From d2d798d0f11abcbf141db69869e76e8d123ec1eb Mon Sep 17 00:00:00 2001 From: Kirill Volinsky Date: Sat, 13 Dec 2014 20:28:24 +0000 Subject: FreeImage updated to 3.16 git-svn-id: http://svn.miranda-ng.org/main/trunk@11379 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c --- plugins/AdvaImg/src/LibJPEG/README | 81 +++- plugins/AdvaImg/src/LibJPEG/ansi2knr.c | 739 ++++++++++++++++++++++++++++++ plugins/AdvaImg/src/LibJPEG/change.log | 27 ++ plugins/AdvaImg/src/LibJPEG/cjpeg.c | 12 + plugins/AdvaImg/src/LibJPEG/filelist.txt | 3 +- plugins/AdvaImg/src/LibJPEG/install.txt | 68 +-- plugins/AdvaImg/src/LibJPEG/jcapistd.c | 3 +- plugins/AdvaImg/src/LibJPEG/jcarith.c | 19 +- plugins/AdvaImg/src/LibJPEG/jccolor.c | 133 ++++-- plugins/AdvaImg/src/LibJPEG/jcdctmgr.c | 79 ++-- plugins/AdvaImg/src/LibJPEG/jchuff.c | 119 +++-- plugins/AdvaImg/src/LibJPEG/jcinit.c | 19 + plugins/AdvaImg/src/LibJPEG/jcmarker.c | 6 +- plugins/AdvaImg/src/LibJPEG/jcmaster.c | 36 +- plugins/AdvaImg/src/LibJPEG/jconfig.h | 130 +++++- plugins/AdvaImg/src/LibJPEG/jconfig.txt | 9 +- plugins/AdvaImg/src/LibJPEG/jcparam.c | 110 +++-- plugins/AdvaImg/src/LibJPEG/jctrans.c | 6 +- plugins/AdvaImg/src/LibJPEG/jdapimin.c | 43 +- plugins/AdvaImg/src/LibJPEG/jdapistd.c | 1 + plugins/AdvaImg/src/LibJPEG/jdarith.c | 16 +- plugins/AdvaImg/src/LibJPEG/jdcolor.c | 226 +++++++-- plugins/AdvaImg/src/LibJPEG/jddctmgr.c | 4 +- plugins/AdvaImg/src/LibJPEG/jdhuff.c | 38 +- plugins/AdvaImg/src/LibJPEG/jdinput.c | 11 +- plugins/AdvaImg/src/LibJPEG/jdmarker.c | 16 +- plugins/AdvaImg/src/LibJPEG/jdmaster.c | 18 +- plugins/AdvaImg/src/LibJPEG/jdmerge.c | 17 +- plugins/AdvaImg/src/LibJPEG/jfdctint.c | 622 +++++++++++++------------ plugins/AdvaImg/src/LibJPEG/jidctint.c | 356 +++++++------- plugins/AdvaImg/src/LibJPEG/jmorecfg.h | 74 ++- plugins/AdvaImg/src/LibJPEG/jpegint.h | 6 +- plugins/AdvaImg/src/LibJPEG/jpeglib.h | 31 +- plugins/AdvaImg/src/LibJPEG/jpegtran.c | 23 +- plugins/AdvaImg/src/LibJPEG/jversion.h | 6 +- plugins/AdvaImg/src/LibJPEG/libjpeg.txt | 129 +++--- plugins/AdvaImg/src/LibJPEG/structure.txt | 33 +- plugins/AdvaImg/src/LibJPEG/transupp.c | 230 ++++++++-- plugins/AdvaImg/src/LibJPEG/transupp.h | 22 +- plugins/AdvaImg/src/LibJPEG/usage.txt | 47 +- 40 files changed, 2596 insertions(+), 972 deletions(-) create mode 100644 plugins/AdvaImg/src/LibJPEG/ansi2knr.c (limited to 'plugins/AdvaImg/src/LibJPEG') diff --git a/plugins/AdvaImg/src/LibJPEG/README b/plugins/AdvaImg/src/LibJPEG/README index 4f2645397a..a28ead34ee 100644 --- a/plugins/AdvaImg/src/LibJPEG/README +++ b/plugins/AdvaImg/src/LibJPEG/README @@ -1,8 +1,8 @@ The Independent JPEG Group's JPEG software ========================================== -README for release 9 of 13-Jan-2013 -=================================== +README for release 9a of 19-Jan-2014 +==================================== This distribution contains the ninth public release of the Independent JPEG Group's free JPEG software. You are welcome to redistribute this software and @@ -14,7 +14,7 @@ Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, and other members of the Independent JPEG Group. IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee -(also known as JPEG, together with ITU-T SG16). +(previously known as JPEG, together with ITU-T SG16). DOCUMENTATION ROADMAP @@ -115,7 +115,7 @@ with respect to this software, its quality, accuracy, merchantability, or fitness for a particular purpose. This software is provided "AS IS", and you, its user, assume the entire risk as to its quality and accuracy. -This software is copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding. +This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding. All Rights Reserved except as specified below. Permission is hereby granted to use, copy, modify, and distribute this @@ -153,11 +153,11 @@ ltmain.sh). Another support script, install-sh, is copyright by X Consortium but is also freely distributable. The IJG distribution formerly included code to read and write GIF files. -To avoid entanglement with the Unisys LZW patent, GIF reading support has -been removed altogether, and the GIF writer has been simplified to produce -"uncompressed GIFs". This technique does not use the LZW algorithm; the -resulting GIF files are larger than usual, but are readable by all standard -GIF decoders. +To avoid entanglement with the Unisys LZW patent (now expired), GIF reading +support has been removed altogether, and the GIF writer has been simplified +to produce "uncompressed GIFs". This technique does not use the LZW +algorithm; the resulting GIF files are larger than usual, but are readable +by all standard GIF decoders. We are required to state that "The Graphics Interchange Format(c) is the Copyright property of @@ -252,8 +252,8 @@ ARCHIVE LOCATIONS The "official" archive site for this software is www.ijg.org. The most recent released version can always be found there in directory "files". This particular version will be archived as -http://www.ijg.org/files/jpegsrc.v9.tar.gz, and in Windows-compatible -"zip" archive format as http://www.ijg.org/files/jpegsr9.zip. +http://www.ijg.org/files/jpegsrc.v9a.tar.gz, and in Windows-compatible +"zip" archive format as http://www.ijg.org/files/jpegsr9a.zip. The JPEG FAQ (Frequently Asked Questions) article is a source of some general information about JPEG. @@ -280,7 +280,7 @@ Thank to Thomas Wiegand and Gary Sullivan for inviting me to the Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland. Thank to Thomas Richter and Daniel Lee for inviting me to the -ISO/IEC JTC1/SC29/WG1 (also known as JPEG, together with ITU-T SG16) +ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16) meeting in Berlin, Germany. Thank to John Korejwa and Massimo Ballerini for inviting me to @@ -306,10 +306,10 @@ design and development of this singular software package. FILE FORMAT WARS ================ -The ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together -with ITU-T SG16) currently promotes different formats containing the name -"JPEG" which is misleading because these formats are incompatible with -original DCT-based JPEG and are based on faulty technologies. +The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG, +together with ITU-T SG16) currently promotes different formats containing +the name "JPEG" which is misleading because these formats are incompatible +with original DCT-based JPEG and are based on faulty technologies. IJG therefore does not and will not support such momentary mistakes (see REFERENCES). There exist also distributions under the name "OpenJPEG" promoting such @@ -322,9 +322,13 @@ Don't use an incompatible file format! (In any case, our decoder will remain capable of reading existing JPEG image files indefinitely.) -Furthermore, the ISO committee pretends to be "responsible for the popular -JPEG" in their public reports which is not true because they don't respond to -actual requirements for the maintenance of the original JPEG specification. +The ISO committee pretends to be "responsible for the popular JPEG" in their +public reports which is not true because they don't respond to actual +requirements for the maintenance of the original JPEG specification. +Furthermore, the ISO committee pretends to "ensure interoperability" with +their standards which is not true because their "standards" support only +application-specific and proprietary use cases and contain mathematically +incorrect code. There are currently different distributions in circulation containing the name "libjpeg" which is misleading because they don't have the features and @@ -332,19 +336,46 @@ are incompatible with formats supported by actual IJG libjpeg distributions. One of those fakes is released by members of the ISO committee and just uses the name of libjpeg for misdirection of people, similar to the abuse of the name JPEG as described above, while having nothing in common with actual IJG -libjpeg distributions. -The other one claims to be a "derivative" or "fork" of the original libjpeg -and violates the license conditions as described under LEGAL ISSUES above. -We have no sympathy for the release of misleading and illegal distributions -derived from obsolete code bases. +libjpeg distributions and containing mathematically incorrect code. +The other one claims to be a "derivative" or "fork" of the original libjpeg, +but violates the license conditions as described under LEGAL ISSUES above +and violates basic C programming properties. +We have no sympathy for the release of misleading, incorrect and illegal +distributions derived from obsolete code bases. Don't use an obsolete code base! +According to the UCC (Uniform Commercial Code) law, IJG has the lawful and +legal right to foreclose on certain standardization bodies and other +institutions or corporations that knowingly perform substantial and +systematic deceptive acts and practices, fraud, theft, and damaging of the +value of the people of this planet without their knowing, willing and +intentional consent. +The titles, ownership, and rights of these institutions and all their assets +are now duly secured and held in trust for the free people of this planet. +People of the planet, on every country, may have a financial interest in +the assets of these former principals, agents, and beneficiaries of the +foreclosed institutions and corporations. +IJG asserts what is: that each man, woman, and child has unalienable value +and rights granted and deposited in them by the Creator and not any one of +the people is subordinate to any artificial principality, corporate fiction +or the special interest of another without their appropriate knowing, +willing and intentional consent made by contract or accommodation agreement. +IJG expresses that which already was. +The people have already determined and demanded that public administration +entities, national governments, and their supporting judicial systems must +be fully transparent, accountable, and liable. +IJG has secured the value for all concerned free people of the planet. + +A partial list of foreclosed institutions and corporations ("Hall of Shame") +is currently prepared and will be published later. + TO DO ===== Version 9 is the second release of a new generation JPEG standard -to overcome the limitations of the original JPEG specification. +to overcome the limitations of the original JPEG specification, +and is the first true source reference JPEG codec. More features are being prepared for coming releases... Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org. diff --git a/plugins/AdvaImg/src/LibJPEG/ansi2knr.c b/plugins/AdvaImg/src/LibJPEG/ansi2knr.c new file mode 100644 index 0000000000..dcfb5d9255 --- /dev/null +++ b/plugins/AdvaImg/src/LibJPEG/ansi2knr.c @@ -0,0 +1,739 @@ +/* Copyright (C) 1989, 2000 Aladdin Enterprises. All rights reserved. */ + +/*$Id: ansi2knr.c,v 1.6 2012/01/29 12:23:24 drolon Exp $*/ +/* Convert ANSI C function definitions to K&R ("traditional C") syntax */ + +/* +ansi2knr is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY. No author or distributor accepts responsibility to anyone for the +consequences of using it or for whether it serves any particular purpose or +works at all, unless he says so in writing. Refer to the GNU General Public +License (the "GPL") for full details. + +Everyone is granted permission to copy, modify and redistribute ansi2knr, +but only under the conditions described in the GPL. A copy of this license +is supposed to have been given to you along with ansi2knr so you can know +your rights and responsibilities. It should be in a file named COPYLEFT, +or, if there is no file named COPYLEFT, a file named COPYING. Among other +things, the copyright notice and this notice must be preserved on all +copies. + +We explicitly state here what we believe is already implied by the GPL: if +the ansi2knr program is distributed as a separate set of sources and a +separate executable file which are aggregated on a storage medium together +with another program, this in itself does not bring the other program under +the GPL, nor does the mere fact that such a program or the procedures for +constructing it invoke the ansi2knr executable bring any other part of the +program under the GPL. +*/ + +/* + * Usage: + ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]] + * --filename provides the file name for the #line directive in the output, + * overriding input_file (if present). + * If no input_file is supplied, input is read from stdin. + * If no output_file is supplied, output goes to stdout. + * There are no error messages. + * + * ansi2knr recognizes function definitions by seeing a non-keyword + * identifier at the left margin, followed by a left parenthesis, with a + * right parenthesis as the last character on the line, and with a left + * brace as the first token on the following line (ignoring possible + * intervening comments and/or preprocessor directives), except that a line + * consisting of only + * identifier1(identifier2) + * will not be considered a function definition unless identifier2 is + * the word "void", and a line consisting of + * identifier1(identifier2, <>) + * will not be considered a function definition. + * ansi2knr will recognize a multi-line header provided that no intervening + * line ends with a left or right brace or a semicolon. These algorithms + * ignore whitespace, comments, and preprocessor directives, except that + * the function name must be the first thing on the line. The following + * constructs will confuse it: + * - Any other construct that starts at the left margin and + * follows the above syntax (such as a macro or function call). + * - Some macros that tinker with the syntax of function headers. + */ + +/* + * The original and principal author of ansi2knr is L. Peter Deutsch + * . Other authors are noted in the change history + * that follows (in reverse chronological order): + + lpd 2000-04-12 backs out Eggert's changes because of bugs: + - concatlits didn't declare the type of its bufend argument; + - concatlits didn't recognize when it was inside a comment; + - scanstring could scan backward past the beginning of the string; when + - the check for \ + newline in scanstring was unnecessary. + + 2000-03-05 Paul Eggert + + Add support for concatenated string literals. + * ansi2knr.c (concatlits): New decl. + (main): Invoke concatlits to concatenate string literals. + (scanstring): Handle backslash-newline correctly. Work with + character constants. Fix bug when scanning backwards through + backslash-quote. Check for unterminated strings. + (convert1): Parse character constants, too. + (appendline, concatlits): New functions. + * ansi2knr.1: Document this. + + lpd 1999-08-17 added code to allow preprocessor directives + wherever comments are allowed + lpd 1999-04-12 added minor fixes from Pavel Roskin + for clean compilation with + gcc -W -Wall + lpd 1999-03-22 added hack to recognize lines consisting of + identifier1(identifier2, xxx) as *not* being procedures + lpd 1999-02-03 made indentation of preprocessor commands consistent + lpd 1999-01-28 fixed two bugs: a '/' in an argument list caused an + endless loop; quoted strings within an argument list + confused the parser + lpd 1999-01-24 added a check for write errors on the output, + suggested by Jim Meyering + lpd 1998-11-09 added further hack to recognize identifier(void) + as being a procedure + lpd 1998-10-23 added hack to recognize lines consisting of + identifier1(identifier2) as *not* being procedures + lpd 1997-12-08 made input_file optional; only closes input and/or + output file if not stdin or stdout respectively; prints + usage message on stderr rather than stdout; adds + --filename switch (changes suggested by + ) + lpd 1996-01-21 added code to cope with not HAVE_CONFIG_H and with + compilers that don't understand void, as suggested by + Tom Lane + lpd 1996-01-15 changed to require that the first non-comment token + on the line following a function header be a left brace, + to reduce sensitivity to macros, as suggested by Tom Lane + + lpd 1995-06-22 removed #ifndefs whose sole purpose was to define + undefined preprocessor symbols as 0; changed all #ifdefs + for configuration symbols to #ifs + lpd 1995-04-05 changed copyright notice to make it clear that + including ansi2knr in a program does not bring the entire + program under the GPL + lpd 1994-12-18 added conditionals for systems where ctype macros + don't handle 8-bit characters properly, suggested by + Francois Pinard ; + removed --varargs switch (this is now the default) + lpd 1994-10-10 removed CONFIG_BROKETS conditional + lpd 1994-07-16 added some conditionals to help GNU `configure', + suggested by Francois Pinard ; + properly erase prototype args in function parameters, + contributed by Jim Avera ; + correct error in writeblanks (it shouldn't erase EOLs) + lpd 1989-xx-xx original version + */ + +/* Most of the conditionals here are to make ansi2knr work with */ +/* or without the GNU configure machinery. */ + +#if HAVE_CONFIG_H +# include +#endif + +#include +#include + +#if HAVE_CONFIG_H + +/* + For properly autoconfiguring ansi2knr, use AC_CONFIG_HEADER(config.h). + This will define HAVE_CONFIG_H and so, activate the following lines. + */ + +# if STDC_HEADERS || HAVE_STRING_H +# include +# else +# include +# endif + +#else /* not HAVE_CONFIG_H */ + +/* Otherwise do it the hard way */ + +# ifdef BSD +# include +# else +# ifdef VMS + extern int strlen(), strncmp(); +# else +# include +# endif +# endif + +#endif /* not HAVE_CONFIG_H */ + +#if STDC_HEADERS +# include +#else +/* + malloc and free should be declared in stdlib.h, + but if you've got a K&R compiler, they probably aren't. + */ +# ifdef MSDOS +# include +# else +# ifdef VMS + extern char *malloc(); + extern void free(); +# else + extern char *malloc(); + extern int free(); +# endif +# endif + +#endif + +/* Define NULL (for *very* old compilers). */ +#ifndef NULL +# define NULL (0) +#endif + +/* + * The ctype macros don't always handle 8-bit characters correctly. + * Compensate for this here. + */ +#ifdef isascii +# undef HAVE_ISASCII /* just in case */ +# define HAVE_ISASCII 1 +#else +#endif +#if STDC_HEADERS || !HAVE_ISASCII +# define is_ascii(c) 1 +#else +# define is_ascii(c) isascii(c) +#endif + +#define is_space(c) (is_ascii(c) && isspace(c)) +#define is_alpha(c) (is_ascii(c) && isalpha(c)) +#define is_alnum(c) (is_ascii(c) && isalnum(c)) + +/* Scanning macros */ +#define isidchar(ch) (is_alnum(ch) || (ch) == '_') +#define isidfirstchar(ch) (is_alpha(ch) || (ch) == '_') + +/* Forward references */ +char *ppdirforward(); +char *ppdirbackward(); +char *skipspace(); +char *scanstring(); +int writeblanks(); +int test1(); +int convert1(); + +/* The main program */ +int +main(argc, argv) + int argc; + char *argv[]; +{ FILE *in = stdin; + FILE *out = stdout; + char *filename = 0; + char *program_name = argv[0]; + char *output_name = 0; +#define bufsize 5000 /* arbitrary size */ + char *buf; + char *line; + char *more; + char *usage = + "Usage: ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]]\n"; + /* + * In previous versions, ansi2knr recognized a --varargs switch. + * If this switch was supplied, ansi2knr would attempt to convert + * a ... argument to va_alist and va_dcl; if this switch was not + * supplied, ansi2knr would simply drop any such arguments. + * Now, ansi2knr always does this conversion, and we only + * check for this switch for backward compatibility. + */ + int convert_varargs = 1; + int output_error; + + while ( argc > 1 && argv[1][0] == '-' ) { + if ( !strcmp(argv[1], "--varargs") ) { + convert_varargs = 1; + argc--; + argv++; + continue; + } + if ( !strcmp(argv[1], "--filename") && argc > 2 ) { + filename = argv[2]; + argc -= 2; + argv += 2; + continue; + } + fprintf(stderr, "%s: Unrecognized switch: %s\n", program_name, + argv[1]); + fprintf(stderr, usage); + exit(1); + } + switch ( argc ) + { + default: + fprintf(stderr, usage); + exit(0); + case 3: + output_name = argv[2]; + out = fopen(output_name, "w"); + if ( out == NULL ) { + fprintf(stderr, "%s: Cannot open output file %s\n", + program_name, output_name); + exit(1); + } + /* falls through */ + case 2: + in = fopen(argv[1], "r"); + if ( in == NULL ) { + fprintf(stderr, "%s: Cannot open input file %s\n", + program_name, argv[1]); + exit(1); + } + if ( filename == 0 ) + filename = argv[1]; + /* falls through */ + case 1: + break; + } + if ( filename ) + fprintf(out, "#line 1 \"%s\"\n", filename); + buf = malloc(bufsize); + if ( buf == NULL ) + { + fprintf(stderr, "Unable to allocate read buffer!\n"); + exit(1); + } + line = buf; + while ( fgets(line, (unsigned)(buf + bufsize - line), in) != NULL ) + { +test: line += strlen(line); + switch ( test1(buf) ) + { + case 2: /* a function header */ + convert1(buf, out, 1, convert_varargs); + break; + case 1: /* a function */ + /* Check for a { at the start of the next line. */ + more = ++line; +f: if ( line >= buf + (bufsize - 1) ) /* overflow check */ + goto wl; + if ( fgets(line, (unsigned)(buf + bufsize - line), in) == NULL ) + goto wl; + switch ( *skipspace(ppdirforward(more), 1) ) + { + case '{': + /* Definitely a function header. */ + convert1(buf, out, 0, convert_varargs); + fputs(more, out); + break; + case 0: + /* The next line was blank or a comment: */ + /* keep scanning for a non-comment. */ + line += strlen(line); + goto f; + default: + /* buf isn't a function header, but */ + /* more might be. */ + fputs(buf, out); + strcpy(buf, more); + line = buf; + goto test; + } + break; + case -1: /* maybe the start of a function */ + if ( line != buf + (bufsize - 1) ) /* overflow check */ + continue; + /* falls through */ + default: /* not a function */ +wl: fputs(buf, out); + break; + } + line = buf; + } + if ( line != buf ) + fputs(buf, out); + free(buf); + if ( output_name ) { + output_error = ferror(out); + output_error |= fclose(out); + } else { /* out == stdout */ + fflush(out); + output_error = ferror(out); + } + if ( output_error ) { + fprintf(stderr, "%s: error writing to %s\n", program_name, + (output_name ? output_name : "stdout")); + exit(1); + } + if ( in != stdin ) + fclose(in); + return 0; +} + +/* + * Skip forward or backward over one or more preprocessor directives. + */ +char * +ppdirforward(p) + char *p; +{ + for (; *p == '#'; ++p) { + for (; *p != '\r' && *p != '\n'; ++p) + if (*p == 0) + return p; + if (*p == '\r' && p[1] == '\n') + ++p; + } + return p; +} +char * +ppdirbackward(p, limit) + char *p; + char *limit; +{ + char *np = p; + + for (;; p = --np) { + if (*np == '\n' && np[-1] == '\r') + --np; + for (; np > limit && np[-1] != '\r' && np[-1] != '\n'; --np) + if (np[-1] == 0) + return np; + if (*np != '#') + return p; + } +} + +/* + * Skip over whitespace, comments, and preprocessor directives, + * in either direction. + */ +char * +skipspace(p, dir) + char *p; + int dir; /* 1 for forward, -1 for backward */ +{ + for ( ; ; ) { + while ( is_space(*p) ) + p += dir; + if ( !(*p == '/' && p[dir] == '*') ) + break; + p += dir; p += dir; + while ( !(*p == '*' && p[dir] == '/') ) { + if ( *p == 0 ) + return p; /* multi-line comment?? */ + p += dir; + } + p += dir; p += dir; + } + return p; +} + +/* Scan over a quoted string, in either direction. */ +char * +scanstring(p, dir) + char *p; + int dir; +{ + for (p += dir; ; p += dir) + if (*p == '"' && p[-dir] != '\\') + return p + dir; +} + +/* + * Write blanks over part of a string. + * Don't overwrite end-of-line characters. + */ +int +writeblanks(start, end) + char *start; + char *end; +{ char *p; + for ( p = start; p < end; p++ ) + if ( *p != '\r' && *p != '\n' ) + *p = ' '; + return 0; +} + +/* + * Test whether the string in buf is a function definition. + * The string may contain and/or end with a newline. + * Return as follows: + * 0 - definitely not a function definition; + * 1 - definitely a function definition; + * 2 - definitely a function prototype (NOT USED); + * -1 - may be the beginning of a function definition, + * append another line and look again. + * The reason we don't attempt to convert function prototypes is that + * Ghostscript's declaration-generating macros look too much like + * prototypes, and confuse the algorithms. + */ +int +test1(buf) + char *buf; +{ char *p = buf; + char *bend; + char *endfn; + int contin; + + if ( !isidfirstchar(*p) ) + return 0; /* no name at left margin */ + bend = skipspace(ppdirbackward(buf + strlen(buf) - 1, buf), -1); + switch ( *bend ) + { + case ';': contin = 0 /*2*/; break; + case ')': contin = 1; break; + case '{': return 0; /* not a function */ + case '}': return 0; /* not a function */ + default: contin = -1; + } + while ( isidchar(*p) ) + p++; + endfn = p; + p = skipspace(p, 1); + if ( *p++ != '(' ) + return 0; /* not a function */ + p = skipspace(p, 1); + if ( *p == ')' ) + return 0; /* no parameters */ + /* Check that the apparent function name isn't a keyword. */ + /* We only need to check for keywords that could be followed */ + /* by a left parenthesis (which, unfortunately, is most of them). */ + { static char *words[] = + { "asm", "auto", "case", "char", "const", "double", + "extern", "float", "for", "if", "int", "long", + "register", "return", "short", "signed", "sizeof", + "static", "switch", "typedef", "unsigned", + "void", "volatile", "while", 0 + }; + char **key = words; + char *kp; + unsigned len = endfn - buf; + + while ( (kp = *key) != 0 ) + { if ( strlen(kp) == len && !strncmp(kp, buf, len) ) + return 0; /* name is a keyword */ + key++; + } + } + { + char *id = p; + int len; + /* + * Check for identifier1(identifier2) and not + * identifier1(void), or identifier1(identifier2, xxxx). + */ + + while ( isidchar(*p) ) + p++; + len = p - id; + p = skipspace(p, 1); + if (*p == ',' || + (*p == ')' && (len != 4 || strncmp(id, "void", 4))) + ) + return 0; /* not a function */ + } + /* + * If the last significant character was a ), we need to count + * parentheses, because it might be part of a formal parameter + * that is a procedure. + */ + if (contin > 0) { + int level = 0; + + for (p = skipspace(buf, 1); *p; p = skipspace(p + 1, 1)) + level += (*p == '(' ? 