the one that the serialiser must produce. + */ + +static inline gsize +gvs_read_unaligned_le (guchar *bytes, + guint size) +{ + union + { + guchar bytes[GLIB_SIZEOF_SIZE_T]; + gsize integer; + } tmpvalue; + + tmpvalue.integer = 0; + memcpy (&tmpvalue.bytes, bytes, size); + + return GSIZE_FROM_LE (tmpvalue.integer); +} + +static inline void +gvs_write_unaligned_le (guchar *bytes, + gsize value, + guint size) +{ + union + { + guchar bytes[GLIB_SIZEOF_SIZE_T]; + gsize integer; + } tmpvalue; + + tmpvalue.integer = GSIZE_TO_LE (value); + memcpy (bytes, &tmpvalue.bytes, size); +} + +static guint +gvs_get_offset_size (gsize size) +{ + if (size > G_MAXUINT32) + return 8; + + else if (size > G_MAXUINT16) + return 4; + + else if (size > G_MAXUINT8) + return 2; + + else if (size > 0) + return 1; + + return 0; +} + +static gsize +gvs_calculate_total_size (gsize body_size, + gsize offsets) +{ + if (body_size + 1 * offsets <= G_MAXUINT8) + return body_size + 1 * offsets; + + if (body_size + 2 * offsets <= G_MAXUINT16) + return body_size + 2 * offsets; + + if (body_size + 4 * offsets <= G_MAXUINT32) + return body_size + 4 * offsets; + + return body_size + 8 * offsets; +} + +static gsize +gvs_variable_sized_array_n_children (GVariantSerialised value) +{ + gsize offsets_array_size; + gsize offset_size; + gsize last_end; + + if (value.size == 0) + return 0; + + offset_size = gvs_get_offset_size (value.size); + + last_end = gvs_read_unaligned_le (value.data + value.size - + offset_size, offset_size); + + if (last_end > value.size) + return 0; + + offsets_array_size = value.size - last_end; + + if (offsets_array_size % offset_size) + return 0; + + return offsets_array_size / offset_size; +} + +static GVariantSerialised +gvs_variable_sized_array_get_child (GVariantSerialised value, + gsize index_) +{ + GVariantSerialised child = { 0, }; + gsize offset_size; + gsize last_end; + gsize start; + gsize end; + + child.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_ref (child.type_info); + + offset_size = gvs_get_offset_size (value.size); + + last_end = gvs_read_unaligned_le (value.data + value.size - + offset_size, offset_size); + + if (index_ > 0) + { + guint alignment; + + start = gvs_read_unaligned_le (value.data + last_end + + (offset_size * (index_ - 1)), + offset_size); + + g_variant_type_info_query (child.type_info, &alignment, NULL); + start += (-start) & alignment; + } + else + start = 0; + + end = gvs_read_unaligned_le (value.data + last_end + + (offset_size * index_), + offset_size); + + if (start < end && end <= value.size) + { + child.data = value.data + start; + child.size = end - start; + } + + return child; +} + +static gsize +gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + guint alignment; + gsize offset; + gsize i; + + g_variant_type_info_query (type_info, &alignment, NULL); + offset = 0; + + for (i = 0; i < n_children; i++) + { + GVariantSerialised child = { 0, }; + + offset += (-offset) & alignment; + gvs_filler (&child, children[i]); + offset += child.size; + } + + return gvs_calculate_total_size (offset, n_children); +} + +static void +gvs_variable_sized_array_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + guchar *offset_ptr; + gsize offset_size; + guint alignment; + gsize offset; + gsize i; + + g_variant_type_info_query (value.type_info, &alignment, NULL); + offset_size = gvs_get_offset_size (value.size); + offset = 0; + + offset_ptr = value.data + value.size - offset_size * n_children; + + for (i = 0; i < n_children; i++) + { + GVariantSerialised child = { 0, }; + + while (offset & alignment) + value.data[offset++] = '\0'; + + child.data = value.data + offset; + gvs_filler (&child, children[i]); + offset += child.size; + + gvs_write_unaligned_le (offset_ptr, offset, offset_size); + offset_ptr += offset_size; + } +} + +static gboolean +gvs_variable_sized_array_is_normal (GVariantSerialised value) +{ + GVariantSerialised child = { 0, }; + gsize offsets_array_size; + guchar *offsets_array; + guint offset_size; + guint alignment; + gsize last_end; + gsize length; + gsize offset; + gsize i; + + if (value.size == 0) + return TRUE; + + offset_size = gvs_get_offset_size (value.size); + last_end = gvs_read_unaligned_le (value.data + value.size - + offset_size, offset_size); + + if (last_end > value.size) + return FALSE; + + offsets_array_size = value.size - last_end; + + if (offsets_array_size % offset_size) + return FALSE; + + offsets_array = value.data + value.size - offsets_array_size; + length = offsets_array_size / offset_size; + + if (length == 0) + return FALSE; + + child.type_info = g_variant_type_info_element (value.type_info); + g_variant_type_info_query (child.type_info, &alignment, NULL); + offset = 0; + + for (i = 0; i < length; i++) + { + gsize this_end; + + this_end = gvs_read_unaligned_le (offsets_array + offset_size * i, + offset_size); + + if (this_end < offset || this_end > last_end) + return FALSE; + + while (offset & alignment) + { + if (!