From 738ea8d4ababc946b4cd4609f962108bfedc1e79 Mon Sep 17 00:00:00 2001
From: dartraiden <wowemuh@gmail.com>
Date: Mon, 15 May 2017 20:02:44 +0300
Subject: zlib: update to 1.2.11

---
 libs/zlib/src/trees.c | 1684 ++++++++++++++++++++++++-------------------------
 1 file changed, 819 insertions(+), 865 deletions(-)

(limited to 'libs/zlib/src/trees.c')

diff --git a/libs/zlib/src/trees.c b/libs/zlib/src/trees.c
index 0b687980bc..50cf4b4571 100644
--- a/libs/zlib/src/trees.c
+++ b/libs/zlib/src/trees.c
@@ -1,5 +1,5 @@
 /* trees.c -- output deflated data using Huffman coding
- * Copyright (C) 1995-2012 Jean-loup Gailly
+ * Copyright (C) 1995-2017 Jean-loup Gailly
  * detect_data_type() function provided freely by Cosmin Truta, 2006
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
@@ -36,7 +36,7 @@
 
 #include "deflate.h"
 
-#ifdef DEBUG
+#ifdef ZLIB_DEBUG
 #  include <ctype.h>
 #endif
 
@@ -60,30 +60,30 @@
 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
 
 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
-= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0 };
+   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
 
 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
-= { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
+   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
 
 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
-= { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7 };
+   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
 
 local const uch bl_order[BL_CODES]
-= { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
+   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
 /* The lengths of the bit length codes are sent in order of decreasing
  * probability, to avoid transmitting the lengths for unused bit length codes.
  */
 
- /* ===========================================================================
-  * Local data. These are initialized only once.
-  */
+/* ===========================================================================
+ * Local data. These are initialized only once.
+ */
 
 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
 
 #if defined(GEN_TREES_H) || !defined(STDC)
-  /* non ANSI compilers may not accept trees.h */
+/* non ANSI compilers may not accept trees.h */
 
-local ct_data static_ltree[L_CODES + 2];
+local ct_data static_ltree[L_CODES+2];
 /* The static literal tree. Since the bit lengths are imposed, there is no
  * need for the L_CODES extra codes used during heap construction. However
  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
@@ -101,7 +101,7 @@ uch _dist_code[DIST_CODE_LEN];
  * the 15 bit distances.
  */
 
-uch _length_code[MAX_MATCH - MIN_MATCH + 1];
+uch _length_code[MAX_MATCH-MIN_MATCH+1];
 /* length code for each normalized match length (0 == MIN_MATCH) */
 
 local int base_length[LENGTH_CODES];
@@ -114,23 +114,22 @@ local int base_dist[D_CODES];
 #  include "trees.h"
 #endif /* GEN_TREES_H */
 
-struct static_tree_desc_s
-{
-	const ct_data *static_tree;  /* static tree or NULL */
-	const intf *extra_bits;      /* extra bits for each code or NULL */
-	int     extra_base;          /* base index for extra_bits */
-	int     elems;               /* max number of elements in the tree */
-	int     max_length;          /* max bit length for the codes */
+struct static_tree_desc_s {
+    const ct_data *static_tree;  /* static tree or NULL */
+    const intf *extra_bits;      /* extra bits for each code or NULL */
+    int     extra_base;          /* base index for extra_bits */
+    int     elems;               /* max number of elements in the tree */
+    int     max_length;          /* max bit length for the codes */
 };
 
-local static_tree_desc  static_l_desc =
-{ static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS };
+local const static_tree_desc  static_l_desc =
+{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 
-local static_tree_desc  static_d_desc =
-{ static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS };
+local const static_tree_desc  static_d_desc =
+{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 
-local static_tree_desc  static_bl_desc =
-{ (const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS };
+local const static_tree_desc  static_bl_desc =
+{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 
 /* ===========================================================================
  * Local (static) routines in this file.
@@ -146,25 +145,23 @@ local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 local int  build_bl_tree  OF((deflate_state *s));
 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
-	int blcodes));
+                              int blcodes));
 local void compress_block OF((deflate_state *s, const ct_data *ltree,
-	const ct_data *dtree));
+                              const ct_data *dtree));
 local int  detect_data_type OF((deflate_state *s));
 local unsigned bi_reverse OF((unsigned value, int length));
 local void bi_windup      OF((deflate_state *s));
 local void bi_flush       OF((deflate_state *s));
-local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
-	int header));
 
 #ifdef GEN_TREES_H
 local void gen_trees_header OF((void));
 #endif
 
-#ifndef DEBUG
+#ifndef ZLIB_DEBUG
 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
-/* Send a code of the given tree. c and tree must not have side effects */
+   /* Send a code of the given tree. c and tree must not have side effects */
 
-#else /* DEBUG */
+#else /* !ZLIB_DEBUG */
 #  define send_code(s, c, tree) \
      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
        send_bits(s, tree[c].Code, tree[c].Len); }
@@ -179,43 +176,42 @@ local void gen_trees_header OF((void));
     put_byte(s, (uch)((ush)(w) >> 8)); \
 }
 
- /* ===========================================================================
-  * Send a value on a given number of bits.
-  * IN assertion: length <= 16 and value fits in length bits.
-  */
-#ifdef DEBUG
+/* ===========================================================================
+ * Send a value on a given number of bits.
+ * IN assertion: length <= 16 and value fits in length bits.
+ */
+#ifdef ZLIB_DEBUG
 local void send_bits      OF((deflate_state *s, int value, int length));
 
 local void send_bits(s, value, length)
-deflate_state *s;
-int value;  /* value to send */
-int length; /* number of bits */
+    deflate_state *s;
+    int value;  /* value to send */
+    int length; /* number of bits */
 {
-	Tracevv((stderr, " l %2d v %4x ", length, value));
-	Assert(length > 0 && length <= 15, "invalid length");
-	s->bits_sent += (ulg)length;
-
-	/* If not enough room in bi_buf, use (valid) bits from bi_buf and
-	 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
-	 * unused bits in value.
-	 */
-	if (s->bi_valid > (int)Buf_size - length) {
-		s->bi_buf |= (ush)value << s->bi_valid;
-		put_short(s, s->bi_buf);
-		s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
-		s->bi_valid += length - Buf_size;
-	}
-	else {
-		s->bi_buf |= (ush)value << s->bi_valid;
-		s->bi_valid += length;
-	}
+    Tracevv((stderr," l %2d v %4x ", length, value));
+    Assert(length > 0 && length <= 15, "invalid length");
+    s->bits_sent += (ulg)length;
+
+    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
+     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
+     * unused bits in value.
+     */
+    if (s->bi_valid > (int)Buf_size - length) {
+        s->bi_buf |= (ush)value << s->bi_valid;
+        put_short(s, s->bi_buf);
+        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
+        s->bi_valid += length - Buf_size;
+    } else {
+        s->bi_buf |= (ush)value << s->bi_valid;
+        s->bi_valid += length;
+    }
 }
-#else /* !DEBUG */
+#else /* !ZLIB_DEBUG */
 
 #define send_bits(s, value, length) \
 { int len = length;\
   if (s->bi_valid > (int)Buf_size - len) {\
-    int val = value;\
+    int val = (int)value;\
     s->bi_buf |= (ush)val << s->bi_valid;\
     put_short(s, s->bi_buf);\
     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
@@ -225,101 +221,101 @@ int length; /* number of bits */
     s->bi_valid += len;\
   }\
 }
-#endif /* DEBUG */
+#endif /* ZLIB_DEBUG */
 
 
-  /* the arguments must not have side effects */
+/* the arguments must not have side effects */
 
