summaryrefslogtreecommitdiff
path: root/protocols/Sametime
diff options
context:
space:
mode:
Diffstat (limited to 'protocols/Sametime')
-rw-r--r--protocols/Sametime/src/glib/gqsort.c376
1 files changed, 181 insertions, 195 deletions
diff --git a/protocols/Sametime/src/glib/gqsort.c b/protocols/Sametime/src/glib/gqsort.c
index f0acecfe89..25508167f9 100644
--- a/protocols/Sametime/src/glib/gqsort.c
+++ b/protocols/Sametime/src/glib/gqsort.c
@@ -45,33 +45,33 @@
/* Byte-wise swap two items of size SIZE. */
#define SWAP(a, b, size) \
do \
- { \
+ { \
register size_t __size = (size); \
register char *__a = (a), *__b = (b); \
do \
- { \
+ { \
char __tmp = *__a; \
*__a++ = *__b; \
*__b++ = __tmp; \
- } while (--__size > 0); \
- } while (0)
+ } while (--__size > 0); \
+ } while (0)
/* Discontinue quicksort algorithm when partition gets below this size.
- This particular magic number was chosen to work best on a Sun 4/260. */
+ This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef struct
- {
- char *lo;
- char *hi;
- } stack_node;
+{
+ char *lo;
+ char *hi;
+} stack_node;
/* The next 4 #defines implement a very fast in-line stack abstraction. */
/* The stack needs log (total_elements) entries (we could even subtract
- log(MAX_THRESH)). Since total_elements has type size_t, we get as
- upper bound for log (total_elements):
- bits per byte (CHAR_BIT) * sizeof(size_t). */
+ log(MAX_THRESH)). Since total_elements has type size_t, we get as
+ upper bound for log (total_elements):
+ bits per byte (CHAR_BIT) * sizeof(size_t). */
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
@@ -79,28 +79,28 @@ typedef struct
/* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
+ four optimizations discussed in Sedgewick:
- 1. Non-recursive, using an explicit stack of pointer that store the
- next array partition to sort. To save time, this maximum amount
- of space required to store an array of SIZE_MAX is allocated on the
- stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
- only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
- Pretty cheap, actually.
+ 1. Non-recursive, using an explicit stack of pointer that store the
+ next array partition to sort. To save time, this maximum amount
+ of space required to store an array of SIZE_MAX is allocated on the
+ stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
+ only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
+ Pretty cheap, actually.
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
+ 2. Chose the pivot element using a median-of-three decision tree.
+ This reduces the probability of selecting a bad pivot value and
+ eliminates certain extraneous comparisons.
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segments.
+ 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
+ insertion sort to order the MAX_THRESH items within each partition.
+ This is a big win, since insertion sort is faster for small, mostly
+ sorted array segments.
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (total_elems)
- stack size is needed (actually O(1) in this case)! */
+ 4. The larger of the two sub-partitions is always pushed onto the
+ stack first, with the algorithm then concentrating on the
+ smaller partition. This *guarantees* no more than log (total_elems)
+ stack size is needed (actually O(1) in this case)! */
/**
* g_qsort_with_data:
@@ -112,174 +112,160 @@ typedef struct
*
* This is just like the standard C qsort() function, but
* the comparison routine accepts a user data argument.