1 : *p == ')' ? -1 : 0); + if (level > 0) + contin = -1; + } + return contin; +} + +/* Convert a recognized function definition or header to K&R syntax. */ +int +convert1(buf, out, header, convert_varargs) + char *buf; + FILE *out; + int header; /* Boolean */ + int convert_varargs; /* Boolean */ +{ char *endfn; + char *p; + /* + * The breaks table contains pointers to the beginning and end + * of each argument. + */ + char **breaks; + unsigned num_breaks = 2; /* for testing */ + char **btop; + char **bp; + char **ap; + char *vararg = 0; + + /* Pre-ANSI implementations don't agree on whether strchr */ + /* is called strchr or index, so we open-code it here. */ + for ( endfn = buf; *(endfn++) != '('; ) + ; +top: p = endfn; + breaks = (char **)malloc(sizeof(char *) * num_breaks * 2); + if ( breaks == NULL ) + { /* Couldn't allocate break table, give up */ + fprintf(stderr, "Unable to allocate break table!\n"); + fputs(buf, out); + return -1; + } + btop = breaks + num_breaks * 2 - 2; + bp = breaks; + /* Parse the argument list */ + do + { int level = 0; + char *lp = NULL; + char *rp = NULL; + char *end = NULL; + + if ( bp >= btop ) + { /* Filled up break table. */ + /* Allocate a bigger one and start over. */ + free((char *)breaks); + num_breaks <<= 1; + goto top; + } + *bp++ = p; + /* Find the end of the argument */ + for ( ; end == NULL; p++ ) + { switch(*p) + { + case ',': + if ( !level ) end = p; + break; + case '(': + if ( !level ) lp = p; + level++; + break; + case ')': + if ( --level < 0 ) end = p; + else rp = p; + break; + case '/': + if (p[1] == '*') + p = skipspace(p, 1) - 1; + break; + case '"': + p = scanstring(p, 1) - 1; + break; + default: + ; + } + } + /* Erase any embedded prototype parameters. */ + if ( lp && rp ) + writeblanks(lp + 1, rp); + p--; /* back up over terminator */ + /* Find the name being declared. */ + /* This is complicated because of procedure and */ + /* array modifiers. */ + for ( ; ; ) + { p = skipspace(p - 1, -1); + switch ( *p ) + { + case ']': /* skip array dimension(s) */ + case ')': /* skip procedure args OR name */ + { int level = 1; + while ( level ) + switch ( *--p ) + { + case ']': case ')': + level++; + break; + case '[': case '(': + level--; + break; + case '/': + if (p > buf && p[-1] == '*') + p = skipspace(p, -1) + 1; + break; + case '"': + p = scanstring(p, -1) + 1; + break; + default: ; + } + } + if ( *p == '(' && *skipspace(p + 1, 1) == '*' ) + { /* We found the name being declared */ + while ( !isidfirstchar(*p) ) + p = skipspace(p, 1) + 1; + goto found; + } + break; + default: + goto found; + } + } +found: if ( *p == '.' && p[-1] == '.' && p[-2] == '.' ) + { if ( convert_varargs ) + { *bp++ = "va_alist"; + vararg = p-2; + } + else + { p++; + if ( bp == breaks + 1 ) /* sole argument */ + writeblanks(breaks[0], p); + else + writeblanks(bp[-1] - 1, p); + bp--; + } + } + else + { while ( isidchar(*p) ) p--; + *bp++ = p+1; + } + p = end; + } + while ( *p++ == ',' ); + *bp = p; + /* Make a special check for 'void' arglist */ + if ( bp == breaks+2 ) + { p = skipspace(breaks[0], 1); + if ( !strncmp(p, "void", 4) ) + { p = skipspace(p+4, 1); + if ( p == breaks[2] - 1 ) + { bp = breaks; /* yup, pretend arglist is empty */ + writeblanks(breaks[0], p + 1); + } + } + } + /* Put out the function name and left parenthesis. */ + p = buf; + while ( p != endfn ) putc(*p, out), p++; + /* Put out the declaration. */ + if ( header ) + { fputs(");", out); + for ( p = breaks[0]; *p; p++ ) + if ( *p == '\r' || *p == '\n' ) + putc(*p, out); + } + else + { for ( ap = breaks+1; ap < bp; ap += 2 ) + { p = *ap; + while ( isidchar(*p) ) + putc(*p, out), p++; + if ( ap < bp - 1 ) + fputs(", ", out); + } + fputs(") ", out); + /* Put out the argument declarations */ + for ( ap = breaks+2; ap <= bp; ap += 2 ) + (*ap)[-1] = ';'; + if ( vararg != 0 ) + { *vararg = 0; + fputs(breaks[0], out); /* any prior args */ + fputs("va_dcl", out); /* the final arg */ + fputs(bp[0], out); + } + else + fputs(breaks[0], out); + } + free((char *)breaks); + return 0; +} diff --git a/plugins/AdvaImg/src/LibJPEG/change.log b/plugins/AdvaImg/src/LibJPEG/change.log index be1b8870e7..26b628bb86 100644 --- a/plugins/AdvaImg/src/LibJPEG/change.log +++ b/plugins/AdvaImg/src/LibJPEG/change.log @@ -1,6 +1,33 @@ CHANGE LOG for Independent JPEG Group's JPEG software +Version 9a 19-Jan-2014 +----------------------- + +Add support for wide gamut color spaces (JFIF version 2). +Improve clarity and accuracy in color conversion modules. +Note: Requires rebuild of test images. + +Extend the bit depth support to all values from 8 to 12 +(BITS_IN_JSAMPLE configuration option in jmorecfg.h). +jpegtran now supports N bits sample data precision with all N from 8 to 12 +in a single instance. Thank to Roland Fassauer for inspiration. + +Try to resolve issues with new boolean type definition. +Thank also to v4hn for suggestion. + +Enable option to use default Huffman tables for lossless compression +(for hardware solution), and in this case improve lossless RGB compression +with reversible color transform. Thank to Benny Alexandar for hint. + +Extend the entropy decoding structure, so that extraneous bytes between +compressed scan data and following marker can be reported correctly. +Thank to Nigel Tao for hint. + +Add jpegtran -wipe option and extension for -crop. +Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion. + + Version 9 13-Jan-2013 ---------------------- diff --git a/plugins/AdvaImg/src/LibJPEG/cjpeg.c b/plugins/AdvaImg/src/LibJPEG/cjpeg.c index 6d6b772b7a..b9b65b8839 100644 --- a/plugins/AdvaImg/src/LibJPEG/cjpeg.c +++ b/plugins/AdvaImg/src/LibJPEG/cjpeg.c @@ -174,6 +174,7 @@ usage (void) #endif #if JPEG_LIB_VERSION_MAJOR >= 9 fprintf(stderr, " -rgb1 Create RGB JPEG file with reversible color transform\n"); + fprintf(stderr, " -bgycc Create big gamut YCC JPEG file\n"); #endif #ifdef DCT_ISLOW_SUPPORTED fprintf(stderr, " -dct int Use integer DCT method%s\n", @@ -323,6 +324,17 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv, #endif jpeg_set_colorspace(cinfo, JCS_RGB); + } else if (keymatch(arg, "bgycc", 5)) { + /* Force a big gamut YCC JPEG file to be generated. */ +#if JPEG_LIB_VERSION_MAJOR >= 9 && \ + (JPEG_LIB_VERSION_MAJOR > 9 || JPEG_LIB_VERSION_MINOR >= 1) + jpeg_set_colorspace(cinfo, JCS_BG_YCC); +#else + fprintf(stderr, "%s: sorry, BG_YCC colorspace not supported\n", + progname); + exit(EXIT_FAILURE); +#endif + } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; diff --git a/plugins/AdvaImg/src/LibJPEG/filelist.txt b/plugins/AdvaImg/src/LibJPEG/filelist.txt index a0761fae7d..62aba52552 100644 --- a/plugins/AdvaImg/src/LibJPEG/filelist.txt +++ b/plugins/AdvaImg/src/LibJPEG/filelist.txt @@ -1,6 +1,6 @@ IJG JPEG LIBRARY: FILE LIST -Copyright (C) 1994-2012, Thomas G. Lane, Guido Vollbeding. +Copyright (C) 1994-2013, Thomas G. Lane, Guido Vollbeding. This file is part of the Independent JPEG Group's software. For conditions of distribution and use, see the accompanying README file. @@ -198,6 +198,7 @@ config.sub depcomp missing ar-lib +compile install-sh Install shell script for those Unix systems lacking one. Makefile.in Makefile input for configure. Makefile.am Source file for use with Automake to generate Makefile.in. diff --git a/plugins/AdvaImg/src/LibJPEG/install.txt b/plugins/AdvaImg/src/LibJPEG/install.txt index d73a05761f..8e6b721ba5 100644 --- a/plugins/AdvaImg/src/LibJPEG/install.txt +++ b/plugins/AdvaImg/src/LibJPEG/install.txt @@ -1,6 +1,6 @@ INSTALLATION INSTRUCTIONS for the Independent JPEG Group's JPEG software -Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. +Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding. This file is part of the Independent JPEG Group's software. For conditions of distribution and use, see the accompanying README file. @@ -418,54 +418,58 @@ support as follows: the directory containing the URT "librle.a" file (typically the "lib" subdirectory of the URT distribution). -Support for 12-bit-deep pixel data: +Support for 9-bit to 12-bit deep pixel data: -The JPEG standard allows either 8-bit or 12-bit data precision. (For color, -this means 8 or 12 bits per channel, of course.) If you need to work with -deeper than 8-bit data, you can compile the IJG code for 12-bit operation. +The IJG code currently allows 8, 9, 10, 11, or 12 bits sample data precision. +(For color, this means 8 to 12 bits per channel, of course.) If you need to +work with deeper than 8-bit data, you can compile the IJG code for 9-bit to +12-bit operation. To do so: - 1. In jmorecfg.h, define BITS_IN_JSAMPLE as 12 rather than 8. + 1. In jmorecfg.h, define BITS_IN_JSAMPLE as 9, 10, 11, or 12 rather than 8. 2. In jconfig.h, undefine BMP_SUPPORTED, RLE_SUPPORTED, and TARGA_SUPPORTED, - because the code for those formats doesn't handle 12-bit data and won't - even compile. (The PPM code does work, as explained below. The GIF - code works too; it scales 8-bit GIF data to and from 12-bit depth - automatically.) + because the code for those formats doesn't handle deeper than 8-bit data + and won't even compile. (The PPM code does work, as explained below. + The GIF code works too; it scales 8-bit GIF data to and from 12-bit + depth automatically.) 3. Compile. Don't expect "make test" to pass, since the supplied test files are for 8-bit data. -Currently, 12-bit support does not work on 16-bit-int machines. +Currently, 9-bit to 12-bit support does not work on 16-bit-int machines. -Note that a 12-bit version will not read 8-bit JPEG files, nor vice versa; -so you'll want to keep around a regular 8-bit compilation as well. -(Run-time selection of data depth, to allow a single copy that does both, -is possible but would probably slow things down considerably; it's very low -on our to-do list.) +Run-time selection and conversion of data precision are currently not +supported and may be added later. +Exception: The transcoding part (jpegtran) supports all settings in a +single instance, since it operates on the level of DCT coefficients and +not sample values. -The PPM reader (rdppm.c) can read 12-bit data from either text-format or -binary-format PPM and PGM files. Binary-format PPM/PGM files which have a -maxval greater than 255 are assumed to use 2 bytes per sample, MSB first -(big-endian order). As of early 1995, 2-byte binary format is not +The PPM reader (rdppm.c) can read deeper than 8-bit data from either +text-format or binary-format PPM and PGM files. Binary-format PPM/PGM files +which have a maxval greater than 255 are assumed to use 2 bytes per sample, +MSB first (big-endian order). As of early 1995, 2-byte binary format is not officially supported by the PBMPLUS library, but it is expected that a future release of PBMPLUS will support it. Note that the PPM reader will read files of any maxval regardless of the BITS_IN_JSAMPLE setting; incoming -data is automatically rescaled to either maxval=255 or maxval=4095 as -appropriate for the cjpeg bit depth. +data is automatically rescaled to maxval=MAXJSAMPLE as appropriate for the +cjpeg bit depth. The PPM writer (wrppm.c) will normally write 2-byte binary PPM or PGM -format, maxval 4095, when compiled with BITS_IN_JSAMPLE=12. Since this +format, maxval=MAXJSAMPLE, when compiled with BITS_IN_JSAMPLE>8. Since this format is not yet widely supported, you can disable it by compiling wrppm.c with PPM_NORAWWORD defined; then the data is scaled down to 8 bits to make a standard 1-byte/sample PPM or PGM file. (Yes, this means still another copy of djpeg to keep around. But hopefully you won't need it for very long. Poskanzer's supposed to get that new PBMPLUS release out Real Soon Now.) -Of course, if you are working with 12-bit data, you probably have it stored -in some other, nonstandard format. In that case you'll probably want to -write your own I/O modules to read and