-  /* ===========================================================================
-	* Initialize the various 'constant' tables.
-	*/
+/* ===========================================================================
+ * Initialize the various 'constant' tables.
+ */
 local void tr_static_init()
 {
-	#if defined(GEN_TREES_H) || !defined(STDC)
-	static int static_init_done = 0;
-	int n;        /* iterates over tree elements */
-	int bits;     /* bit counter */
-	int length;   /* length value */
-	int code;     /* code value */
-	int dist;     /* distance index */
-	ush bl_count[MAX_BITS + 1];
-	/* number of codes at each bit length for an optimal tree */
-
-	if (static_init_done) return;
-
-	/* For some embedded targets, global variables are not initialized: */
-	#ifdef NO_INIT_GLOBAL_POINTERS
-	static_l_desc.static_tree = static_ltree;
-	static_l_desc.extra_bits = extra_lbits;
-	static_d_desc.static_tree = static_dtree;
-	static_d_desc.extra_bits = extra_dbits;
-	static_bl_desc.extra_bits = extra_blbits;
-	#endif
-
-	/* Initialize the mapping length (0..255) -> length code (0..28) */
-	length = 0;
-	for (code = 0; code < LENGTH_CODES - 1; code++) {
-		base_length[code] = length;
-		for (n = 0; n < (1 << extra_lbits[code]); n++) {
-			_length_code[length++] = (uch)code;
-		}
-	}
-	Assert(length == 256, "tr_static_init: length != 256");
-	/* Note that the length 255 (match length 258) can be represented
-	 * in two different ways: code 284 + 5 bits or code 285, so we
-	 * overwrite length_code[255] to use the best encoding:
-	 */
-	_length_code[length - 1] = (uch)code;
-
-	/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
-	dist = 0;
-	for (code = 0; code < 16; code++) {
-		base_dist[code] = dist;
-		for (n = 0; n < (1 << extra_dbits[code]); n++) {
-			_dist_code[dist++] = (uch)code;
-		}
-	}
-	Assert(dist == 256, "tr_static_init: dist != 256");
-	dist >>= 7; /* from now on, all distances are divided by 128 */
-	for (; code < D_CODES; code++) {
-		base_dist[code] = dist << 7;
-		for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
-			_dist_code[256 + dist++] = (uch)code;
-		}
-	}
-	Assert(dist == 256, "tr_static_init: 256+dist != 512");
-
-	/* Construct the codes of the static literal tree */
-	for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
-	n = 0;
-	while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
-	while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
-	while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
-	while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
-	/* Codes 286 and 287 do not exist, but we must include them in the
-	 * tree construction to get a canonical Huffman tree (longest code
-	 * all ones)
-	 */
-	gen_codes((ct_data *)static_ltree, L_CODES + 1, bl_count);
-
-	/* The static distance tree is trivial: */
-	for (n = 0; n < D_CODES; n++) {
-		static_dtree[n].Len = 5;
-		static_dtree[n].Code = bi_reverse((unsigned)n, 5);
-	}
-	static_init_done = 1;
-
-	#  ifdef GEN_TREES_H
-	gen_trees_header();
-	#  endif
-	#endif /* defined(GEN_TREES_H) || !defined(STDC) */
+#if defined(GEN_TREES_H) || !defined(STDC)
+    static int static_init_done = 0;
+    int n;        /* iterates over tree elements */
+    int bits;     /* bit counter */
+    int length;   /* length value */
+    int code;     /* code value */
+    int dist;     /* distance index */
+    ush bl_count[MAX_BITS+1];
+    /* number of codes at each bit length for an optimal tree */
+
+    if (static_init_done) return;
+
+    /* For some embedded targets, global variables are not initialized: */
+#ifdef NO_INIT_GLOBAL_POINTERS
+    static_l_desc.static_tree = static_ltree;
+    static_l_desc.extra_bits = extra_lbits;
+    static_d_desc.static_tree = static_dtree;
+    static_d_desc.extra_bits = extra_dbits;
+    static_bl_desc.extra_bits = extra_blbits;
+#endif
+
+    /* Initialize the mapping length (0..255) -> length code (0..28) */
+    length = 0;
+    for (code = 0; code < LENGTH_CODES-1; code++) {
+        base_length[code] = length;
+        for (n = 0; n < (1<<extra_lbits[code]); n++) {
+            _length_code[length++] = (uch)code;
+        }
+    }
+    Assert (length == 256, "tr_static_init: length != 256");
+    /* Note that the length 255 (match length 258) can be represented
+     * in two different ways: code 284 + 5 bits or code 285, so we
+     * overwrite length_code[255] to use the best encoding:
+     */
+    _length_code[length-1] = (uch)code;
+
+    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
+    dist = 0;
+    for (code = 0 ; code < 16; code++) {
+        base_dist[code] = dist;
+        for (n = 0; n < (1<<extra_dbits[code]); n++) {
+            _dist_code[dist++] = (uch)code;
+        }
+    }
+    Assert (dist == 256, "tr_static_init: dist != 256");
+    dist >>= 7; /* from now on, all distances are divided by 128 */
+    for ( ; code < D_CODES; code++) {
+        base_dist[code] = dist << 7;
+        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
+            _dist_code[256 + dist++] = (uch)code;
+        }
+    }
+    Assert (dist == 256, "tr_static_init: 256+dist != 512");
+
+    /* Construct the codes of the static literal tree */
+    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
+    n = 0;
+    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
+    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
+    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
+    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
+    /* Codes 286 and 287 do not exist, but we must include them in the
+     * tree construction to get a canonical Huffman tree (longest code
+     * all ones)
+     */
+    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
+
+    /* The static distance tree is trivial: */
+    for (n = 0; n < D_CODES; n++) {
+        static_dtree[n].Len = 5;
+        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
+    }
+    static_init_done = 1;
+
+#  ifdef GEN_TREES_H
+    gen_trees_header();
+#  endif
+#endif /* defined(GEN_TREES_H) || !defined(STDC) */
 }
 
 /* ===========================================================================
  * Genererate the file trees.h describing the static trees.
  */
 #ifdef GEN_TREES_H
-#  ifndef DEBUG
+#  ifndef ZLIB_DEBUG
 #    include <stdio.h>
 #  endif
 
@@ -329,51 +325,51 @@ local void tr_static_init()
 
 void gen_trees_header()
 {
-	FILE *header = fopen("trees.h", "w");
-	int i;
-
-	Assert(header != NULL, "Can't open trees.h");
-	fprintf(header,
-		"/* header created automatically with -DGEN_TREES_H */\n\n");
-
-	fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
-	for (i = 0; i < L_CODES + 2; i++) {
-		fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
-			static_ltree[i].Len, SEPARATOR(i, L_CODES + 1, 5));
-	}
-
-	fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
-	for (i = 0; i < D_CODES; i++) {
-		fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
-			static_dtree[i].Len, SEPARATOR(i, D_CODES - 1, 5));
-	}
-
-	fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
-	for (i = 0; i < DIST_CODE_LEN; i++) {
-		fprintf(header, "%2u%s", _dist_code[i],
-			SEPARATOR(i, DIST_CODE_LEN - 1, 20));
-	}
-
-	fprintf(header,
-		"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
-	for (i = 0; i < MAX_MATCH - MIN_MATCH + 1; i++) {
-		fprintf(header, "%2u%s", _length_code[i],
-			SEPARATOR(i, MAX_MATCH - MIN_MATCH, 20));
-	}
-
-	fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
-	for (i = 0; i < LENGTH_CODES; i++) {
-		fprintf(header, "%1u%s", base_length[i],
-			SEPARATOR(i, LENGTH_CODES - 1, 20));
-	}
-
-	fprintf(header, "local const int base_dist[D_CODES] = {\n");
-	for (i = 0; i < D_CODES; i++) {
-		fprintf(header, "%5u%s", base_dist[i],
-			SEPARATOR(i, D_CODES - 1, 10));
-	}
-
-	fclose(header);
+    FILE *header = fopen("trees.h", "w");
+    int i;
+
+    Assert (header != NULL, "Can't open trees.h");
+    fprintf(header,
+            "/* header created automatically with -DGEN_TREES_H */\n\n");
+
+    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
+    for (i = 0; i < L_CODES+2; i++) {
+        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
+                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
+    }
+
+    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
+    for (i = 0; i < D_CODES; i++) {
+        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
+                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
+    }
+
+    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
+    for (i = 0; i < DIST_CODE_LEN; i++) {
+        fprintf(header, "%2u%s", _dist_code[i],
+                SEPARATOR(i, DIST_CODE_LEN-1, 20));
+    }
+
+    fprintf(header,
+        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
+    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
+        fprintf(header, "%2u%s", _length_code[i],
+                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
+    }
+
+    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
+    for (i = 0; i < LENGTH_CODES; i++) {
+        fprintf(header, "%1u%s", base_length[i],
+                SEPARATOR(i, LENGTH_CODES-1, 20));
+    }
+
+    fprintf(header, "local const int base_dist[D_CODES] = {\n");
+    for (i = 0; i < D_CODES; i++) {
+        fprintf(header, "%5u%s", base_dist[i],
+                SEPARATOR(i, D_CODES-1, 10));
+    }
+
+    fclose(header);
 }
 #endif /* GEN_TREES_H */
 