- *
+ *
**/
void
-g_qsort_with_data (gconstpointer pbase,
- gint total_elems,
- gsize size,
- GCompareDataFunc compare_func,
- gpointer user_data)
+g_qsort_with_data(gconstpointer pbase,
+gint total_elems,
+gsize size,
+GCompareDataFunc compare_func,
+gpointer user_data)
{
- register char *base_ptr = (char *) pbase;
-
- const size_t max_thresh = MAX_THRESH * size;
-
- g_return_if_fail (total_elems >= 0);
- g_return_if_fail (pbase != NULL || total_elems == 0);
- g_return_if_fail (compare_func != NULL);
-
- if (total_elems == 0)
- /* Avoid lossage with unsigned arithmetic below. */
- return;
-
- if (total_elems > MAX_THRESH)
- {
- char *lo = base_ptr;
- char *hi = &lo[size * (total_elems - 1)];
- stack_node stack[STACK_SIZE];
- stack_node *top = stack;
-
- PUSH (NULL, NULL);
-
- while (STACK_NOT_EMPTY)
- {
- char *left_ptr;
- char *right_ptr;
-
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR in
- the while loops. */
-
- char *mid = lo + size * ((hi - lo) / size >> 1);
-
- if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
- SWAP (mid, lo, size);
- if ((*compare_func) ((void *) hi, (void *) mid, user_data) < 0)
- SWAP (mid, hi, size);
- else
- goto jump_over;
- if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
- SWAP (mid, lo, size);
- jump_over:;
-
- left_ptr = lo + size;
- right_ptr = hi - size;
-
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
- {
- while ((*compare_func) ((void *) left_ptr, (void *) mid, user_data) < 0)
- left_ptr += size;
-
- while ((*compare_func) ((void *) mid, (void *) right_ptr, user_data) < 0)
- right_ptr -= size;
-
- if (left_ptr < right_ptr)
- {
- SWAP (left_ptr, right_ptr, size);
- if (mid == left_ptr)
- mid = right_ptr;
- else if (mid == right_ptr)
- mid = left_ptr;
- left_ptr += size;
- right_ptr -= size;
+ register char *base_ptr = (char *)pbase;
+
+ const size_t max_thresh = MAX_THRESH * size;
+
+ g_return_if_fail(total_elems >= 0);
+ g_return_if_fail(pbase != NULL || total_elems == 0);
+ g_return_if_fail(compare_func != NULL);
+
+ if (total_elems == 0)
+ /* Avoid lossage with unsigned arithmetic below. */
+ return;
+
+ if (total_elems > MAX_THRESH) {
+ char *lo = base_ptr;
+ char *hi = &lo[size * (total_elems - 1)];
+ stack_node stack[STACK_SIZE];
+ stack_node *top = stack;
+
+ PUSH(NULL, NULL);
+
+ while (STACK_NOT_EMPTY) {
+ char *left_ptr;
+ char *right_ptr;
+
+ /* Select median value from among LO, MID, and HI. Rearrange
+ LO and HI so the three values are sorted. This lowers the
+ probability of picking a pathological pivot value and
+ skips a comparison for both the LEFT_PTR and RIGHT_PTR in
+ the while loops. */
+
+ char *mid = lo + size * ((hi - lo) / size >> 1);
+
+ if ((*compare_func) ((void *)mid, (void *)lo, user_data) < 0)
+ SWAP(mid, lo, size);
+ if ((*compare_func) ((void *)hi, (void *)mid, user_data) < 0)
+ SWAP(mid, hi, size);
+ else
+ goto jump_over;
+ if ((*compare_func) ((void *)mid, (void *)lo, user_data) < 0)
+ SWAP(mid, lo, size);
+ jump_over:;
+
+ left_ptr = lo + size;
+ right_ptr = hi - size;
+
+ /* Here's the famous ``collapse the walls'' section of quicksort.