write your format. +Of course, if you are working with 9-bit to 12-bit data, you probably have +it stored in some other, nonstandard format. In that case you'll probably +want to write your own I/O modules to read and write your format. -Note that a 12-bit version of cjpeg always runs in "-optimize" mode, in -order to generate valid Huffman tables. This is necessary because our -default Huffman tables only cover 8-bit data. +Note: +The standard Huffman tables are only valid for 8-bit data precision. If +you selected more than 8-bit data precision, cjpeg uses arithmetic coding +by default. The Huffman encoder normally uses entropy optimization to +compute usable tables for higher precision. Otherwise, you'll have to +supply different default Huffman tables. Removing code: @@ -859,6 +863,12 @@ add something like this to your jconfig.h file: #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif + #ifndef FALSE /* in case these macros already exist */ + #define FALSE 0 /* values of boolean */ + #endif + #ifndef TRUE + #define TRUE 1 + #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ (This is already in jconfig.vc, by the way.) diff --git a/plugins/AdvaImg/src/LibJPEG/jcapistd.c b/plugins/AdvaImg/src/LibJPEG/jcapistd.c index fed66caf17..8892bfaac8 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcapistd.c +++ b/plugins/AdvaImg/src/LibJPEG/jcapistd.c @@ -2,6 +2,7 @@ * jcapistd.c * * Copyright (C) 1994-1996, Thomas G. Lane. + * Modified 2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -145,7 +146,7 @@ jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, (*cinfo->master->pass_startup) (cinfo); /* Verify that at least one iMCU row has been passed. */ - lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; + lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; if (num_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); diff --git a/plugins/AdvaImg/src/LibJPEG/jcarith.c b/plugins/AdvaImg/src/LibJPEG/jcarith.c index 78edcd353c..3bc0a5b8db 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcarith.c +++ b/plugins/AdvaImg/src/LibJPEG/jcarith.c @@ -1,7 +1,7 @@ /* * jcarith.c * - * Developed 1997-2012 by Guido Vollbeding. + * Developed 1997-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -362,7 +362,6 @@ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - JBLOCKROW block; unsigned char *st; int blkn, ci, tbl; int v, v2, m; @@ -381,14 +380,13 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ - m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); + m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ @@ -453,11 +451,11 @@ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + const int * natural_order; JBLOCKROW block; unsigned char *st; int tbl, k, ke; int v, v2, m; - const int * natural_order; /* Emit restart marker if needed */ if (cinfo->restart_interval) { @@ -552,6 +550,8 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) /* * MCU encoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, + * although the spec is not very clear on the point. */ METHODDEF(boolean) @@ -593,11 +593,11 @@ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + const int * natural_order; JBLOCKROW block; unsigned char *st; int tbl, k, ke, kex; int v; - const int * natural_order; /* Emit restart marker if needed */ if (cinfo->restart_interval) { @@ -692,12 +692,13 @@ METHODDEF(boolean) encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; - jpeg_component_info * compptr; + const int * natural_order; JBLOCKROW block; unsigned char *st; - int blkn, ci, tbl, k, ke; + int tbl, k, ke; int v, v2, m; - const int * natural_order; + int blkn, ci; + jpeg_component_info * compptr; /* Emit restart marker if needed */ if (cinfo->restart_interval) { diff --git a/plugins/AdvaImg/src/LibJPEG/jccolor.c b/plugins/AdvaImg/src/LibJPEG/jccolor.c index daf66010df..aac5802e92 100644 --- a/plugins/AdvaImg/src/LibJPEG/jccolor.c +++ b/plugins/AdvaImg/src/LibJPEG/jccolor.c @@ -2,7 +2,7 @@ * jccolor.c * * Copyright (C) 1991-1996, Thomas G. Lane. - * Modified 2011-2012 by Guido Vollbeding. + * Modified 2011-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -29,13 +29,25 @@ typedef my_color_converter * my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* - * YCbCr is defined per CCIR 601-1, except that Cb and Cr are - * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. - * The conversion equations to be implemented are therefore - * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B - * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE - * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE - * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) + * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), + * previously known as Recommendation CCIR 601-1, except that Cb and Cr + * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. + * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. + * sYCC (standard luma-chroma-chroma color space with extended gamut) + * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. + * bg-sRGB and bg-sYCC (big gamut standard color spaces) + * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. + * Note that the derived conversion coefficients given in some of these + * documents are imprecise. The general conversion equations are + * Y = Kr * R + (1 - Kr - Kb) * G + Kb * B + * Cb = 0.5 * (B - Y) / (1 - Kb) + * Cr = 0.5 * (R - Y) / (1 - Kr) + * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 + * from the 1953 FCC NTSC primaries and CIE Illuminant C), + * the conversion equations to be implemented are therefore + * Y = 0.299 * R + 0.587 * G + 0.114 * B + * Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE + * Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) @@ -49,9 +61,9 @@ typedef my_color_converter * my_cconvert_ptr; * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); - * for 12-bit samples it is still acceptable. It's not very reasonable for - * 16-bit samples, but if you want lossless storage you shouldn't be changing - * colorspace anyway. + * for 9-bit to 12-bit samples it is still acceptable. It's not very + * reasonable for 16-bit samples, but if you want lossless storage you + * shouldn't be changing colorspace anyway. * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ @@ -96,21 +108,21 @@ rgb_ycc_start (j_compress_ptr cinfo) (TABLE_SIZE * SIZEOF(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { - rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; - rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; - rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; - rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; - rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; + rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i; + rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i; + rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; + rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.168735892)) * i; + rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.331264108)) * i; /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. * This ensures that the maximum output will round to MAXJSAMPLE * not MAXJSAMPLE+1, and thus that we don't have to range-limit. */ - rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; + rgb_ycc_tab[i+B_CB_OFF] = FIX(0.5) * i + CBCR_OFFSET + ONE_HALF-1; /* B=>Cb and R=>Cr tables are the same - rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; + rgb_ycc_tab[i+R_CR_OFF] = FIX(0.5) * i + CBCR_OFFSET + ONE_HALF-1; */ - rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; - rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; + rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.418687589)) * i; + rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.081312411)) * i; } } @@ -274,6 +286,9 @@ cmyk_ycck_convert (j_compress_ptr cinfo, * Convert some rows of samples to the JPEG colorspace. * [R,G,B] to [R-G,G,B-G] conversion with modulo calculation * (forward reversible color transform). + * This can be seen as an adaption of the general RGB->YCbCr + * conversion equation with Kr = Kb = 0, while replacing the + * normalization by modulo calculation. */ METHODDEF(void) @@ -312,7 +327,7 @@ rgb_rgb1_convert (j_compress_ptr cinfo, /* * Convert some rows of samples to the JPEG colorspace. * This version handles grayscale output with no conversion. - * The source can be either plain grayscale or YCbCr (since Y == gray). + * The source can be either plain grayscale or YCC (since Y == gray). */ METHODDEF(void) @@ -439,11 +454,13 @@ jinit_color_converter (j_compress_ptr cinfo) break; case JCS_RGB: + case JCS_BG_RGB: if (cinfo->input_components != RGB_PIXELSIZE) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_YCbCr: + case JCS_BG_YCC: if (cinfo->input_components != 3) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; @@ -460,8 +477,10 @@ jinit_color_converter (j_compress_ptr cinfo) break; } - /* Support color transform only for RGB colorspace */ - if (cinfo->color_transform && cinfo->jpeg_color_space != JCS_RGB) + /* Support color transform only for RGB colorspaces */ + if (cinfo->color_transform && + cinfo->jpeg_color_space != JCS_RGB && + cinfo->jpeg_color_space != JCS_BG_RGB) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); /* Check num_components, set conversion method based on requested space */ @@ -469,20 +488,26 @@ jinit_color_converter (j_compress_ptr cinfo) case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_GRAYSCALE || - cinfo->in_color_space == JCS_YCbCr) + switch (cinfo->in_color_space) { + case JCS_GRAYSCALE: + case JCS_YCbCr: + case JCS_BG_YCC: cconvert->pub.color_convert = grayscale_convert; - else if (cinfo->in_color_space == JCS_RGB) { + break; + case JCS_RGB: cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_gray_convert; - } else + break; + default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } break; case JCS_RGB: + case JCS_BG_RGB: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_RGB) { + if (cinfo->in_color_space == cinfo->jpeg_color_space) { switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_convert; @@ -492,7 +517,6 @@ jinit_color_converter (j_compress_ptr cinfo) break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; } } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); @@ -501,13 +525,48 @@ jinit_color_converter (j_compress_ptr cinfo) case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_RGB) { + switch (cinfo->in_color_space) { + case JCS_RGB: cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_ycc_convert; - } else if (cinfo->in_color_space == JCS_YCbCr) + break; + case JCS_YCbCr: cconvert->pub.color_convert = null_convert; - else + break; + default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } + break; + + case JCS_BG_YCC: + if (cinfo->num_components != 3) + ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); + switch (cinfo->in_color_space) { + case JCS_RGB: + /* For conversion from normal RGB input to BG_YCC representation, + * the Cb/Cr values are first computed as usual, and then + * quantized further after DCT processing by a factor of + * 2 in reference to the nominal quantization factor. + */ + /* need quantization scale by factor of 2 after DCT */ + cinfo->comp_info[1].component_needed = TRUE; + cinfo->comp_info[2].component_needed = TRUE; + /* compute normal YCC first */ + cconvert->pub.start_pass = rgb_ycc_start; + cconvert->pub.color_convert = rgb_ycc_convert; + break; + case JCS_YCbCr: + /* need quantization scale by factor of 2 after DCT */ + cinfo->comp_info[1].component_needed = TRUE; + cinfo->comp_info[2].component_needed = TRUE; + /*FALLTHROUGH*/ + case JCS_BG_YCC: + /* Pass through for BG_YCC input */ + cconvert->pub.color_convert = null_convert; + break; + default: + ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } break; case JCS_CMYK: @@ -522,13 +581,17 @@ jinit_color_converter (j_compress_ptr cinfo) case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); - if (cinfo->in_color_space == JCS_CMYK) { + switch (cinfo->in_color_space) { + case JCS_CMYK: cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = cmyk_ycck_convert; - } else if (cinfo->in_color_space == JCS_YCCK) + break; + case JCS_YCCK: cconvert->pub.color_convert = null_convert; - else + break; + default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } break; default: /* allow null conversion of JCS_UNKNOWN */ diff --git a/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c b/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c index 550b1a6e7c..9daea85f62 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c +++ b/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c @@ -2,6 +2,7 @@ * jcdctmgr.c * * Copyright (C) 