@@ -381,46 +377,46 @@ void gen_trees_header()
  * Initialize the tree data structures for a new zlib stream.
  */
 void ZLIB_INTERNAL _tr_init(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	tr_static_init();
+    tr_static_init();
 
-	s->l_desc.dyn_tree = s->dyn_ltree;
-	s->l_desc.stat_desc = &static_l_desc;
+    s->l_desc.dyn_tree = s->dyn_ltree;
+    s->l_desc.stat_desc = &static_l_desc;
 
-	s->d_desc.dyn_tree = s->dyn_dtree;
-	s->d_desc.stat_desc = &static_d_desc;
+    s->d_desc.dyn_tree = s->dyn_dtree;
+    s->d_desc.stat_desc = &static_d_desc;
 
-	s->bl_desc.dyn_tree = s->bl_tree;
-	s->bl_desc.stat_desc = &static_bl_desc;
+    s->bl_desc.dyn_tree = s->bl_tree;
+    s->bl_desc.stat_desc = &static_bl_desc;
 
-	s->bi_buf = 0;
-	s->bi_valid = 0;
-	#ifdef DEBUG
-	s->compressed_len = 0L;
-	s->bits_sent = 0L;
-	#endif
+    s->bi_buf = 0;
+    s->bi_valid = 0;
+#ifdef ZLIB_DEBUG
+    s->compressed_len = 0L;
+    s->bits_sent = 0L;
+#endif
 
-	/* Initialize the first block of the first file: */
-	init_block(s);
+    /* Initialize the first block of the first file: */
+    init_block(s);
 }
 
 /* ===========================================================================
  * Initialize a new block.
  */
 local void init_block(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	int n; /* iterates over tree elements */
+    int n; /* iterates over tree elements */
 
-	/* Initialize the trees. */
-	for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
-	for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
-	for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
+    /* Initialize the trees. */
+    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
+    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
+    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 
-	s->dyn_ltree[END_BLOCK].Freq = 1;
-	s->opt_len = s->static_len = 0L;
-	s->last_lit = s->matches = 0;
+    s->dyn_ltree[END_BLOCK].Freq = 1;
+    s->opt_len = s->static_len = 0L;
+    s->last_lit = s->matches = 0;
 }
 
 #define SMALLEST 1
@@ -438,43 +434,43 @@ deflate_state *s;
     pqdownheap(s, tree, SMALLEST); \
 }
 
- /* ===========================================================================
-  * Compares to subtrees, using the tree depth as tie breaker when
-  * the subtrees have equal frequency. This minimizes the worst case length.
-  */
+/* ===========================================================================
+ * Compares to subtrees, using the tree depth as tie breaker when
+ * the subtrees have equal frequency. This minimizes the worst case length.
+ */
 #define smaller(tree, n, m, depth) \
    (tree[n].Freq < tree[m].Freq || \
    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 
-  /* ===========================================================================
-	* Restore the heap property by moving down the tree starting at node k,
-	* exchanging a node with the smallest of its two sons if necessary, stopping
-	* when the heap property is re-established (each father smaller than its
-	* two sons).
-	*/
+/* ===========================================================================
+ * Restore the heap property by moving down the tree starting at node k,
+ * exchanging a node with the smallest of its two sons if necessary, stopping
+ * when the heap property is re-established (each father smaller than its
+ * two sons).
+ */
 local void pqdownheap(s, tree, k)
-deflate_state *s;
-ct_data *tree;  /* the tree to restore */
-int k;               /* node to move down */
+    deflate_state *s;
+    ct_data *tree;  /* the tree to restore */
+    int k;               /* node to move down */
 {
-	int v = s->heap[k];
-	int j = k << 1;  /* left son of k */
-	while (j <= s->heap_len) {
-		/* Set j to the smallest of the two sons: */
-		if (j < s->heap_len &&
-			smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
-			j++;
-		}
-		/* Exit if v is smaller than both sons */
-		if (smaller(tree, v, s->heap[j], s->depth)) break;
-
-		/* Exchange v with the smallest son */
-		s->heap[k] = s->heap[j];  k = j;
-
-		/* And continue down the tree, setting j to the left son of k */
-		j <<= 1;
-	}
-	s->heap[k] = v;
+    int v = s->heap[k];
+    int j = k << 1;  /* left son of k */
+    while (j <= s->heap_len) {
+        /* Set j to the smallest of the two sons: */
+        if (j < s->heap_len &&
+            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
+            j++;
+        }
+        /* Exit if v is smaller than both sons */
+        if (smaller(tree, v, s->heap[j], s->depth)) break;
+
+        /* Exchange v with the smallest son */
+        s->heap[k] = s->heap[j];  k = j;
+
+        /* And continue down the tree, setting j to the left son of k */
+        j <<= 1;
+    }
+    s->heap[k] = v;
 }
 