(offset < this_end && value.data[offset] == '\0')) + return FALSE; + offset++; + } + + child.data = value.data + offset; + child.size = this_end - offset; + + if (child.size == 0) + child.data = NULL; + + if (!g_variant_serialised_is_normal (child)) + return FALSE; + + offset = this_end; + } + + g_assert (offset == last_end); + + return TRUE; +} + +/* Tuples {{{2 + * + * Since tuples can contain a mix of variable- and fixed-sized items, + * they are, in terms of serialisation, a hybrid of variable-sized and + * fixed-sized arrays. + * + * Offsets are only stored for variable-sized items. Also, since the + * number of items in a tuple is known from its type, we are able to + * know exactly how many offsets to expect in the serialised data (and + * therefore how much space is taken up by the offset array). This + * means that we know where the end of the serialised data for the last + * item is -- we can just subtract the size of the offset array from the + * total size of the tuple. For this reason, the last item in the tuple + * doesn't need an offset stored. + * + * Tuple offsets are stored in reverse. This design choice allows + * iterator-based deserialisers to be more efficient. + * + * Most of the "heavy lifting" here is handled by the GVariantTypeInfo + * for the tuple. See the notes in gvarianttypeinfo.h. + */ + +static gsize +gvs_tuple_n_children (GVariantSerialised value) +{ + return g_variant_type_info_n_members (value.type_info); +} + +static GVariantSerialised +gvs_tuple_get_child (GVariantSerialised value, + gsize index_) +{ + const GVariantMemberInfo *member_info; + GVariantSerialised child = { 0, }; + gsize offset_size; + gsize start, end; + + member_info = g_variant_type_info_member_info (value.type_info, index_); + child.type_info = g_variant_type_info_ref (member_info->type_info); + offset_size = gvs_get_offset_size (value.size); + + /* tuples are the only (potentially) fixed-sized containers, so the + * only ones that have to deal with the possibility of having %NULL + * data with a non-zero %size if errors occured elsewhere. + */ + if G_UNLIKELY (value.data == NULL && value.size != 0) + { + g_variant_type_info_query (child.type_info, NULL, &child.size); + + /* this can only happen in fixed-sized tuples, + * so the child must also be fixed sized. + */ + g_assert (child.size != 0); + child.data = NULL; + + return child; + } + + if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET) + { + if (offset_size * (member_info->i + 2) > value.size) + return child; + } + else + { + if (offset_size * (member_info->i + 1) > value.size) + { + /* if the child is fixed size, return its size. + * if child is not fixed-sized, return size = 0. + */ + g_variant_type_info_query (child.type_info, NULL, &child.size); + + return child; + } + } + + if (member_info->i + 1) + start = gvs_read_unaligned_le (value.data + value.size - + offset_size * (member_info->i + 1), + offset_size); + else + start = 0; + + start += member_info->a; + start &= member_info->b; + start |= member_info->c; + + if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST) + end = value.size - offset_size * (member_info->i + 1); + + else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED) + { + gsize fixed_size; + + g_variant_type_info_query (child.type_info, NULL, &fixed_size); + end = start + fixed_size; + child.size = fixed_size; + } + + else /* G_VARIANT_MEMEBER_ENDING_OFFSET */ + end = gvs_read_unaligned_le (value.data + value.size - + offset_size * (member_info->i + 2), + offset_size); + + if (start < end && end <= value.size) + { + child.data = value.data + start; + child.size = end - start; + } + + return child; +} + +static gsize +gvs_tuple_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + const GVariantMemberInfo *member_info = NULL; + gsize fixed_size; + gsize offset; + gsize