1994-1996, Thomas G. Lane. + * Modified 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -25,22 +26,30 @@ typedef struct { /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; - /* The actual post-DCT divisors --- not identical to the quant table - * entries, because of scaling (especially for an unnormalized DCT). - * Each table is given in normal array order. - */ - DCTELEM * divisors[NUM_QUANT_TBLS]; - #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; - FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; #endif } my_fdct_controller; typedef my_fdct_controller * my_fdct_ptr; +/* The allocated post-DCT divisor tables -- big enough for any + * supported variant and not identical to the quant table entries, + * because of scaling (especially for an unnormalized DCT) -- + * are pointed to by dct_table in the per-component comp_info + * structures. Each table is given in normal array order. + */ + +typedef union { + DCTELEM int_array[DCTSIZE2]; +#ifdef DCT_FLOAT_SUPPORTED + FAST_FLOAT float_array[DCTSIZE2]; +#endif +} divisor_table; + + /* The current scaled-DCT routines require ISLOW-style divisor tables, * so be sure to compile that code if either ISLOW or SCALING is requested. */ @@ -71,7 +80,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; - DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; + DCTELEM * divisors = (DCTELEM *) compptr->dct_table; DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ JDIMENSION bi; @@ -134,7 +143,7 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; - FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; + FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ JDIMENSION bi; @@ -352,22 +361,17 @@ start_pass_fdctmgr (j_compress_ptr cinfo) cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; - /* Compute divisors for this quant table */ - /* We may do this more than once for same table, but it's not a big deal */ + /* Create divisor table from quant table */ switch (method) { #ifdef PROVIDE_ISLOW_TABLES case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ - if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(DCTELEM)); - } - dtbl = fdct->divisors[qtblno]; + dtbl = (DCTELEM *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { - dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; + dtbl[i] = + ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); } fdct->pub.forward_DCT[ci] = forward_DCT; break; @@ -395,17 +399,12 @@ start_pass_fdctmgr (j_compress_ptr cinfo) }; SHIFT_TEMPS - if (fdct->divisors[qtblno] == NULL) { - fdct->divisors[qtblno] = (DCTELEM *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(DCTELEM)); - } - dtbl = fdct->divisors[qtblno]; + dtbl = (DCTELEM *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { dtbl[i] = (DCTELEM) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), - CONST_BITS-3); + compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); } } fdct->pub.forward_DCT[ci] = forward_DCT; @@ -422,25 +421,20 @@ start_pass_fdctmgr (j_compress_ptr cinfo) * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ - FAST_FLOAT * fdtbl; + FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; - if (fdct->float_divisors[qtblno] == NULL) { - fdct->float_divisors[qtblno] = (FAST_FLOAT *) - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, - DCTSIZE2 * SIZEOF(FAST_FLOAT)); - } - fdtbl = fdct->float_divisors[qtblno]; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fdtbl[i] = (FAST_FLOAT) - (1.0 / (((double) qtbl->quantval[i] * - aanscalefactor[row] * aanscalefactor[col] * 8.0))); + (1.0 / ((double) qtbl->quantval[i] * + aanscalefactor[row] * aanscalefactor[col] * + (compptr->component_needed ? 16.0 : 8.0))); i++; } } @@ -464,19 +458,20 @@ GLOBAL(void) jinit_forward_dct (j_compress_ptr cinfo) { my_fdct_ptr fdct; - int i; + int ci; + jpeg_component_info *compptr; fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller)); - cinfo->fdct = (struct jpeg_forward_dct *) fdct; + cinfo->fdct = &fdct->pub; fdct->pub.start_pass = start_pass_fdctmgr; - /* Mark divisor tables unallocated */ - for (i = 0; i < NUM_QUANT_TBLS; i++) { - fdct->divisors[i] = NULL; -#ifdef DCT_FLOAT_SUPPORTED - fdct->float_divisors[i] = NULL; -#endif + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; + ci++, compptr++) { + /* Allocate a divisor table for each component */ + compptr->dct_table = + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(divisor_table)); } } diff --git a/plugins/AdvaImg/src/LibJPEG/jchuff.c b/plugins/AdvaImg/src/LibJPEG/jchuff.c index 4cbab438d5..92fd974caf 100644 --- a/plugins/AdvaImg/src/LibJPEG/jchuff.c +++ b/plugins/AdvaImg/src/LibJPEG/jchuff.c @@ -2,7 +2,7 @@ * jchuff.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2009 by Guido Vollbeding. + * Modified 2006-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -308,24 +308,27 @@ emit_bits_s (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = state->cur.put_bits; + register INT32 put_buffer; + register int put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); - put_buffer &= (((INT32) 1)<cur.put_bits; + put_buffer <<= 24 - put_bits; /* align incoming bits */ - put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ - + /* and merge with old buffer contents */ + put_buffer |= state->cur.put_buffer; + while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); - + emit_byte_s(state, c, return FALSE); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte_s(state, 0, return FALSE); @@ -347,8 +350,8 @@ emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ - register INT32 put_buffer = (INT32) code; - register int put_bits = entropy->saved.put_bits; + register INT32 put_buffer; + register int put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) @@ -357,9 +360,11 @@ emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ - put_buffer &= (((INT32) 1)<saved.put_bits; put_buffer <<= 24 - put_bits; /* align incoming bits */ @@ -543,10 +548,7 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; - int blkn, ci; - int Al = cinfo->Al; - JBLOCKROW block; - jpeg_component_info * compptr; + int blkn, ci, tbl; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; @@ -559,28 +561,27 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; - compptr = cinfo->cur_comp_info[ci]; + tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ - temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); + temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); /* DC differences are figured on the point-transformed values. */ - temp = temp2 - entropy->saved.last_dc_val[ci]; - entropy->saved.last_dc_val[ci] = temp2; + temp2 = temp - entropy->saved.last_dc_val[ci]; + entropy->saved.last_dc_val[ci] = temp; /* Encode the DC coefficient difference per section G.1.2.1 */ - temp2 = temp; + temp = temp2; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } - + /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { @@ -592,10 +593,10 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); - + /* Count/emit the Huffman-coded symbol for the number of bits */ - emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); - + emit_dc_symbol(entropy, tbl, nbits); + /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ @@ -628,12 +629,12 @@ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + const int * natural_order; + JBLOCKROW block; register int temp, temp2; register int nbits; register int r, k; int Se, Al; - const int * natural_order; - JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; @@ -731,18 +732,15 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) /* * MCU encoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. + * Note: we assume such scans can be multi-component, + * although the spec is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - register int temp; - int blkn; - int Al = cinfo->Al; - JBLOCKROW block; + int Al, blkn; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; @@ -752,13 +750,12 @@ encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) if (entropy->restarts_to_go == 0) emit_restart_e(entropy, entropy->next_restart_num); + Al = cinfo->Al; + /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - /* We simply emit the Al'th bit of the DC coefficient value. */ - temp = (*block)[0]; - emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); + emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; @@ -786,14 +783,14 @@ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + const int * natural_order; + JBLOCKROW block; register int temp; register int r, k; + int Se, Al; int EOB; char *BR_buffer; unsigned int BR; - int Se, Al; - const int * natural_order; - JBLOCKROW block; int absvalues[DCTSIZE2]; entropy->next_output_byte = cinfo->dest->next_output_byte; @@ -918,7 +915,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, { register int temp, temp2; register int nbits; - register int k, r, i; + register int r, k; int Se = state->cinfo->lim_Se; const int * natural_order = state->cinfo->natural_order; @@ -960,7 +957,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, r = 0; /* r = run length of zeros */ for (k = 1; k <= Se; k++) { - if ((temp = block[natural_order[k]]) == 0) { + if ((temp2 = block[natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ @@ -970,7 +967,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, r -= 16; } - temp2 = temp; + temp = temp2; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ @@ -986,8 +983,8 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); /* Emit Huffman symbol for run length / number of bits */ - i = (r << 4) + nbits; - if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) + temp = (r << 4) + nbits; + if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) return FALSE; /* Emit that number of bits of the value, if positive, */ @@ -1124,16 +1121,16 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, { register int temp; register int nbits; - register int k, r; + register int r, k; int Se = cinfo->lim_Se; const int * natural_order = cinfo->natural_order; - + /* Encode the DC coefficient difference per section F.1.2.1 */ - + temp = block[0] - last_dc_val; if (temp < 0) temp = -temp; - + /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { @@ -1148,11 +1145,11 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, /* Count the Huffman symbol for the number of bits */ dc_counts[nbits]++; - + /* Encode the AC coefficients per section F.1.2.2 */ - + r = 0; /* r = run length of zeros */ - + for (k = 1; k <= Se; k++) { if ((temp = block[natural_order[k]]) == 0) { r++; @@ -1162,11 +1159,11 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, ac_counts[0xF0]++; r -= 16; } - + /* Find the number of bits needed for the magnitude of the coefficient */ if (temp < 0) temp = -temp; - + /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) @@ -1174,10 +1171,10 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); - + /* Count Huffman symbol for run length / number of bits */ ac_counts[(r << 4) + nbits]++; - + r = 0; } } @@ -1562,7 +1559,7 @@ jinit_huff_encoder (j_compress_ptr cinfo) entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); - cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; + cinfo->entropy = &entropy->pub; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ diff --git a/plugins/AdvaImg/src/LibJPEG/jcinit.c b/plugins/AdvaImg/src/LibJPEG/jcinit.c index f7aa89fdb3..397b488aee 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcinit.c +++ b/plugins/AdvaImg/src/LibJPEG/jcinit.c @@ -2,6 +2,7 @@ * jcinit.c * * Copyright (C) 1991-1997, Thomas G. Lane. + * Modified 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -29,6 +30,24 @@ GLOBAL(void) jinit_compress_master (j_compress_ptr cinfo) { + long samplesperrow; + JDIMENSION jd_samplesperrow; + + /* For now, precision must match compiled-in value... */ + if (cinfo->data_precision != BITS_IN_JSAMPLE) + ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); + + /* Sanity check on image dimensions */ + if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || + cinfo->input_components <= 0) + ERREXIT(cinfo, JERR_EMPTY_IMAGE); + + /* Width of an input scanline must be representable as JDIMENSION. */ + samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; + jd_samplesperrow = (JDIMENSION) samplesperrow; + if ((long) jd_samplesperrow != samplesperrow) + ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); + /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, FALSE /* full compression */); diff --git a/plugins/AdvaImg/src/LibJPEG/jcmarker.c b/plugins/AdvaImg/src/LibJPEG/jcmarker.c index 84fd20db31..f2cd7a393a 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcmarker.c +++ b/plugins/AdvaImg/src/LibJPEG/jcmarker.c @@ -2,7 +2,7 @@ * jcmarker.c * * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2003-2012 by Guido Vollbeding. + * Modified 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -508,8 +508,8 @@ write_marker_byte (j_compress_ptr cinfo, int val) * Write datastream header. * This consists of an SOI and optional APPn markers. * We recommend use of the JFIF marker, but not the Adobe marker, - * when using YCbCr or grayscale data. The JFIF marker should NOT - * be used for any other JPEG colorspace. The Adobe marker is helpful + * when using YCbCr or grayscale data. The JFIF marker is also used + * for other standard JPEG colorspaces. The Adobe marker is helpful * to distinguish RGB, CMYK, and YCCK colorspaces. * Note that an application can write additional header markers after * jpeg_start_compress returns. diff --git a/plugins/AdvaImg/src/LibJPEG/jcmaster.c b/plugins/AdvaImg/src/LibJPEG/jcmaster.c index ef73194b8b..431744ebe1 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcmaster.c +++ b/plugins/AdvaImg/src/LibJPEG/jcmaster.c @@ -2,7 +2,7 @@ * jcmaster.