 /* ===========================================================================
@@ -488,82 +484,81 @@ int k;               /* node to move down */
  *     not null.
  */
 local void gen_bitlen(s, desc)
-deflate_state *s;
-tree_desc *desc;    /* the tree descriptor */
+    deflate_state *s;
+    tree_desc *desc;    /* the tree descriptor */
 {
-	ct_data *tree = desc->dyn_tree;
-	int max_code = desc->max_code;
-	const ct_data *stree = desc->stat_desc->static_tree;
-	const intf *extra = desc->stat_desc->extra_bits;
-	int base = desc->stat_desc->extra_base;
-	int max_length = desc->stat_desc->max_length;
-	int h;              /* heap index */
-	int n, m;           /* iterate over the tree elements */
-	int bits;           /* bit length */
-	int xbits;          /* extra bits */
-	ush f;              /* frequency */
-	int overflow = 0;   /* number of elements with bit length too large */
-
-	for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
-
-	/* In a first pass, compute the optimal bit lengths (which may
-	 * overflow in the case of the bit length tree).
-	 */
-	tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
-
-	for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
-		n = s->heap[h];
-		bits = tree[tree[n].Dad].Len + 1;
-		if (bits > max_length) bits = max_length, overflow++;
-		tree[n].Len = (ush)bits;
-		/* We overwrite tree[n].Dad which is no longer needed */
-
-		if (n > max_code) continue; /* not a leaf node */
-
-		s->bl_count[bits]++;
-		xbits = 0;
-		if (n >= base) xbits = extra[n - base];
-		f = tree[n].Freq;
-		s->opt_len += (ulg)f * (bits + xbits);
-		if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
-	}
-	if (overflow == 0) return;
-
-	Trace((stderr, "\nbit length overflow\n"));
-	/* This happens for example on obj2 and pic of the Calgary corpus */
-
-	/* Find the first bit length which could increase: */
-	do {
-		bits = max_length - 1;
-		while (s->bl_count[bits] == 0) bits--;
-		s->bl_count[bits]--;      /* move one leaf down the tree */
-		s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
-		s->bl_count[max_length]--;
-		/* The brother of the overflow item also moves one step up,
-		 * but this does not affect bl_count[max_length]
-		 */
-		overflow -= 2;
-	} while (overflow > 0);
-
-	/* Now recompute all bit lengths, scanning in increasing frequency.
-	 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
-	 * lengths instead of fixing only the wrong ones. This idea is taken
-	 * from 'ar' written by Haruhiko Okumura.)
-	 */
-	for (bits = max_length; bits != 0; bits--) {
-		n = s->bl_count[bits];
-		while (n != 0) {
-			m = s->heap[--h];
-			if (m > max_code) continue;
-			if ((unsigned)tree[m].Len != (unsigned)bits) {
-				Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
-				s->opt_len += ((long)bits - (long)tree[m].Len)
-					*(long)tree[m].Freq;
-				tree[m].Len = (ush)bits;
-			}
-			n--;
-		}
-	}
+    ct_data *tree        = desc->dyn_tree;
+    int max_code         = desc->max_code;
+    const ct_data *stree = desc->stat_desc->static_tree;
+    const intf *extra    = desc->stat_desc->extra_bits;
+    int base             = desc->stat_desc->extra_base;
+    int max_length       = desc->stat_desc->max_length;
+    int h;              /* heap index */
+    int n, m;           /* iterate over the tree elements */
+    int bits;           /* bit length */
+    int xbits;          /* extra bits */
+    ush f;              /* frequency */
+    int overflow = 0;   /* number of elements with bit length too large */
+
+    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
+
+    /* In a first pass, compute the optimal bit lengths (which may
+     * overflow in the case of the bit length tree).
+     */
+    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
+
+    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
+        n = s->heap[h];
+        bits = tree[tree[n].Dad].Len + 1;
+        if (bits > max_length) bits = max_length, overflow++;
+        tree[n].Len = (ush)bits;
+        /* We overwrite tree[n].Dad which is no longer needed */
+
+        if (n > max_code) continue; /* not a leaf node */
+
+        s->bl_count[bits]++;
+        xbits = 0;
+        if (n >= base) xbits = extra[n-base];
+        f = tree[n].Freq;
+        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
+        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
+    }
+    if (overflow == 0) return;
+
+    Tracev((stderr,"\nbit length overflow\n"));
+    /* This happens for example on obj2 and pic of the Calgary corpus */
+
+    /* Find the first bit length which could increase: */
+    do {
+        bits = max_length-1;
+        while (s->bl_count[bits] == 0) bits--;
+        s->bl_count[bits]--;      /* move one leaf down the tree */
+        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
+        s->bl_count[max_length]--;
+        /* The brother of the overflow item also moves one step up,
+         * but this does not affect bl_count[max_length]
+         */
+        overflow -= 2;
+    } while (overflow > 0);
+
+    /* Now recompute all bit lengths, scanning in increasing frequency.
+     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
+     * lengths instead of fixing only the wrong ones. This idea is taken
+     * from 'ar' written by Haruhiko Okumura.)
+     */
+    for (bits = max_length; bits != 0; bits--) {
+        n = s->bl_count[bits];
+        while (n != 0) {
+            m = s->heap[--h];
+            if (m > max_code) continue;
+            if ((unsigned) tree[m].Len != (unsigned) bits) {
+                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
+                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
+                tree[m].Len = (ush)bits;
+            }
+            n--;
+        }
+    }
 }
 
 /* ===========================================================================
@@ -574,38 +569,39 @@ tree_desc *desc;    /* the tree descriptor */
  * OUT assertion: the field code is set for all tree elements of non
  *     zero code length.
  */
-local void gen_codes(tree, max_code, bl_count)
-ct_data *tree;             /* the tree to decorate */
-int max_code;              /* largest code with non zero frequency */
-ushf *bl_count;            /* number of codes at each bit length */
+local void gen_codes (tree, max_code, bl_count)
+    ct_data *tree;             /* the tree to decorate */
+    int max_code;              /* largest code with non zero frequency */
+    ushf *bl_count;            /* number of codes at each bit length */
 {
-	ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
-	ush code = 0;              /* running code value */
-	int bits;                  /* bit index */
-	int n;                     /* code index */
-
-	/* The distribution counts are first used to generate the code values
-	 * without bit reversal.
-	 */
-	for (bits = 1; bits <= MAX_BITS; bits++) {
-		next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
-	}
-	/* Check that the bit counts in bl_count are consistent. The last code
-	 * must be all ones.
-	 */
-	Assert(code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
-		"inconsistent bit counts");
-	Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
-
-	for (n = 0; n <= max_code; n++) {
-		int len = tree[n].Len;
-		if (len == 0) continue;
-		/* Now reverse the bits */
-		tree[n].Code = bi_reverse(next_code[len]++, len);
-
-		Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ",
-			n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
-	}
+    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
+    unsigned code = 0;         /* running code value */
+    int bits;                  /* bit index */
+    int n;                     /* code index */
+
+    /* The distribution counts are first used to generate the code values
+     * without bit reversal.
+     */
+    for (bits = 1; bits <= MAX_BITS; bits++) {
+        code = (code + bl_count[bits-1]) << 1;
+        next_code[bits] = (ush)code;
+    }
+    /* Check that the bit counts in bl_count are consistent. The last code
+     * must be all ones.
+     */
+    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
+            "inconsistent bit counts");
+    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
+
+    for (n = 0;  n <= max_code; n++) {
+        int len = tree[n].Len;
+        if (len == 0) continue;
+        /* Now reverse the bits */
+        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
+
+        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
+             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
+    }
 }
 
 /* ===========================================================================
@@ -617,196 +613,183 @@ ushf *bl_count;            /* number of codes at each bit length */
  *     also updated if stree is not null. The field max_code is set.
  */
 local void build_tree(s, desc)
-deflate_state *s;
-tree_desc *desc; /* the tree descriptor */
+    deflate_state *s;
+    tree_desc *desc; /* the tree descriptor */
 {
-	ct_data *tree = desc->dyn_tree;
-	const ct_data *stree = desc->stat_desc->static_tree;
-	int elems = desc->stat_desc->elems;
-	int n, m;          /* iterate over heap elements */
-	int max_code = -1; /* largest code with non zero frequency */
-	int node;          /* new node being created */
-
-	/* Construct the initial heap, with least frequent element in
-	 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
-	 * heap[0] is not used.
-	 */
-	s->heap_len = 0, s->heap_max = HEAP_SIZE;
-
-	for (n = 0; n < elems; n++) {
-		if (tree[n].Freq != 0) {
-			s->heap[++(s->heap_len)] = max_code = n;
-			s->depth[n] = 0;
-		}
-		else {
-			tree[n].Len = 0;
-		}
-	}
-
-	/* The pkzip format requires that at least one distance code exists,
-	 * and that at least one bit should be sent even if there is only one
-	 * possible code. So to avoid special checks later on we force at least
-	 * two codes of non zero frequency.
-	 */
-	while (s->heap_len < 2) {
-		node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
-		tree[node].Freq = 1;
-		s->depth[node] = 0;
-		s->opt_len--; if (stree) s->static_len -= stree[node].Len;
-		/* node is 0 or 1 so it does not have extra bits */
-	}
-	desc->max_code = max_code;
-
-	/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
-	 * establish sub-heaps of increasing lengths:
-	 */
-	for (n = s->heap_len / 2; n >= 1; n--) pqdownheap(s, tree, n);
-
-	/* Construct the Huffman tree by repeatedly combining the least two
-	 * frequent nodes.
-	 */
-	node = elems;              /* next internal node of the tree */
-	do {
-		pqremove(s, tree, n);  /* n = node of least frequency */
-		m = s->heap[SMALLEST]; /* m = node of next least frequency */
-
-		s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
-		s->heap[--(s->heap_max)] = m;
-
-		/* Create a new node father of n and m */
-		tree[node].Freq = tree[n].Freq + tree[m].Freq;
-		s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
-			s->depth[n] : s->depth[m]) + 1);
-		tree[n].Dad = tree[m].Dad = (ush)node;
-		#ifdef DUMP_BL_TREE
-		if (tree == s->bl_tree) {
-			fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
-				node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
-		}
-		#endif
-		/* and insert the new node in the heap */
-		s->heap[SMALLEST] = node++;
-		pqdownheap(s, tree, SMALLEST);
-
-	} while (s->heap_len >= 2);
-
-	s->heap[--(s->heap_max)] = s->heap[SMALLEST];
-
-	/* At this point, the fields freq and dad are set. We can now
-	 * generate the bit lengths.
-	 */
-	gen_bitlen(s, (tree_desc *)desc);
-
-	/* The field len is now set, we can generate the bit codes */
-	gen_codes((ct_data *)tree, max_code, s->bl_count);
+    ct_data *tree         = desc->dyn_tree;
+    const ct_data *stree  = desc->stat_desc->static_tree;
+    int elems             = desc->stat_desc->elems;
+    int n, m;          /* iterate over heap elements */
+    int max_code = -1; /* largest code with non zero frequency */
+    int node;          /* new node being created */
+
+    /* Construct the initial heap, with least frequent element in
+     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
+     * heap[0] is not used.
+     */
+    s->heap_len = 0, s->heap_max = HEAP_SIZE;
+
+    for (n = 0; n < elems; n++) {
+        if (tree[n].Freq != 0) {
+            s->heap[++(s->heap_len)] = max_code = n;
+            s->depth[n] = 0;
+        } else {
+            tree[n].Len = 0;
+        }
+    }
+
+    /* The pkzip format requires that at least one distance code exists,
+     * and that at least one bit should be sent even if there is only one
+     * possible code. So to avoid special checks later on we force at least
+     * two codes of non zero frequency.
+     */
+    while (s->heap_len < 2) {
+        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
+        tree[node].Freq = 1;
+        s->depth[node] = 0;
+        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
+        /* node is 0 or 1 so it does not have extra bits */
+    }
+    desc->max_code = max_code;
+
+    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
+     * establish sub-heaps of increasing lengths:
+     */
+    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
+
+    /* Construct the Huffman tree by repeatedly combining the least two
+     * frequent nodes.
+     */
+    node = elems;              /* next internal node of the tree */
+    do {
+        pqremove(s, tree, n);  /* n = node of least frequency */
+        m = s->heap[SMALLEST]; /* m = node of next least frequency */
+
+        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
+        s->heap[--(s->heap_max)] = m;
+
+        /* Create a new node father of n and m */
+        tree[node].Freq = tree[n].Freq + tree[m].Freq;
+        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
+                                s->depth[n] : s->depth[m]) + 1);
+        tree[n].Dad = tree[m].Dad = (ush)node;
+#ifdef DUMP_BL_TREE
+        if (tree == s->bl_tree) {
+            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
+                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
+        }
+#endif
+        /* and insert the new node in the heap */
+        s->heap[SMALLEST] = node++;
+        pqdownheap(s, tree, SMALLEST);
+
+    } while (s->heap_len >= 2);
+
+    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
+
+    /* At this point, the fields freq and dad are set. We can now
+     * generate the bit lengths.
+     */
+    gen_bitlen(s, (tree_desc *)desc);
+
+    /* The field len is now set, we can generate the bit codes */
+    gen_codes ((ct_data *)tree, max_code, s->bl_count);
 }
 