+ Gotta like those tight inner loops! They are the main reason
+ that this algorithm runs much faster than others. */
+ do {
+ while ((*compare_func) ((void *)left_ptr, (void *)mid, user_data) < 0)
+ left_ptr += size;
+
+ while ((*compare_func) ((void *)mid, (void *)right_ptr, user_data) < 0)
+ right_ptr -= size;
+
+ if (left_ptr < right_ptr) {
+ SWAP(left_ptr, right_ptr, size);
+ if (mid == left_ptr)
+ mid = right_ptr;
+ else if (mid == right_ptr)
+ mid = left_ptr;
+ left_ptr += size;
+ right_ptr -= size;
+ }
+ else if (left_ptr == right_ptr) {
+ left_ptr += size;
+ right_ptr -= size;
+ break;
+ }
+ } while (left_ptr <= right_ptr);
+
+ /* Set up pointers for next iteration. First determine whether
+ left and right partitions are below the threshold size. If so,
+ ignore one or both. Otherwise, push the larger partition's
+ bounds on the stack and continue sorting the smaller one. */
+
+ if ((size_t)(right_ptr - lo) <= max_thresh) {
+ if ((size_t)(hi - left_ptr) <= max_thresh)
+ /* Ignore both small partitions. */
+ POP(lo, hi);
+ else
+ /* Ignore small left partition. */
+ lo = left_ptr;
+ }
+ else if ((size_t)(hi - left_ptr) <= max_thresh)
+ /* Ignore small right partition. */
+ hi = right_ptr;
+ else if ((right_ptr - lo) > (hi - left_ptr)) {
+ /* Push larger left partition indices. */
+ PUSH(lo, right_ptr);
+ lo = left_ptr;
+ }
+ else {
+ /* Push larger right partition indices. */
+ PUSH(left_ptr, hi);
+ hi = right_ptr;
+ }
}
- else if (left_ptr == right_ptr)
- {
- left_ptr += size;
- right_ptr -= size;
- break;
+ }
+
+ /* Once the BASE_PTR array is partially sorted by quicksort the rest
+ is completely sorted using insertion sort, since this is efficient
+ for partitions below MAX_THRESH size. BASE_PTR points to the beginning
+ of the array to sort, and END_PTR points at the very last element in
+ the array (*not* one beyond it!). */
+
+ {
+ char *const end_ptr = &base_ptr[size * (total_elems - 1)];
+ char *tmp_ptr = base_ptr;
+ char *thresh = min(end_ptr, base_ptr + max_thresh);
+ register char *run_ptr;
+
+ /* Find smallest element in first threshold and place it at the
+ array's beginning. This is the smallest array element,
+ and the operation speeds up insertion sort's inner loop. */
+
+ for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
+ if ((*compare_func) ((void *)run_ptr, (void *)tmp_ptr, user_data) < 0)
+ tmp_ptr = run_ptr;
+
+ if (tmp_ptr != base_ptr)
+ SWAP(tmp_ptr, base_ptr, size);
+
+ /* Insertion sort, running from left-hand-side up to right-hand-side. */
+
+ run_ptr = base_ptr + size;
+ while ((run_ptr += size) <= end_ptr) {
+ tmp_ptr = run_ptr - size;
+ while ((*compare_func) ((void *)run_ptr, (void *)tmp_ptr, user_data) < 0)
+ tmp_ptr -= size;
+
+ tmp_ptr += size;
+ if (tmp_ptr != run_ptr) {
+ char *trav;
+
+ trav = run_ptr + size;
+ while (--trav >= run_ptr) {
+ char c = *trav;
+ char *hi, *lo;
+
+ for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
+ *hi = *lo;
+ *hi = c;
+ }
+ }
}
- }
- while (left_ptr <= right_ptr);
-
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
-
- if ((size_t) (right_ptr - lo) <= max_thresh)
- {
- if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore both small partitions. */
- POP (lo, hi);
- else
- /* Ignore small left partition. */
- lo = left_ptr;
- }
- else if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore small right partition. */
- hi = right_ptr;
- else if ((right_ptr - lo) > (hi - left_ptr))
- {
- /* Push larger left partition indices. */
- PUSH (lo, right_ptr);
- lo = left_ptr;
- }
- else
- {
- /* Push larger right partition indices. */
- PUSH (left_ptr, hi);
- hi = right_ptr;
- }
- }
- }
-
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
-
-#define min(x, y) ((x) < (y) ? (x) : (y))
-
- {
- char *const end_ptr = &base_ptr[size * (total_elems - 1)];
- char *tmp_ptr = base_ptr;
- char *thresh = min(end_ptr, base_ptr + max_thresh);
- register char *run_ptr;
-
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
-
- for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
- if ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
- tmp_ptr = run_ptr;
-
- if (tmp_ptr != base_ptr)
- SWAP (tmp_ptr, base_ptr, size);
-
- /* Insertion sort, running from left-hand-side up to right-hand-side. */
-
- run_ptr = base_ptr + size;
- while ((run_ptr += size) <= end_ptr)
- {
- tmp_ptr = run_ptr - size;
- while ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
- tmp_ptr -= size;
-
- tmp_ptr += size;
- if (tmp_ptr != run_ptr)
- {
- char *trav;
-
- trav = run_ptr + size;
- while (--trav >= run_ptr)
- {
- char c = *trav;
- char *hi, *lo;
-
- for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
- }
- }
- }
+ }
}