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2003-2011 by Guido Vollbeding. + * Modified 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -222,8 +222,6 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only) { int ci, ssize; jpeg_component_info *compptr; - long samplesperrow; - JDIMENSION jd_samplesperrow; if (transcode_only) jpeg_calc_trans_dimensions(cinfo); @@ -251,7 +249,7 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only) /* Sanity check on image dimensions */ if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || - cinfo->num_components <= 0 || cinfo->input_components <= 0) + cinfo->num_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); /* Make sure image isn't bigger than I can handle */ @@ -259,14 +257,8 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only) (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); - /* Width of an input scanline must be representable as JDIMENSION. */ - samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; - jd_samplesperrow = (JDIMENSION) samplesperrow; - if ((long) jd_samplesperrow != samplesperrow) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - - /* For now, precision must match compiled-in value... */ - if (cinfo->data_precision != BITS_IN_JSAMPLE) + /* Only 8 to 12 bits data precision are supported for DCT based JPEG */ + if (cinfo->data_precision < 8 || cinfo->data_precision > 12) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ @@ -339,8 +331,10 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only) jdiv_round_up((long) cinfo->jpeg_height * (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), (long) (cinfo->max_v_samp_factor * cinfo->block_size)); - /* Mark component needed (this flag isn't actually used for compression) */ - compptr->component_needed = TRUE; + /* Don't need quantization scale after DCT, + * until color conversion says otherwise. + */ + compptr->component_needed = FALSE; } /* Compute number of fully interleaved MCU rows (number of times that @@ -811,7 +805,7 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master)); - cinfo->master = (struct jpeg_comp_master *) master; + cinfo->master = &master->pub; master->pub.prepare_for_pass = prepare_for_pass; master->pub.pass_startup = pass_startup; master->pub.finish_pass = finish_pass_master; @@ -833,10 +827,14 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) cinfo->num_scans = 1; } - if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) && - !cinfo->arith_code) /* TEMPORARY HACK ??? */ - /* assume default tables no good for progressive or downscale mode */ - cinfo->optimize_coding = TRUE; + if (cinfo->optimize_coding) + cinfo->arith_code = FALSE; /* disable arithmetic coding */ + else if (! cinfo->arith_code && + (cinfo->progressive_mode || + (cinfo->block_size > 1 && cinfo->block_size < DCTSIZE))) + /* TEMPORARY HACK ??? */ + /* assume default tables no good for progressive or reduced AC mode */ + cinfo->optimize_coding = TRUE; /* force Huffman optimization */ /* Initialize my private state */ if (transcode_only) { diff --git a/plugins/AdvaImg/src/LibJPEG/jconfig.h b/plugins/AdvaImg/src/LibJPEG/jconfig.h index 4a321ed276..3d952e2e72 100644 --- a/plugins/AdvaImg/src/LibJPEG/jconfig.h +++ b/plugins/AdvaImg/src/LibJPEG/jconfig.h @@ -1,45 +1,161 @@ -/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */ -/* see jconfig.txt for explanations */ +/* + * jconfig.txt + * + * Copyright (C) 1991-1994, Thomas G. Lane. + * Modified 2009-2013 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file documents the configuration options that are required to + * customize the JPEG software for a particular system. + * + * The actual configuration options for a particular installation are stored + * in jconfig.h. On many machines, jconfig.h can be generated automatically + * or copied from one of the "canned" jconfig files that we supply. But if + * you need to generate a jconfig.h file by hand, this file tells you how. + * + * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING. + * EDIT A COPY NAMED JCONFIG.H. + */ + +/* + * These symbols indicate the properties of your machine or compiler. + * #define the symbol if yes, #undef it if no. + */ + +/* Does your compiler support function prototypes? + * (If not, you also need to use ansi2knr, see install.txt) + */ #define HAVE_PROTOTYPES + +/* Does your compiler support the declaration "unsigned char" ? + * How about "unsigned short" ? + */ #define HAVE_UNSIGNED_CHAR #define HAVE_UNSIGNED_SHORT + +/* Define "void" as "char" if your compiler doesn't know about type void. + * NOTE: be sure to define void such that "void *" represents the most general + * pointer type, e.g., that returned by malloc(). + */ /* #define void char */ + +/* Define "const" as empty if your compiler doesn't know the "const" keyword. + */ /* #define const */ + +/* Define this if an ordinary "char" type is unsigned. + * If you're not sure, leaving it undefined will work at some cost in speed. + * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal. + */ #undef CHAR_IS_UNSIGNED + +/* Define this if your system has an ANSI-conforming file. + */ #define HAVE_STDDEF_H + +/* Define this if your system has an ANSI-conforming file. + */ #define HAVE_STDLIB_H + +/* Define this if your system does not have an ANSI/SysV , + * but does have a BSD-style . + */ #undef NEED_BSD_STRINGS + +/* Define this if your system does not provide typedef size_t in any of the + * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in + * instead. + */ #undef NEED_SYS_TYPES_H -#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ + +/* For 80x86 machines, you need to define NEED_FAR_POINTERS, + * unless you are using a large-data memory model or 80386 flat-memory mode. + * On less brain-damaged CPUs this symbol must not be defined. + * (Defining this symbol causes large data structures to be referenced through + * "far" pointers and to be allocated with a special version of malloc.) + */ +#undef NEED_FAR_POINTERS + +/* Define this if your linker needs global names to be unique in less + * than the first 15 characters. + */ #undef NEED_SHORT_EXTERNAL_NAMES + +/* Although a real ANSI C compiler can deal perfectly well with pointers to + * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI + * and pseudo-ANSI compilers get confused. To keep one of these bozos happy, + * define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you + * actually get "missing structure definition" warnings or errors while + * compiling the JPEG code. + */ #undef INCOMPLETE_TYPES_BROKEN -/* Define "boolean" as unsigned char, not enum, per Windows custom */ +/* Define "boolean" as unsigned char, not int, per Windows custom */ #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ +/* + * The following options affect code selection within the JPEG library, + * but they don't need to be visible to applications using the library. + * To minimize application namespace pollution, the symbols won't be + * defined unless JPEG_INTERNALS has been defined. + */ #ifdef JPEG_INTERNALS +/* Define this if your compiler implements ">>" on signed values as a logical + * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift, + * which is the normal and rational definition. + */ #undef RIGHT_SHIFT_IS_UNSIGNED + #endif /* JPEG_INTERNALS */ + +/* + * The remaining options do not affect the JPEG library proper, + * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c). + * Other applications can ignore these. + */ + #ifdef JPEG_CJPEG_DJPEG +/* These defines indicate which image (non-JPEG) file formats are allowed. */ + #define BMP_SUPPORTED /* BMP image file format */ #define GIF_SUPPORTED /* GIF image file format */ #define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ #undef RLE_SUPPORTED /* Utah RLE image file format */ #define TARGA_SUPPORTED /* Targa image file format */ -#define TWO_FILE_COMMANDLINE /* optional */ -#define USE_SETMODE /* Microsoft has setmode() */ +/* Define this if you want to name both input and output files on the command + * line, rather than using stdout and optionally stdin. You MUST do this if + * your system can't cope with binary I/O to stdin/stdout. See comments at + * head of cjpeg.c or djpeg.c. + */ +#undef TWO_FILE_COMMANDLINE + +/* Define this if your system needs explicit cleanup of temporary files. + * This is crucial under MS-DOS, where the temporary "files" may be areas + * of extended memory; on most other systems it's not as important. + */ #undef NEED_SIGNAL_CATCHER + +/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb"). + * This is necessary on systems that distinguish text files from binary files, + * and is harmless on most systems that don't. If you have one of the rare + * systems that complains about the "b" spec, define this symbol. + */ #undef DONT_USE_B_MODE -#undef PROGRESS_REPORT /* optional */ + +/* Define this if you want percent-done progress reports from cjpeg/djpeg. + */ +#undef PROGRESS_REPORT + #endif /* JPEG_CJPEG_DJPEG */ diff --git a/plugins/AdvaImg/src/LibJPEG/jconfig.txt b/plugins/AdvaImg/src/LibJPEG/jconfig.txt index 27086a3644..6c92b82d39 100644 --- a/plugins/AdvaImg/src/LibJPEG/jconfig.txt +++ b/plugins/AdvaImg/src/LibJPEG/jconfig.txt @@ -2,6 +2,7 @@ * jconfig.txt * * Copyright (C) 1991-1994, Thomas G. Lane. + * Modified 2009-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -91,12 +92,18 @@ */ #undef INCOMPLETE_TYPES_BROKEN -/* Define "boolean" as unsigned char, not int, on Windows systems. +/* Define "boolean" as unsigned char, not enum, on Windows systems. */ #ifdef _WIN32 #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif +#ifndef FALSE /* in case these macros already exist */ +#define FALSE 0 /* values of boolean */ +#endif +#ifndef TRUE +#define TRUE 1 +#endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ #endif diff --git a/plugins/AdvaImg/src/LibJPEG/jcparam.c b/plugins/AdvaImg/src/LibJPEG/jcparam.c index f440bc9d0e..1680e39257 100644 --- a/plugins/AdvaImg/src/LibJPEG/jcparam.c +++ b/plugins/AdvaImg/src/LibJPEG/jcparam.c @@ -2,7 +2,7 @@ * jcparam.c * * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2003-2012 by Guido Vollbeding. + * Modified 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -323,18 +323,17 @@ jpeg_set_defaults (j_compress_ptr cinfo) /* Expect normal source image, not raw downsampled data */ cinfo->raw_data_in = FALSE; - /* Use Huffman coding, not arithmetic coding, by default */ - cinfo->arith_code = FALSE; + /* The standard Huffman tables are only valid for 8-bit data precision. + * If the precision is higher, use arithmetic coding. + * (Alternatively, using Huffman coding would be possible with forcing + * optimization on so that usable tables will be computed, or by + * supplying default tables that are valid for the desired precision.) + * Otherwise, use Huffman coding by default. + */ + cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE; /* By default, don't do extra passes to optimize entropy coding */ cinfo->optimize_coding = FALSE; - /* The standard Huffman tables are only valid for 8-bit data precision. - * If the precision is higher, force optimization on so that usable - * tables will be computed. This test can be removed if default tables - * are supplied that are valid for the desired precision. - */ - if (cinfo->data_precision > 8) - cinfo->optimize_coding = TRUE; /* By default, use the simpler non-cosited sampling alignment */ cinfo->CCIR601_sampling = FALSE; @@ -360,6 +359,9 @@ jpeg_set_defaults (j_compress_ptr cinfo) * JFIF_minor_version to 2. We could probably get away with just defaulting * to 1.02, but there may still be some decoders