 /* ===========================================================================
  * Scan a literal or distance tree to determine the frequencies of the codes
  * in the bit length tree.
  */
-local void scan_tree(s, tree, max_code)
-deflate_state *s;
-ct_data *tree;   /* the tree to be scanned */
-int max_code;    /* and its largest code of non zero frequency */
+local void scan_tree (s, tree, max_code)
+    deflate_state *s;
+    ct_data *tree;   /* the tree to be scanned */
+    int max_code;    /* and its largest code of non zero frequency */
 {
-	int n;                     /* iterates over all tree elements */
-	int prevlen = -1;          /* last emitted length */
-	int curlen;                /* length of current code */
-	int nextlen = tree[0].Len; /* length of next code */
-	int count = 0;             /* repeat count of the current code */
-	int max_count = 7;         /* max repeat count */
-	int min_count = 4;         /* min repeat count */
-
-	if (nextlen == 0) max_count = 138, min_count = 3;
-	tree[max_code + 1].Len = (ush)0xffff; /* guard */
-
-	for (n = 0; n <= max_code; n++) {
-		curlen = nextlen; nextlen = tree[n + 1].Len;
-		if (++count < max_count && curlen == nextlen) {
-			continue;
-		}
-		else if (count < min_count) {
-			s->bl_tree[curlen].Freq += count;
-		}
-		else if (curlen != 0) {
-			if (curlen != prevlen) s->bl_tree[curlen].Freq++;
-			s->bl_tree[REP_3_6].Freq++;
-		}
-		else if (count <= 10) {
-			s->bl_tree[REPZ_3_10].Freq++;
-		}
-		else {
-			s->bl_tree[REPZ_11_138].Freq++;
-		}
-		count = 0; prevlen = curlen;
-		if (nextlen == 0) {
-			max_count = 138, min_count = 3;
-		}
-		else if (curlen == nextlen) {
-			max_count = 6, min_count = 3;
-		}
-		else {
-			max_count = 7, min_count = 4;
-		}
-	}
+    int n;                     /* iterates over all tree elements */
+    int prevlen = -1;          /* last emitted length */
+    int curlen;                /* length of current code */
+    int nextlen = tree[0].Len; /* length of next code */
+    int count = 0;             /* repeat count of the current code */
+    int max_count = 7;         /* max repeat count */
+    int min_count = 4;         /* min repeat count */
+
+    if (nextlen == 0) max_count = 138, min_count = 3;
+    tree[max_code+1].Len = (ush)0xffff; /* guard */
+
+    for (n = 0; n <= max_code; n++) {
+        curlen = nextlen; nextlen = tree[n+1].Len;
+        if (++count < max_count && curlen == nextlen) {
+            continue;
+        } else if (count < min_count) {
+            s->bl_tree[curlen].Freq += count;
+        } else if (curlen != 0) {
+            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
+            s->bl_tree[REP_3_6].Freq++;
+        } else if (count <= 10) {
+            s->bl_tree[REPZ_3_10].Freq++;
+        } else {
+            s->bl_tree[REPZ_11_138].Freq++;
+        }
+        count = 0; prevlen = curlen;
+        if (nextlen == 0) {
+            max_count = 138, min_count = 3;
+        } else if (curlen == nextlen) {
+            max_count = 6, min_count = 3;
+        } else {
+            max_count = 7, min_count = 4;
+        }
+    }
 }
 
 /* ===========================================================================
  * Send a literal or distance tree in compressed form, using the codes in
  * bl_tree.
  */
-local void send_tree(s, tree, max_code)
-deflate_state *s;
-ct_data *tree; /* the tree to be scanned */
-int max_code;       /* and its largest code of non zero frequency */
+local void send_tree (s, tree, max_code)
+    deflate_state *s;
+    ct_data *tree; /* the tree to be scanned */
+    int max_code;       /* and its largest code of non zero frequency */
 {
-	int n;                     /* iterates over all tree elements */
-	int prevlen = -1;          /* last emitted length */
-	int curlen;                /* length of current code */
-	int nextlen = tree[0].Len; /* length of next code */
-	int count = 0;             /* repeat count of the current code */
-	int max_count = 7;         /* max repeat count */
-	int min_count = 4;         /* min repeat count */
-
-	/* tree[max_code+1].Len = -1; */  /* guard already set */
-	if (nextlen == 0) max_count = 138, min_count = 3;
-
-	for (n = 0; n <= max_code; n++) {
-		curlen = nextlen; nextlen = tree[n + 1].Len;
-		if (++count < max_count && curlen == nextlen) {
-			continue;
-		}
-		else if (count < min_count) {
-			do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
-
-		}
-		else if (curlen != 0) {
-			if (curlen != prevlen) {
-				send_code(s, curlen, s->bl_tree); count--;
-			}
-			Assert(count >= 3 && count <= 6, " 3_6?");
-			send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
-
-		}
-		else if (count <= 10) {
-			send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
-
-		}
-		else {
-			send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
-		}
-		count = 0; prevlen = curlen;
-		if (nextlen == 0) {
-			max_count = 138, min_count = 3;
-		}
-		else if (curlen == nextlen) {
-			max_count = 6, min_count = 3;
-		}
-		else {
-			max_count = 7, min_count = 4;
-		}
-	}
+    int n;                     /* iterates over all tree elements */
+    int prevlen = -1;          /* last emitted length */
+    int curlen;                /* length of current code */
+    int nextlen = tree[0].Len; /* length of next code */
+    int count = 0;             /* repeat count of the current code */
+    int max_count = 7;         /* max repeat count */
+    int min_count = 4;         /* min repeat count */
+
+    /* tree[max_code+1].Len = -1; */  /* guard already set */
+    if (nextlen == 0) max_count = 138, min_count = 3;
+
+    for (n = 0; n <= max_code; n++) {
+        curlen = nextlen; nextlen = tree[n+1].Len;
+        if (++count < max_count && curlen == nextlen) {
+            continue;
+        } else if (count < min_count) {
+            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
+
+        } else if (curlen != 0) {
+            if (curlen != prevlen) {
+                send_code(s, curlen, s->bl_tree); count--;
+            }
+            Assert(count >= 3 && count <= 6, " 3_6?");
+            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
+
+        } else if (count <= 10) {
+            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
+
+        } else {
+            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
+        }
+        count = 0; prevlen = curlen;
+        if (nextlen == 0) {
+            max_count = 138, min_count = 3;
+        } else if (curlen == nextlen) {
+            max_count = 6, min_count = 3;
+        } else {
+            max_count = 7, min_count = 4;
+        }
+    }
 }
 