i; + + g_variant_type_info_query (type_info, NULL, &fixed_size); + + if (fixed_size) + return fixed_size; + + offset = 0; + + for (i = 0; i < n_children; i++) + { + guint alignment; + + member_info = g_variant_type_info_member_info (type_info, i); + g_variant_type_info_query (member_info->type_info, + &alignment, &fixed_size); + offset += (-offset) & alignment; + + if (fixed_size) + offset += fixed_size; + else + { + GVariantSerialised child = { 0, }; + + gvs_filler (&child, children[i]); + offset += child.size; + } + } + + return gvs_calculate_total_size (offset, member_info->i + 1); +} + +static void +gvs_tuple_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + gsize offset_size; + gsize offset; + gsize i; + + offset_size = gvs_get_offset_size (value.size); + offset = 0; + + for (i = 0; i < n_children; i++) + { + const GVariantMemberInfo *member_info; + GVariantSerialised child = { 0, }; + guint alignment; + + member_info = g_variant_type_info_member_info (value.type_info, i); + g_variant_type_info_query (member_info->type_info, &alignment, NULL); + + while (offset & alignment) + value.data[offset++] = '\0'; + + child.data = value.data + offset; + gvs_filler (&child, children[i]); + offset += child.size; + + if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET) + { + value.size -= offset_size; + gvs_write_unaligned_le (value.data + value.size, + offset, offset_size); + } + } + + while (offset < value.size) + value.data[offset++] = '\0'; +} + +static gboolean +gvs_tuple_is_normal (GVariantSerialised value) +{ + guint offset_size; + gsize offset_ptr; + gsize length; + gsize offset; + gsize i; + + offset_size = gvs_get_offset_size (value.size); + length = g_variant_type_info_n_members (value.type_info); + offset_ptr = value.size; + offset = 0; + + for (i = 0; i < length; i++) + { + const GVariantMemberInfo *member_info; + GVariantSerialised child; + gsize fixed_size; + guint alignment; + gsize end; + + member_info = g_variant_type_info_member_info (value.type_info, i); + child.type_info = member_info->type_info; + + g_variant_type_info_query (child.type_info, &alignment, &fixed_size); + + while (offset & alignment) + { + if (offset > value.size || value.data[offset] != '\0') + return FALSE; + offset++; + } + + child.data = value.data + offset; + + switch (member_info->ending_type) + { + case G_VARIANT_MEMBER_ENDING_FIXED: + end = offset + fixed_size; + break; + + case G_VARIANT_MEMBER_ENDING_LAST: + end = offset_ptr; + break; + + case G_VARIANT_MEMBER_ENDING_OFFSET: + offset_ptr -= offset_size; + + if (offset_ptr < offset) + return FALSE; + + end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size); + break; + + default: + g_assert_not_reached (); + } + + if (end < offset || end > offset_ptr) + return FALSE; + + child.size = end - offset; + + if (child.size == 0) + child.data = NULL; + + if (!g_variant_serialised_is_normal (child)) + return FALSE; + + offset = end; + } + + { + gsize fixed_size; + guint alignment; + + g_variant_type_info_query (value.type_info, &alignment, &fixed_size); + + if (fixed_size) + { + g_assert (fixed_size == value.size); + g_assert (offset_ptr == value.size); + + if (i == 0) + { + if (value.data[offset++] != '\0') + return FALSE; + } + else + { + while (offset & alignment) + if (value.data[offset++] != '\0') + return FALSE; + } + + g_assert (offset == value.size); + } + } + + return offset_ptr == offset; +} + +/* Variants {{{2 + * + * Variants are stored by storing the serialised data of the child, + * followed by a '\0' character, followed by the type string of the + * child. + * + * In the case that a value is presented that contains no '\0' + * character, or doesn't have a single well-formed definite type string + * following that character, the variant must be taken as containing the + * unit tuple: (). + */ + +static inline gsize +gvs_variant_n_children (GVariantSerialised value) +{ + return 1; +} + +static inline GVariantSerialised +gvs_variant_get_child (GVariantSerialised value, + gsize index_) +{ + GVariantSerialised child = { 0, }; + + /* NOTE: not O(1) and impossible for it to be... */ + if (value.size) + { + /* find '\0' character */ + for (child.size = value.size - 1; child.size; child.size--) + if (value.data[child.size] == '\0') + break; + + /* ensure we didn't just hit the start of the string */ + if (value.data[child.size] == '\0') + { + const gchar *type_string = (gchar *) &value.data[child.size + 1]; + const gchar *limit = (gchar *) &value.data[value.size]; + const gchar *end; + + if (g_variant_type_string_scan (type_string, limit, &end) && + end == limit) + { + const GVariantType *type = (GVariantType *) type_string; + + if (g_variant_type_is_definite (type)) + { + gsize fixed_size; + + child.type_info = g_variant_type_info_get (type); + + if (child.size != 0) + /* only set to non-%NULL if size > 0 */ + child.data = value.data; + + g_variant_type_info_query (child.type_info, + NULL, &fixed_size); + + if (!fixed_size || fixed_size == child.size) + return child; + + g_variant_type_info_unref (child.type_info); + } + } + } + } + + child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT); + child.data = NULL; + child.size = 1; + + return child; +} + +static inline gsize +gvs_variant_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + GVariantSerialised child = { 0, }; + const gchar *type_string; + + gvs_filler (&child, children[0]); + type_string = g_variant_type_info_get_type_string (child.type_info); + + return child.size + 1 + strlen (type_string); +} + +static inline void +gvs_variant_serialise (GVariantSerialised value, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + GVariantSerialised child = { 0, }; + const gchar *type_string; + + child.data = value.data; + + gvs_filler (&child, children[0]); + type_string = g_variant_type_info_get_type_string (child.type_info); + value.data[child.size] = '\0'; + memcpy (value.data + child.size + 1, type_string, strlen (type_string)); +} + +static inline gboolean +gvs_variant_is_normal (GVariantSerialised value) +{ + GVariantSerialised child; + gboolean normal; + + child = gvs_variant_get_child (value, 0); + + normal = (child.data != NULL || child.size == 0) && + g_variant_serialised_is_normal (child); + + g_variant_type_info_unref (child.type_info); + + return normal; +} + + + +/* PART 2: Serialiser API {{{1 + * + * This is the implementation of the API of the serialiser as advertised + * in gvariant-serialiser.h. + */ + +/* Dispatch Utilities {{{2 + * + * These macros allow a given function (for example, + * g_variant_serialiser_serialise) to be dispatched to the appropriate + * type-specific function above (fixed/variable-sized maybe, + * fixed/variable-sized array, tuple or variant). + */ +#define DISPATCH_FIXED(type_info, before, after) \ + { \ + gsize fixed_size; \ + \ + g_variant_type_info_query_element (type_info, NULL, \ + &fixed_size); \ + \ + if (fixed_size) \ + { \ + before ## fixed_sized ## after \ + } \ + else \ + { \ + before ## variable_sized ## after \ + } \ + } + +#define DISPATCH_CASES(type_info, before, after) \ + switch (g_variant_type_info_get_type_char (type_info)) \ + { \ + case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \ + DISPATCH_FIXED (type_info, before, _maybe ## after) \ + \ + case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \ + DISPATCH_FIXED (type_info, before, _array ## after) \ + \ + case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \ + case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \ + { \ + before ## tuple ## after \ + } \ + \ + case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \ + { \ + before ## variant ## after \ + } \ + } + +/* Serialiser entry points {{{2 + * + * These are the functions that are called in order for the serialiser + * to do its thing. + */ + +/* < private > + * g_variant_serialised_n_children: + * @serialised: a #GVariantSerialised + * @returns: the number of children + * + * For serialised data that represents a container value (maybes, + * tuples, arrays, variants), determine how many child items are inside + * that container. + */ +gsize +g_variant_serialised_n_children (GVariantSerialised serialised) +{ + g_variant_serialised_check (serialised); + + DISPATCH_CASES (serialised.type_info, + + return gvs_/**/,/**/_n_children (serialised); + + ) + g_assert_not_reached (); +} + +/* < private > + * g_variant_serialised_get_child: + * @serialised: a #GVariantSerialised + * @index_: the index of the child to fetch + * @returns: a #GVariantSerialised for the child + * + * Extracts a child from a serialised data representing a container + * value. + * + * It is an error to call this function with an index out of bounds. + * + * If the result .data == %NULL and .size > 0 then there has been an + * error extracting the requested fixed-sized value. This number of + * zero bytes needs to be allocated instead. + * + * In the case that .data == %NULL and .size == 0 then a zero-sized + * item of a variable-sized type is being returned. + * + * .data is never non-%NULL if size is 0. + */ +GVariantSerialised +g_variant_serialised_get_child (GVariantSerialised serialised, + gsize index_) +{ + GVariantSerialised child; + + g_variant_serialised_check (serialised); + + if G_LIKELY (index_ < g_variant_serialised_n_children (serialised)) + { + DISPATCH_CASES (serialised.type_info, + + child = gvs_/**/,/**/_get_child (serialised, index_); + g_assert (child.size || child.data == NULL); + g_variant_serialised_check (child); + return child; + + ) + g_assert_not_reached (); + } + + g_error ("Attempt to access item %"G_GSIZE_FORMAT + " in a container with only %"G_GSIZE_FORMAT" items", + index_, g_variant_serialised_n_children (serialised)); +} + +/* < private > + * g_variant_serialiser_serialise: + * @serialised: a #GVariantSerialised, properly set up + * @gvs_filler: the filler function + * @children: an array of child items + * @n_children: the size of @children + * + * Writes data in serialised form. + * + * The type_info field of @serialised must be filled in to type info for + * the type that we are serialising. + * + * The size field of @serialised must be filled in with the value + * returned by a previous call to g_variant_serialiser_needed_size(). + * + * The data field of @serialised must be a pointer to a properly-aligned + * memory region large enough to serialise into (ie: at least as big as + * the size field). + * + * This function is only resonsible for serialising the top-level + * container. @gvs_filler is called on each child of the container in + * order for all of the data of that child to be filled in. + */ +void +g_variant_serialiser_serialise (GVariantSerialised serialised, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + g_variant_serialised_check (serialised); + + DISPATCH_CASES (serialised.type_info, + + gvs_/**/,/**/_serialise (serialised, gvs_filler, + children, n_children); + return; + + ) + g_assert_not_reached (); +} + +/* < private > + * g_variant_serialiser_needed_size: + * @type_info: the type to serialise for + * @gvs_filler: the filler function + * @children: an array of child items + * @n_children: the size of @children + * + * Determines how much memory would be needed to serialise this value. + * + * This function is only resonsible for performing calculations for the + * top-level container. @gvs_filler is called on each child of the + * container in order to determine its size. + */ +gsize +g_variant_serialiser_needed_size (GVariantTypeInfo *type_info, + GVariantSerialisedFiller gvs_filler, + const gpointer *children, + gsize n_children) +{ + DISPATCH_CASES (type_info, + + return gvs_/**/,/**/_needed_size (type_info, gvs_filler, + children, n_children); + + ) + g_assert_not_reached (); +} + +/* Byteswapping {{{2 */ + +/* < private > + * g_variant_serialised_byteswap: + * @value: a #GVariantSerialised + * + * Byte-swap serialised data. The result of this function is only + * well-defined if the data is in normal form. + */ +void +g_variant_serialised_byteswap (GVariantSerialised serialised) +{ + gsize fixed_size; + guint alignment; + + g_variant_serialised_check (serialised); + + if (!serialised.data) + return; + + /* the types we potentially need to byteswap are + * exactly those with alignment requirements. + */ + g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size); + if (!alignment) + return; + + /* if fixed size and alignment are equal then we are down + * to the base integer type and we should swap it. the + * only exception to this is if we have a tuple with a + * single item, and then swapping it will be OK anyway. + */ + if (alignment + 1 == fixed_size) + { + switch (fixed_size) + { + case 2: + { + guint16 *ptr = (guint16 *) serialised.data; + + g_assert_cmpint (serialised.size, ==, 2); + *ptr = GUINT16_SWAP_LE_BE (*ptr); + } + return; + + case 4: + { + guint32 *ptr = (guint32 *) serialised.data; + + g_assert_cmpint (serialised.size, ==, 4); + *ptr = GUINT32_SWAP_LE_BE (*ptr); + } + return; + + case 8: + { + guint64 *ptr = (guint64 *) serialised.data; + + g_assert_cmpint (serialised.size, ==, 8); + *ptr = GUINT64_SWAP_LE_BE (*ptr); + } + return; + + default: + g_assert_not_reached (); + } + } + + /* else, we have a container that potentially