in use that will complain * about that; saying 1.01 should minimize compatibility problems. + * + * For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be + * overridden by jpeg_set_colorspace and set to 2. */ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ cinfo->JFIF_minor_version = 1; @@ -384,6 +386,9 @@ GLOBAL(void) jpeg_default_colorspace (j_compress_ptr cinfo) { switch (cinfo->in_color_space) { + case JCS_UNKNOWN: + jpeg_set_colorspace(cinfo, JCS_UNKNOWN); + break; case JCS_GRAYSCALE: jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); break; @@ -399,8 +404,12 @@ jpeg_default_colorspace (j_compress_ptr cinfo) case JCS_YCCK: jpeg_set_colorspace(cinfo, JCS_YCCK); break; - case JCS_UNKNOWN: - jpeg_set_colorspace(cinfo, JCS_UNKNOWN); + case JCS_BG_RGB: + /* No translation for now -- conversion to BG_YCC not yet supportet */ + jpeg_set_colorspace(cinfo, JCS_BG_RGB); + break; + case JCS_BG_YCC: + jpeg_set_colorspace(cinfo, JCS_BG_YCC); break; default: ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); @@ -441,29 +450,40 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ switch (colorspace) { + case JCS_UNKNOWN: + cinfo->num_components = cinfo->input_components; + if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) + ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, + MAX_COMPONENTS); + for (ci = 0; ci < cinfo->num_components; ci++) { + SET_COMP(ci, ci, 1,1, 0, 0,0); + } + break; case JCS_GRAYSCALE: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 1; /* JFIF specifies component ID 1 */ - SET_COMP(0, 1, 1,1, 0, 0,0); + SET_COMP(0, 0x01, 1,1, 0, 0,0); break; case JCS_RGB: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ cinfo->num_components = 3; - SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); - SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, + SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); + SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); + SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); - SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); break; case JCS_YCbCr: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 3; /* JFIF specifies component IDs 1,2,3 */ /* We default to 2x2 subsamples of chrominance */ - SET_COMP(0, 1, 2,2, 0, 0,0); - SET_COMP(1, 2, 1,1, 1, 1,1); - SET_COMP(2, 3, 1,1, 1, 1,1); + SET_COMP(0, 0x01, 2,2, 0, 0,0); + SET_COMP(1, 0x02, 1,1, 1, 1,1); + SET_COMP(2, 0x03, 1,1, 1, 1,1); break; case JCS_CMYK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ @@ -476,19 +496,33 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) case JCS_YCCK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ cinfo->num_components = 4; - SET_COMP(0, 1, 2,2, 0, 0,0); - SET_COMP(1, 2, 1,1, 1, 1,1); - SET_COMP(2, 3, 1,1, 1, 1,1); - SET_COMP(3, 4, 2,2, 0, 0,0); + SET_COMP(0, 0x01, 2,2, 0, 0,0); + SET_COMP(1, 0x02, 1,1, 1, 1,1); + SET_COMP(2, 0x03, 1,1, 1, 1,1); + SET_COMP(3, 0x04, 2,2, 0, 0,0); break; - case JCS_UNKNOWN: - cinfo->num_components = cinfo->input_components; - if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) - ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, - MAX_COMPONENTS); - for (ci = 0; ci < cinfo->num_components; ci++) { - SET_COMP(ci, ci, 1,1, 0, 0,0); - } + case JCS_BG_RGB: + cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ + cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */ + cinfo->num_components = 3; + /* Add offset 0x20 to the normal R/G/B component IDs */ + SET_COMP(0, 0x72 /* 'r' */, 1,1, 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); + SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0); + SET_COMP(2, 0x62 /* 'b' */, 1,1, 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, + cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); + break; + case JCS_BG_YCC: + cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ + cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */ + cinfo->num_components = 3; + /* Add offset 0x20 to the normal Cb/Cr component IDs */ + /* We default to 2x2 subsamples of chrominance */ + SET_COMP(0, 0x01, 2,2, 0, 0,0); + SET_COMP(1, 0x22, 1,1, 1, 1,1); + SET_COMP(2, 0x23, 1,1, 1, 1,1); break; default: ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); @@ -572,8 +606,10 @@ jpeg_simple_progression (j_compress_ptr cinfo) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Figure space needed for script. Calculation must match code below! */ - if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { - /* Custom script for YCbCr color images. */ + if (ncomps == 3 && + (cinfo->jpeg_color_space == JCS_YCbCr || + cinfo->jpeg_color_space == JCS_BG_YCC)) { + /* Custom script for YCC color images. */ nscans = 10; } else { /* All-purpose script for other color spaces. */ @@ -588,7 +624,7 @@ jpeg_simple_progression (j_compress_ptr cinfo) * multiple compressions without changing the settings. To avoid a memory * leak if jpeg_simple_progression is called repeatedly for the same JPEG * object, we try to re-use previously allocated space, and we allocate - * enough space to handle YCbCr even if initially asked for grayscale. + * enough space to handle YCC even if initially asked for grayscale. */ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { cinfo->script_space_size = MAX(nscans, 10); @@ -600,8 +636,10 @@ jpeg_simple_progression (j_compress_ptr cinfo) cinfo->scan_info = scanptr; cinfo->num_scans = nscans; - if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { - /* Custom script for YCbCr color images. */ + if (ncomps == 3 && + (cinfo->jpeg_color_space == JCS_YCbCr || + cinfo->jpeg_color_space == JCS_BG_YCC)) { + /* Custom script for YCC color images. */ /* Initial DC scan */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); /* Initial AC scan: get some luma data out in a hurry */ diff --git a/plugins/AdvaImg/src/LibJPEG/jctrans.c b/plugins/AdvaImg/src/LibJPEG/jctrans.c index 9dc9e5f3a7..38f06e097c 100644 --- a/plugins/AdvaImg/src/LibJPEG/jctrans.c +++ b/plugins/AdvaImg/src/LibJPEG/jctrans.c @@ -2,7 +2,7 @@ * jctrans.c * * Copyright (C) 1995-1998, Thomas G. Lane. - * Modified 2000-2012 by Guido Vollbeding. + * Modified 2000-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -143,10 +143,10 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, * if the application chooses to copy JFIF 1.02 extension markers from * the source file, we need to copy the version to make sure we don't * emit a file that has 1.02 extensions but a claimed version of 1.01. - * We will *not*, however, copy version info from mislabeled "2.01" files. */ if (srcinfo->saw_JFIF_marker) { - if (srcinfo->JFIF_major_version == 1) { + if (srcinfo->JFIF_major_version == 1 || + srcinfo->JFIF_major_version == 2) { dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; } diff --git a/plugins/AdvaImg/src/LibJPEG/jdapimin.c b/plugins/AdvaImg/src/LibJPEG/jdapimin.c index 65f8a491bd..c1b88f75ea 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdapimin.c +++ b/plugins/AdvaImg/src/LibJPEG/jdapimin.c @@ -2,7 +2,7 @@ * jdapimin.c * * Copyright (C) 1994-1998, Thomas G. Lane. - * Modified 2009 by Guido Vollbeding. + * Modified 2009-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -114,8 +114,9 @@ jpeg_abort_decompress (j_decompress_ptr cinfo) LOCAL(void) default_decompress_parms (j_decompress_ptr cinfo) { + int cid0, cid1, cid2; + /* Guess the input colorspace, and set output colorspace accordingly. */ - /* (Wish JPEG committee had provided a real way to specify this...) */ /* Note application may override our guesses. */ switch (cinfo->num_components) { case 1: @@ -124,9 +125,22 @@ default_decompress_parms (j_decompress_ptr cinfo) break; case 3: - if (cinfo->saw_JFIF_marker) { - cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ - } else if (cinfo->saw_Adobe_marker) { + cid0 = cinfo->comp_info[0].component_id; + cid1 = cinfo->comp_info[1].component_id; + cid2 = cinfo->comp_info[2].component_id; + + /* First try to guess from the component IDs */ + if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03) + cinfo->jpeg_color_space = JCS_YCbCr; + else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23) + cinfo->jpeg_color_space = JCS_BG_YCC; + else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42) + cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ + else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62) + cinfo->jpeg_color_space = JCS_BG_RGB; /* ASCII 'r', 'g', 'b' */ + else if (cinfo->saw_JFIF_marker) + cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ + else if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_RGB; @@ -136,23 +150,12 @@ default_decompress_parms (j_decompress_ptr cinfo) break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); - cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ + cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ break; } } else { - /* Saw no special markers, try to guess from the component IDs */ - int cid0 = cinfo->comp_info[0].component_id; - int cid1 = cinfo->comp_info[1].component_id; - int cid2 = cinfo->comp_info[2].component_id; - - if (cid0 == 1 && cid1 == 2 && cid2 == 3) - cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ - else if (cid0 == 82 && cid1 == 71 && cid2 == 66) - cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ - else { - TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); - cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ - } + TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); + cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ } /* Always guess RGB is proper output colorspace. */ cinfo->out_color_space = JCS_RGB; @@ -169,7 +172,7 @@ default_decompress_parms (j_decompress_ptr cinfo) break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); - cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ + cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ break; } } else { diff --git a/plugins/AdvaImg/src/LibJPEG/jdapistd.c b/plugins/AdvaImg/src/LibJPEG/jdapistd.c index e81bd67dd7..6437dc562b 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdapistd.c +++ b/plugins/AdvaImg/src/LibJPEG/jdapistd.c @@ -2,6 +2,7 @@ * jdapistd.c * * Copyright (C) 1994-1996, Thomas G. Lane. + * Modified 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * diff --git a/plugins/AdvaImg/src/LibJPEG/jdarith.c b/plugins/AdvaImg/src/LibJPEG/jdarith.c index 5cd294260d..dac87a9948 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdarith.c +++ b/plugins/AdvaImg/src/LibJPEG/jdarith.c @@ -1,7 +1,7 @@ /* * jdarith.c * - * Developed 1997-2012 by Guido Vollbeding. + * Developed 1997-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -395,6 +395,8 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) /* * MCU decoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, + * although the spec is not very clear on the point. */ METHODDEF(boolean) @@ -743,6 +745,17 @@ start_pass (j_decompress_ptr cinfo) } +/* + * Finish up at the end of an arithmetic-compressed scan. + */ + +METHODDEF(void) +finish_pass (j_decompress_ptr cinfo) +{ + /* no work necessary here */ +} + + /* * Module initialization routine for arithmetic entropy decoding. */ @@ -758,6 +771,7 @@ jinit_arith_decoder (j_decompress_ptr cinfo) SIZEOF(arith_entropy_decoder)); cinfo->entropy = &entropy->pub; entropy->pub.start_pass = start_pass; + entropy->pub.finish_pass = finish_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { diff --git a/plugins/AdvaImg/src/LibJPEG/jdcolor.c b/plugins/AdvaImg/src/LibJPEG/jdcolor.c index fe3f1d8d1f..b135776567 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdcolor.c +++ b/plugins/AdvaImg/src/LibJPEG/jdcolor.c @@ -2,7 +2,7 @@ * jdcolor.