 /* ===========================================================================
@@ -814,33 +797,33 @@ int max_code;       /* and its largest code of non zero frequency */
  * bl_order of the last bit length code to send.
  */
 local int build_bl_tree(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	int max_blindex;  /* index of last bit length code of non zero freq */
-
-	/* Determine the bit length frequencies for literal and distance trees */
-	scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
-	scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
-
-	/* Build the bit length tree: */
-	build_tree(s, (tree_desc *)(&(s->bl_desc)));
-	/* opt_len now includes the length of the tree representations, except
-	 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
-	 */
-
-	 /* Determine the number of bit length codes to send. The pkzip format
-	  * requires that at least 4 bit length codes be sent. (appnote.txt says
-	  * 3 but the actual value used is 4.)
-	  */
-	for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
-		if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
-	}
-	/* Update opt_len to include the bit length tree and counts */
-	s->opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
-	Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
-		s->opt_len, s->static_len));
-
-	return max_blindex;
+    int max_blindex;  /* index of last bit length code of non zero freq */
+
+    /* Determine the bit length frequencies for literal and distance trees */
+    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
+    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
+
+    /* Build the bit length tree: */
+    build_tree(s, (tree_desc *)(&(s->bl_desc)));
+    /* opt_len now includes the length of the tree representations, except
+     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
+     */
+
+    /* Determine the number of bit length codes to send. The pkzip format
+     * requires that at least 4 bit length codes be sent. (appnote.txt says
+     * 3 but the actual value used is 4.)
+     */
+    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
+        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
+    }
+    /* Update opt_len to include the bit length tree and counts */
+    s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
+    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
+            s->opt_len, s->static_len));
+
+    return max_blindex;
 }
 
 /* ===========================================================================
@@ -849,55 +832,61 @@ deflate_state *s;
  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  */
 local void send_all_trees(s, lcodes, dcodes, blcodes)
-deflate_state *s;
-int lcodes, dcodes, blcodes; /* number of codes for each tree */
+    deflate_state *s;
+    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 {
-	int rank;                    /* index in bl_order */
-
-	Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
-	Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
-		"too many codes");
-	Tracev((stderr, "\nbl counts: "));
-	send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
-	send_bits(s, dcodes - 1, 5);
-	send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
-	for (rank = 0; rank < blcodes; rank++) {
-		Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
-		send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
-	}
-	Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
-
-	send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
-	Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
-
-	send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
-	Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
+    int rank;                    /* index in bl_order */
+
+    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
+    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
+            "too many codes");
+    Tracev((stderr, "\nbl counts: "));
+    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
+    send_bits(s, dcodes-1,   5);
+    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
+    for (rank = 0; rank < blcodes; rank++) {
+        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
+        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
+    }
+    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
+
+    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
+    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
+
+    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
+    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 }
 
 /* ===========================================================================
  * Send a stored block
  */
 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
-deflate_state *s;
-charf *buf;       /* input block */
-ulg stored_len;   /* length of input block */
-int last;         /* one if this is the last block for a file */
+    deflate_state *s;
+    charf *buf;       /* input block */
+    ulg stored_len;   /* length of input block */
+    int last;         /* one if this is the last block for a file */
 {
-	send_bits(s, (STORED_BLOCK << 1) + last, 3);    /* send block type */
-	#ifdef DEBUG
-	s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
-	s->compressed_len += (stored_len + 4) << 3;
-	#endif
-	copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
+    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
+    bi_windup(s);        /* align on byte boundary */
+    put_short(s, (ush)stored_len);
+    put_short(s, (ush)~stored_len);
+    zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
+    s->pending += stored_len;
+#ifdef ZLIB_DEBUG
+    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
+    s->compressed_len += (stored_len + 4) << 3;
+    s->bits_sent += 2*16;
+    s->bits_sent += stored_len<<3;
+#endif
 }
 
 /* ===========================================================================
  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
  */
 void ZLIB_INTERNAL _tr_flush_bits(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	bi_flush(s);
+    bi_flush(s);
 }
 
 /* ===========================================================================
@@ -905,224 +894,218 @@ deflate_state *s;
  * This takes 10 bits, of which 7 may remain in the bit buffer.
  */
 void ZLIB_INTERNAL _tr_align(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	send_bits(s, STATIC_TREES << 1, 3);
-	send_code(s, END_BLOCK, static_ltree);
-	#ifdef DEBUG
-	s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
-	#endif
-	bi_flush(s);
+    send_bits(s, STATIC_TREES<<1, 3);
+    send_code(s, END_BLOCK, static_ltree);
+#ifdef ZLIB_DEBUG
+    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
+#endif
+    bi_flush(s);
 }
 