contains + * some children that need to be byteswapped. + */ + else + { + gsize children, i; + + children = g_variant_serialised_n_children (serialised); + for (i = 0; i < children; i++) + { + GVariantSerialised child; + + child = g_variant_serialised_get_child (serialised, i); + g_variant_serialised_byteswap (child); + g_variant_type_info_unref (child.type_info); + } + } +} + +/* Normal form checking {{{2 */ + +/* < private > + * g_variant_serialised_is_normal: + * @serialised: a #GVariantSerialised + * + * Determines, recursively if @serialised is in normal form. There is + * precisely one normal form of serialised data for each possible value. + * + * It is possible that multiple byte sequences form the serialised data + * for a given value if, for example, the padding bytes are filled in + * with something other than zeros, but only one form is the normal + * form. + */ +gboolean +g_variant_serialised_is_normal (GVariantSerialised serialised) +{ + DISPATCH_CASES (serialised.type_info, + + return gvs_/**/,/**/_is_normal (serialised); + + ) + + if (serialised.data == NULL) + return FALSE; + + /* some hard-coded terminal cases */ + switch (g_variant_type_info_get_type_char (serialised.type_info)) + { + case 'b': /* boolean */ + return serialised.data[0] < 2; + + case 's': /* string */ + return g_variant_serialiser_is_string (serialised.data, + serialised.size); + + case 'o': + return g_variant_serialiser_is_object_path (serialised.data, + serialised.size); + + case 'g': + return g_variant_serialiser_is_signature (serialised.data, + serialised.size); + + default: + /* all of the other types are fixed-sized numerical types for + * which all possible values are valid (including various NaN + * representations for floating point values). + */ + return TRUE; + } +} + +/* Validity-checking functions {{{2 + * + * Checks if strings, object paths and signature strings are valid. + */ + +/* < private > + * g_variant_serialiser_is_string: + * @data: a possible string + * @size: the size of @data + * + * Ensures that @data is a valid string with a nul terminator at the end + * and no nul bytes embedded. + */ +gboolean +g_variant_serialiser_is_string (gconstpointer data, + gsize size) +{ + const gchar *end; + + g_utf8_validate (data, size, &end); + + return data == end - (size - 1); +} + +/* < private > + * g_variant_serialiser_is_object_path: + * @data: a possible DBus object path + * @size: the size of @data + * + * Performs the checks for being a valid string. + * + * Also, ensures that @data is a valid DBus object path, as per the DBus + * specification. + */ +gboolean +g_variant_serialiser_is_object_path (gconstpointer data, + gsize size) +{ + const gchar *string = data; + gsize i; + + if (!g_variant_serialiser_is_string (data, size)) + return FALSE; + + /* The path must begin with an ASCII '/' (integer 47) character */ + if (string[0] != '/') + return FALSE; + + for (i = 1; string[i]; i++) + /* Each element must only contain the ASCII characters + * "[A-Z][a-z][0-9]_" + */ + if (g_ascii_isalnum (string[i]) || string[i] == '_') + ; + + /* must consist of elements separated by slash characters. */ + else if (string[i] == '/') + { + /* No element may be the empty string. */ + /* Multiple '/' characters cannot occur in sequence. */ + if (string[i - 1] == '/') + return FALSE; + } + + else + return FALSE; + + /* A trailing '/' character is not allowed unless the path is the + * root path (a single '/' character). + */ + if (i > 1 && string[i - 1] == '/') + return FALSE; + + return TRUE; +} + +/* < private > + * g_variant_serialiser_is_signature: + * @data: a possible DBus signature + * @size: the size of @data + * + * Performs the checks for being a valid string. + * + * Also, ensures that @data is a valid DBus type signature, as per the + * DBus specification. + */ +gboolean +g_variant_serialiser_is_signature (gconstpointer data, + gsize size) +{ + const gchar *string = data; + gsize first_invalid; + + if (!g_variant_serialiser_is_string (data, size)) + return FALSE; + + /* make sure no non-definite characters appear */ + first_invalid = strspn (string, "ybnqiuxthdvasog(){}"); + if (string[first_invalid]) + return FALSE; + + /* make sure each type string is well-formed */ + while (*string) + if (!g_variant_type_string_scan (string, NULL, &string)) + return FALSE; + + return TRUE; +} + +/* Epilogue {{{1 */ +/* vim:set foldmethod=marker: */ |