 /* ===========================================================================
  * Determine the best encoding for the current block: dynamic trees, static
- * trees or store, and output the encoded block to the zip file.
+ * trees or store, and write out the encoded block.
  */
 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
-deflate_state *s;
-charf *buf;       /* input block, or NULL if too old */
-ulg stored_len;   /* length of input block */
-int last;         /* one if this is the last block for a file */
+    deflate_state *s;
+    charf *buf;       /* input block, or NULL if too old */
+    ulg stored_len;   /* length of input block */
+    int last;         /* one if this is the last block for a file */
 {
-	ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
-	int max_blindex = 0;  /* index of last bit length code of non zero freq */
-
-	/* Build the Huffman trees unless a stored block is forced */
-	if (s->level > 0) {
-
-		/* Check if the file is binary or text */
-		if (s->strm->data_type == Z_UNKNOWN)
-			s->strm->data_type = detect_data_type(s);
-
-		/* Construct the literal and distance trees */
-		build_tree(s, (tree_desc *)(&(s->l_desc)));
-		Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
-			s->static_len));
-
-		build_tree(s, (tree_desc *)(&(s->d_desc)));
-		Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
-			s->static_len));
-		/* At this point, opt_len and static_len are the total bit lengths of
-		 * the compressed block data, excluding the tree representations.
-		 */
-
-		 /* Build the bit length tree for the above two trees, and get the index
-		  * in bl_order of the last bit length code to send.
-		  */
-		max_blindex = build_bl_tree(s);
-
-		/* Determine the best encoding. Compute the block lengths in bytes. */
-		opt_lenb = (s->opt_len + 3 + 7) >> 3;
-		static_lenb = (s->static_len + 3 + 7) >> 3;
-
-		Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
-			opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
-			s->last_lit));
-
-		if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
-
-	}
-	else {
-		Assert(buf != (char*)0, "lost buf");
-		opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
-	}
-
-	#ifdef FORCE_STORED
-	if (buf != (char*)0) { /* force stored block */
-		#else
-	if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
-		/* 4: two words for the lengths */
-		#endif
-				  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
-					* Otherwise we can't have processed more than WSIZE input bytes since
-					* the last block flush, because compression would have been
-					* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
-					* transform a block into a stored block.
-					*/
-		_tr_stored_block(s, buf, stored_len, last);
-
-		#ifdef FORCE_STATIC
-	}
-	else if (static_lenb >= 0) { /* force static trees */
-		#else
-	}
-	else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
-		#endif
-		send_bits(s, (STATIC_TREES << 1) + last, 3);
-		compress_block(s, (const ct_data *)static_ltree,
-			(const ct_data *)static_dtree);
-		#ifdef DEBUG
-		s->compressed_len += 3 + s->static_len;
-		#endif
-	}
-	else {
-		send_bits(s, (DYN_TREES << 1) + last, 3);
-		send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
-			max_blindex + 1);
-		compress_block(s, (const ct_data *)s->dyn_ltree,
-			(const ct_data *)s->dyn_dtree);
-		#ifdef DEBUG
-		s->compressed_len += 3 + s->opt_len;
-		#endif
-	}
-	Assert(s->compressed_len == s->bits_sent, "bad compressed size");
-	/* The above check is made mod 2^32, for files larger than 512 MB
-	 * and uLong implemented on 32 bits.
-	 */
-	init_block(s);
-
-	if (last) {
-		bi_windup(s);
-		#ifdef DEBUG
-		s->compressed_len += 7;  /* align on byte boundary */
-		#endif
-	}
-	Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
-		s->compressed_len - 7 * last));
+    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
+    int max_blindex = 0;  /* index of last bit length code of non zero freq */
+
+    /* Build the Huffman trees unless a stored block is forced */
+    if (s->level > 0) {
+
+        /* Check if the file is binary or text */
+        if (s->strm->data_type == Z_UNKNOWN)
+            s->strm->data_type = detect_data_type(s);
+
+        /* Construct the literal and distance trees */
+        build_tree(s, (tree_desc *)(&(s->l_desc)));
+        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
+                s->static_len));
+
+        build_tree(s, (tree_desc *)(&(s->d_desc)));
+        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
+                s->static_len));
+        /* At this point, opt_len and static_len are the total bit lengths of
+         * the compressed block data, excluding the tree representations.
+         */
+
+        /* Build the bit length tree for the above two trees, and get the index
+         * in bl_order of the last bit length code to send.
+         */
+        max_blindex = build_bl_tree(s);
+
+        /* Determine the best encoding. Compute the block lengths in bytes. */
+        opt_lenb = (s->opt_len+3+7)>>3;
+        static_lenb = (s->static_len+3+7)>>3;
+
+        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
+                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
+                s->last_lit));
+
+        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
+
+    } else {
+        Assert(buf != (char*)0, "lost buf");
+        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
+    }
+
+#ifdef FORCE_STORED
+    if (buf != (char*)0) { /* force stored block */
+#else
+    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
+                       /* 4: two words for the lengths */
+#endif
+        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
+         * Otherwise we can't have processed more than WSIZE input bytes since
+         * the last block flush, because compression would have been
+         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
+         * transform a block into a stored block.
+         */
+        _tr_stored_block(s, buf, stored_len, last);
+
+#ifdef FORCE_STATIC
+    } else if (static_lenb >= 0) { /* force static trees */
+#else
+    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
+#endif
+        send_bits(s, (STATIC_TREES<<1)+last, 3);
+        compress_block(s, (const ct_data *)static_ltree,
+                       (const ct_data *)static_dtree);
+#ifdef ZLIB_DEBUG
+        s->compressed_len += 3 + s->static_len;
+#endif
+    } else {
+        send_bits(s, (DYN_TREES<<1)+last, 3);
+        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
+                       max_blindex+1);
+        compress_block(s, (const ct_data *)s->dyn_ltree,
+                       (const ct_data *)s->dyn_dtree);
+#ifdef ZLIB_DEBUG
+        s->compressed_len += 3 + s->opt_len;
+#endif
+    }
+    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
+    /* The above check is made mod 2^32, for files larger than 512 MB
+     * and uLong implemented on 32 bits.
+     */
+    init_block(s);
+
+    if (last) {
+        bi_windup(s);
+#ifdef ZLIB_DEBUG
+        s->compressed_len += 7;  /* align on byte boundary */
+#endif
+    }
+    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
+           s->compressed_len-7*last));
 }
 
 /* ===========================================================================
  * Save the match info and tally the frequency counts. Return true if
  * the current block must be flushed.
  */
-int ZLIB_INTERNAL _tr_tally(s, dist, lc)
-deflate_state *s;
-unsigned dist;  /* distance of matched string */
-unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
+int ZLIB_INTERNAL _tr_tally (s, dist, lc)
+    deflate_state *s;
+    unsigned dist;  /* distance of matched string */
+    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 {
-	s->d_buf[s->last_lit] = (ush)dist;
-	s->l_buf[s->last_lit++] = (uch)lc;
-	if (dist == 0) {
-		/* lc is the unmatched char */
-		s->dyn_ltree[lc].Freq++;
-	}
-	else {
-		s->matches++;
-		/* Here, lc is the match length - MIN_MATCH */
-		dist--;             /* dist = match distance - 1 */
-		Assert((ush)dist < (ush)MAX_DIST(s) &&
-			(ush)lc <= (ush)(MAX_MATCH - MIN_MATCH) &&
-			(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
-
-		s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
-		s->dyn_dtree[d_code(dist)].Freq++;
-	}
-
-	#ifdef TRUNCATE_BLOCK
-	/* Try to guess if it is profitable to stop the current block here */
-	if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
-		/* Compute an upper bound for the compressed length */
-		ulg out_length = (ulg)s->last_lit * 8L;
-		ulg in_length = (ulg)((long)s->strstart - s->block_start);
-		int dcode;
-		for (dcode = 0; dcode < D_CODES; dcode++) {
-			out_length += (ulg)s->dyn_dtree[dcode].Freq *
-				(5L + extra_dbits[dcode]);
-		}
-		out_length >>= 3;
-		Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
-			s->last_lit, in_length, out_length,
-			100L - out_length * 100L / in_length));
-		if (s->matches < s->last_lit / 2 && out_length < in_length / 2) return 1;
-	}
-	#endif
-	return (s->last_lit == s->lit_bufsize - 1);
-	/* We avoid equality with lit_bufsize because of wraparound at 64K
-	 * on 16 bit machines and because stored blocks are restricted to
-	 * 64K-1 bytes.
-	 */
+    s->d_buf[s->last_lit] = (ush)dist;
+    s->l_buf[s->last_lit++] = (uch)lc;
+    if (dist == 0) {
+        /* lc is the unmatched char */
+        s->dyn_ltree[lc].Freq++;
+    } else {
+        s->matches++;
+        /* Here, lc is the match length - MIN_MATCH */
+        dist--;             /* dist = match distance - 1 */
+        Assert((ush)dist < (ush)MAX_DIST(s) &&
+               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
+               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
+
+        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
+        s->dyn_dtree[d_code(dist)].Freq++;
+    }
+
+#ifdef TRUNCATE_BLOCK
+    /* Try to guess if it is profitable to stop the current block here */
+    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
+        /* Compute an upper bound for the compressed length */
+        ulg out_length = (ulg)s->last_lit*8L;
+        ulg in_length = (ulg)((long)s->strstart - s->block_start);
+        int dcode;
+        for (dcode = 0; dcode < D_CODES; dcode++) {
+            out_length += (ulg)s->dyn_dtree[dcode].Freq *
+                (5L+extra_dbits[dcode]);
+        }
+        out_length >>= 3;
+        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
+               s->last_lit, in_length, out_length,
+               100L - out_length*100L/in_length));
+        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
+    }
+#endif
+    return (s->last_lit == s->lit_bufsize-1);
+    /* We avoid equality with lit_bufsize because of wraparound at 64K
+     * on 16 bit machines and because stored blocks are restricted to
+     * 64K-1 bytes.
+     */
 }
 
 /* ===========================================================================
  * Send the block data compressed using the given Huffman trees
  */
 local void compress_block(s, ltree, dtree)
-deflate_state *s;
-const ct_data *ltree; /* literal tree */
-const ct_data *dtree; /* distance tree */
+    deflate_state *s;
+    const ct_data *ltree; /* literal tree */
+    const ct_data *dtree; /* distance tree */
 {
-	unsigned dist;      /* distance of matched string */
-	int lc;             /* match length or unmatched char (if dist == 0) */
-	unsigned lx = 0;    /* running index in l_buf */
-	unsigned code;      /* the code to send */
-	int extra;          /* number of extra bits to send */
-
-	if (s->last_lit != 0) do {
-		dist = s->d_buf[lx];
-		lc = s->l_buf[lx++];
-		if (dist == 0) {
-			send_code(s, lc, ltree); /* send a literal byte */
-			Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
-		}
-		else {
-			/* Here, lc is the match length - MIN_MATCH */
-			code = _length_code[lc];
-			send_code(s, code + LITERALS + 1, ltree); /* send the length code */
-			extra = extra_lbits[code];
-			if (extra != 0) {
-				lc -= base_length[code];
-				send_bits(s, lc, extra);       /* send the extra length bits */
-			}
-			dist--; /* dist is now the match distance - 1 */
-			code = d_code(dist);
-			Assert(code < D_CODES, "bad d_code");
-
-			send_code(s, code, dtree);       /* send the distance code */
-			extra = extra_dbits[code];
-			if (extra != 0) {
-				dist -= base_dist[code];
-				send_bits(s, dist, extra);   /* send the extra distance bits */
-			}
-		} /* literal or match pair ? */
-
-		/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
-		Assert((uInt)(s->pending) < s->lit_bufsize + 2 * lx,
-			"pendingBuf overflow");
-
-	} while (lx < s->last_lit);
-
-	send_code(s, END_BLOCK, ltree);
+    unsigned dist;      /* distance of matched string */
+    int lc;             /* match length or unmatched char (if dist == 0) */
+    unsigned lx = 0;    /* running index in l_buf */
+    unsigned code;      /* the code to send */
+    int extra;          /* number of extra bits to send */
+
+    if (s->last_lit != 0) do {
+        dist = s->d_buf[lx];
+        lc = s->l_buf[lx++];
+        if (dist == 0) {
+            send_code(s, lc, ltree); /* send a literal byte */
+            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
+        } else {
+            /* Here, lc is the match length - MIN_MATCH */
+            code = _length_code[lc];
+            send_code(s, code+LITERALS+1, ltree); /* send the length code */
+            extra = extra_lbits[code];
+            if (extra != 0) {
+                lc -= base_length[code];
+                send_bits(s, lc, extra);       /* send the extra length bits */
+            }
+            dist--; /* dist is now the match distance - 1 */
+            code = d_code(dist);
+            Assert (code < D_CODES, "bad d_code");
+
+            send_code(s, code, dtree);       /* send the distance code */
+            extra = extra_dbits[code];
+            if (extra != 0) {
+                dist -= (unsigned)base_dist[code];
+                send_bits(s, dist, extra);   /* send the extra distance bits */
+            }
+        } /* literal or match pair ? */
+
+        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
+        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
+               "pendingBuf overflow");
+
+    } while (lx < s->last_lit);
+
+    send_code(s, END_BLOCK, ltree);
 }
 
 /* ===========================================================================
@@ -1139,32 +1122,32 @@ const ct_data *dtree; /* distance tree */
  * IN assertion: the fields Freq of dyn_ltree are set.
  */
 local int detect_data_type(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	/* black_mask is the bit mask of black-listed bytes
-	 * set bits 0..6, 14..25, and 28..31
-	 * 0xf3ffc07f = binary 11110011111111111100000001111111
-	 */
-	unsigned long black_mask = 0xf3ffc07fUL;
-	int n;
-
-	/* Check for non-textual ("black-listed") bytes. */
-	for (n = 0; n <= 31; n++, black_mask >>= 1)
-		if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
-			return Z_BINARY;
-
-	/* Check for textual ("white-listed") bytes. */
-	if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
-		|| s->dyn_ltree[13].Freq != 0)
-		return Z_TEXT;
-	for (n = 32; n < LITERALS; n++)
-		if (s->dyn_ltree[n].Freq != 0)
-			return Z_TEXT;
-
-	/* There are no "black-listed" or "white-listed" bytes:
-	 * this stream either is empty or has tolerated ("gray-listed") bytes only.
-	 */
-	return Z_BINARY;
+    /* black_mask is the bit mask of black-listed bytes
+     * set bits 0..6, 14..25, and 28..31
+     * 0xf3ffc07f = binary 11110011111111111100000001111111
+     */
+    unsigned long black_mask = 0xf3ffc07fUL;
+    int n;
+
+    /* Check for non-textual ("black-listed") bytes. */
+    for (n = 0; n <= 31; n++, black_mask >>= 1)
+        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
+            return Z_BINARY;
+
+    /* Check for textual ("white-listed") bytes. */
+    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
+            || s->dyn_ltree[13].Freq != 0)
+        return Z_TEXT;
+    for (n = 32; n < LITERALS; n++)
+        if (s->dyn_ltree[n].Freq != 0)
+            return Z_TEXT;
+
+    /* There are no "black-listed" or "white-listed" bytes:
+     * this stream either is empty or has tolerated ("gray-listed") bytes only.
+     */
+    return Z_BINARY;
 }
 
 /* ===========================================================================
@@ -1173,77 +1156,48 @@ deflate_state *s;
  * IN assertion: 1 <= len <= 15
  */
 local unsigned bi_reverse(code, len)
-unsigned code; /* the value to invert */
-int len;       /* its bit length */
+    unsigned code; /* the value to invert */
+    int len;       /* its bit length */
 {
-	register unsigned res = 0;
-	do {
-		res |= code & 1;
-		code >>= 1, res <<= 1;
-	} while (--len > 0);
-	return res >> 1;
+    register unsigned res = 0;
+    do {
+        res |= code & 1;
+        code >>= 1, res <<= 1;
+    } while (--len > 0);
+    return res >> 1;
 }
 
 /* ===========================================================================
  * Flush the bit buffer, keeping at most 7 bits in it.
  */
 local void bi_flush(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	if (s->bi_valid == 16) {
-		put_short(s, s->bi_buf);
-		s->bi_buf = 0;
-		s->bi_valid = 0;
-	}
-	else if (s->bi_valid >= 8) {
-		put_byte(s, (Byte)s->bi_buf);
-		s->bi_buf >>= 8;
-		s->bi_valid -= 8;
-	}
+    if (s->bi_valid == 16) {
+        put_short(s, s->bi_buf);
+        s->bi_buf = 0;
+        s->bi_valid = 0;
+    } else if (s->bi_valid >= 8) {
+        put_byte(s, (Byte)s->bi_buf);
+        s->bi_buf >>= 8;
+        s->bi_valid -= 8;
+    }
 }
 
 /* ===========================================================================
  * Flush the bit buffer and align the output on a byte boundary
  */
 local void bi_windup(s)
-deflate_state *s;
+    deflate_state *s;
 {
-	if (s->bi_valid > 8) {
-		put_short(s, s->bi_buf);
-	}
-	else if (s->bi_valid > 0) {
-		put_byte(s, (Byte)s->bi_buf);
-	}
-	s->bi_buf = 0;
-	s->bi_valid = 0;
-	#ifdef DEBUG
-	s->bits_sent = (s->bits_sent + 7) & ~7;
-	#endif
-}
-
-/* ===========================================================================
- * Copy a stored block, storing first the length and its
- * one's complement if requested.
- */
-local void copy_block(s, buf, len, header)
-deflate_state *s;
-charf    *buf;    /* the input data */
-unsigned len;     /* its length */
-int      header;  /* true if block header must be written */
-{
-	bi_windup(s);        /* align on byte boundary */
-
-	if (header) {
-		put_short(s, (ush)len);
-		put_short(s, (ush)~len);
-		#ifdef DEBUG
-		s->bits_sent += 2 * 16;
-		#endif
-	}
-	#ifdef DEBUG
-	s->bits_sent += (ulg)len << 3;
-	#endif
-	while (len--) {
-		put_byte(s, *buf++);
-	}
+    if (s->bi_valid > 8) {
+        put_short(s, s->bi_buf);
+    } else if (s->bi_valid > 0) {
+        put_byte(s, (Byte)s->bi_buf);
+    }
+    s->bi_buf = 0;
+    s->bi_valid = 0;
+#ifdef ZLIB_DEBUG
+    s->bits_sent = (s->bits_sent+7) & ~7;
+#endif
 }
-- 
cgit v1.2.3