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2011-2012 by Guido Vollbeding. + * Modified 2011-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -19,12 +19,15 @@ typedef struct { struct jpeg_color_deconverter pub; /* public fields */ - /* Private state for YCC->RGB conversion */ + /* Private state for YCbCr->RGB and BG_YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ + JSAMPLE * range_limit; /* pointer to normal sample range limit table, */ + /* or extended sample range limit table for BG_YCC */ + /* Private state for RGB->Y conversion */ INT32 * rgb_y_tab; /* => table for RGB to Y conversion */ } my_color_deconverter; @@ -32,22 +35,44 @@ typedef struct { typedef my_color_deconverter * my_cconvert_ptr; -/**************** YCbCr -> RGB conversion: most common case **************/ -/**************** RGB -> Y conversion: less common case **************/ +/*************** YCbCr -> RGB conversion: most common case **************/ +/*************** BG_YCC -> RGB conversion: less common case **************/ +/*************** RGB -> Y conversion: less common case **************/ /* - * YCbCr is defined per CCIR 601-1, except that Cb and Cr are - * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. - * The conversion equations to be implemented are therefore + * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), + * previously known as Recommendation CCIR 601-1, except that Cb and Cr + * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. + * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. + * sYCC (standard luma-chroma-chroma color space with extended gamut) + * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. + * bg-sRGB and bg-sYCC (big gamut standard color spaces) + * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. + * Note that the derived conversion coefficients given in some of these + * documents are imprecise. The general conversion equations are + * + * R = Y + K * (1 - Kr) * Cr + * G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb) + * B = Y + K * (1 - Kb) * Cb + * + * Y = Kr * R + (1 - Kr - Kb) * G + Kb * B * - * R = Y + 1.40200 * Cr - * G = Y - 0.34414 * Cb - 0.71414 * Cr - * B = Y + 1.77200 * Cb + * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 + * from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, + * the conversion equations to be implemented are therefore * - * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B + * R = Y + 1.402 * Cr + * G = Y - 0.344136286 * Cb - 0.714136286 * Cr + * B = Y + 1.772 * Cb + * + * Y = 0.299 * R + 0.587 * G + 0.114 * B * * where Cb and Cr represent the incoming values less CENTERJSAMPLE. - * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) + * For bg-sYCC, with K = 4, the equations are + * + * R = Y + 2.804 * Cr + * G = Y - 0.688272572 * Cb - 1.428272572 * Cr + * B = Y + 3.544 * Cb * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide @@ -58,9 +83,9 @@ typedef my_color_deconverter * my_cconvert_ptr; * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times Cb and Cr for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); - * for 12-bit samples it is still acceptable. It's not very reasonable for - * 16-bit samples, but if you want lossless storage you shouldn't be changing - * colorspace anyway. + * for 9-bit to 12-bit samples it is still acceptable. It's not very + * reasonable for 16-bit samples, but if you want lossless storage you + * shouldn't be changing colorspace anyway. * The Cr=>R and Cb=>B values can be rounded to integers in advance; the * values for the G calculation are left scaled up, since we must add them * together before rounding. @@ -84,11 +109,54 @@ typedef my_color_deconverter * my_cconvert_ptr; /* - * Initialize tables for YCC->RGB colorspace conversion. + * Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. */ LOCAL(void) build_ycc_rgb_table (j_decompress_ptr cinfo) +/* Normal case, sYCC */ +{ + my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; + int i; + INT32 x; + SHIFT_TEMPS + + cconvert->Cr_r_tab = (int *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (MAXJSAMPLE+1) * SIZEOF(int)); + cconvert->Cb_b_tab = (int *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (MAXJSAMPLE+1) * SIZEOF(int)); + cconvert->Cr_g_tab = (INT32 *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (MAXJSAMPLE+1) * SIZEOF(INT32)); + cconvert->Cb_g_tab = (INT32 *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + (MAXJSAMPLE+1) * SIZEOF(INT32)); + + cconvert->range_limit = cinfo->sample_range_limit; + + for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { + /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ + /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ + /* Cr=>R value is nearest int to 1.402 * x */ + cconvert->Cr_r_tab[i] = (int) + RIGHT_SHIFT(FIX(1.402) * x + ONE_HALF, SCALEBITS); + /* Cb=>B value is nearest int to 1.772 * x */ + cconvert->Cb_b_tab[i] = (int) + RIGHT_SHIFT(FIX(1.772) * x + ONE_HALF, SCALEBITS); + /* Cr=>G value is scaled-up -0.714136286 * x */ + cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x; + /* Cb=>G value is scaled-up -0.344136286 * x */ + /* We also add in ONE_HALF so that need not do it in inner loop */ + cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; + } +} + + +LOCAL(void) +build_bg_ycc_rgb_table (j_decompress_ptr cinfo) +/* Wide gamut case, bg-sYCC */ { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; int i; @@ -108,21 +176,39 @@ build_ycc_rgb_table (j_decompress_ptr cinfo) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); + cconvert->range_limit = (JSAMPLE *) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + 5 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); + for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ - /* Cr=>R value is nearest int to 1.40200 * x */ + /* Cr=>R value is nearest int to 2.804 * x */ cconvert->Cr_r_tab[i] = (int) - RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); - /* Cb=>B value is nearest int to 1.77200 * x */ + RIGHT_SHIFT(FIX(2.804) * x + ONE_HALF, SCALEBITS); + /* Cb=>B value is nearest int to 3.544 * x */ cconvert->Cb_b_tab[i] = (int) - RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); - /* Cr=>G value is scaled-up -0.71414 * x */ - cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; - /* Cb=>G value is scaled-up -0.34414 * x */ + RIGHT_SHIFT(FIX(3.544) * x + ONE_HALF, SCALEBITS); + /* Cr=>G value is scaled-up -1.428272572 * x */ + cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x; + /* Cb=>G value is scaled-up -0.688272572 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ - cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; + cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; } + + /* Cb and Cr portions can extend to double range in wide gamut case, + * so we prepare an appropriate extended range limit table. + */ + + /* First segment of range limit table: limit[x] = 0 for x < 0 */ + MEMZERO(cconvert->range_limit, 2 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); + cconvert->range_limit += 2 * (MAXJSAMPLE+1); + /* Main part of range limit table: limit[x] = x */ + for (i = 0; i <= MAXJSAMPLE; i++) + cconvert->range_limit[i] = (JSAMPLE) i; + /* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */ + for (; i < 3 * (MAXJSAMPLE+1); i++) + cconvert->range_limit[i] = MAXJSAMPLE; } @@ -149,7 +235,7 @@ ycc_rgb_convert (j_decompress_ptr cinfo, register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ - register JSAMPLE * range_limit = cinfo->sample_range_limit; + register JSAMPLE * range_limit = cconvert->range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; @@ -166,19 +252,21 @@ ycc_rgb_convert (j_decompress_ptr cinfo, y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); - /* Range-limiting is essential due to noise introduced by DCT losses. */ - outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; + /* Range-limiting is essential due to noise introduced by DCT losses, + * for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings. + */ + outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; outptr[RGB_GREEN] = range_limit[y + ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; - outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; + outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; outptr += RGB_PIXELSIZE; } } } -/**************** Cases other than YCbCr -> RGB **************/ +/**************** Cases other than YCC -> RGB ****************/ /* @@ -198,9 +286,9 @@ build_rgb_y_table (j_decompress_ptr cinfo) (TABLE_SIZE * SIZEOF(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { - rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i; - rgb_y_tab[i+G_Y_OFF] = FIX(0.58700) * i; - rgb_y_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; + rgb_y_tab[i+R_Y_OFF] = FIX(0.299) * i; + rgb_y_tab[i+G_Y_OFF] = FIX(0.587) * i; + rgb_y_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; } } @@ -244,6 +332,9 @@ rgb_gray_convert (j_decompress_ptr cinfo, /* * [R-G,G,B-G] to [R,G,B] conversion with modulo calculation * (inverse color transform). + * This can be seen as an adaption of the general YCbCr->RGB + * conversion equation with Kr = Kb = 0, while replacing the + * normalization by modulo calculation. */ METHODDEF(void) @@ -387,7 +478,7 @@ null_convert (j_decompress_ptr cinfo, /* * Color conversion for grayscale: just copy the data. - * This also works for YCbCr -> grayscale conversion, in which + * This also works for YCC -> grayscale conversion, in which * we just copy the Y (luminance) component and ignore chrominance. */ @@ -466,7 +557,9 @@ ycck_cmyk_convert (j_decompress_ptr cinfo, y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); - /* Range-limiting is essential due to noise introduced by DCT losses. */ + /* Range-limiting is essential due to noise introduced by DCT losses, + * and for extended gamut encodings (sYCC). + */ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], @@ -516,6 +609,8 @@ jinit_color_deconverter (j_decompress_ptr cinfo) case JCS_RGB: case JCS_YCbCr: + case JCS_BG_RGB: + case JCS_BG_YCC: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; @@ -532,8 +627,10 @@ jinit_color_deconverter (j_decompress_ptr cinfo) break; } - /* Support color transform only for RGB colorspace */ - if (cinfo->color_transform && cinfo->jpeg_color_space != JCS_RGB) + /* Support color transform only for RGB colorspaces */ + if (cinfo->color_transform && + cinfo->jpeg_color_space != JCS_RGB && + cinfo->jpeg_color_space != JCS_BG_RGB) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); /* Set out_color_components and conversion method based on requested space. @@ -544,13 +641,16 @@ jinit_color_deconverter (j_decompress_ptr cinfo) switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; - if (cinfo->jpeg_color_space == JCS_GRAYSCALE || - cinfo->jpeg_color_space == JCS_YCbCr) { + switch (cinfo->jpeg_color_space) { + case JCS_GRAYSCALE: + case JCS_YCbCr: + case JCS_BG_YCC: cconvert->pub.color_convert = grayscale_convert; /* For color->grayscale conversion, only the Y (0) component is needed */ for (ci = 1; ci < cinfo->num_components; ci++) cinfo->comp_info[ci].component_needed = FALSE; - } else if (cinfo->jpeg_color_space == JCS_RGB) { + break; + case JCS_RGB: switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_gray_convert; @@ -560,21 +660,29 @@ jinit_color_deconverter (j_decompress_ptr cinfo) break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); - break; } build_rgb_y_table(cinfo); - } else + break; + default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } break; case JCS_RGB: cinfo->out_color_components = RGB_PIXELSIZE; - if (cinfo->jpeg_color_space == JCS_YCbCr) { + switch (cinfo->jpeg_color_space) { + case JCS_GRAYSCALE: + cconvert->pub.color_convert = gray_rgb_convert; + break; + case JCS_YCbCr: cconvert->pub.color_convert = ycc_rgb_convert; build_ycc_rgb_table(cinfo); - } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { - cconvert->pub.color_convert = gray_rgb_convert; - } else if (cinfo->jpeg_color_space == JCS_RGB) { + break; + case JCS_BG_YCC: + cconvert->pub.color_convert = ycc_rgb_convert; + build_bg_ycc_rgb_table(cinfo); + break; + case JCS_RGB: switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_convert; @@ -584,7 +692,25 @@ jinit_color_deconverter (j_decompress_ptr cinfo) break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } + break; + default: + ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } + break; + + case JCS_BG_RGB: + cinfo->out_color_components = RGB_PIXELSIZE; + if (cinfo->jpeg_color_space == JCS_BG_RGB) { + switch (cinfo->color_transform) { + case JCT_NONE: + cconvert->pub.color_convert = rgb_convert; + break; + case JCT_SUBTRACT_GREEN: + cconvert->pub.color_convert = rgb1_rgb_convert; break; + default: + ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); @@ -592,13 +718,17 @@ jinit_color_deconverter (j_decompress_ptr cinfo) case JCS_CMYK: cinfo->out_color_components = 4; - if (cinfo->jpeg_color_space == JCS_YCCK) { + switch (cinfo->jpeg_color_space) { + case JCS_YCCK: cconvert->pub.color_convert = ycck_cmyk_convert; build_ycc_rgb_table(cinfo); - } else if (cinfo->jpeg_color_space == JCS_CMYK) { + break; + case JCS_CMYK: cconvert->pub.color_convert = null_convert; - } else + break; + default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); + } break; default: diff --git a/plugins/AdvaImg/src/LibJPEG/jddctmgr.c b/plugins/AdvaImg/src/LibJPEG/jddctmgr.c index 5e4f1dc440..b2f5a36d96 100644 --- a/plugins/AdvaImg/src/LibJPEG/jddctmgr.c +++ b/plugins/AdvaImg/src/LibJPEG/jddctmgr.c @@ -2,7 +2,7 @@ * jddctmgr.c * * Copyright (C) 1994-1996, Thomas G. Lane. - * Modified 2002-2010 by Guido Vollbeding. + * Modified 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -368,7 +368,7 @@ jinit_inverse_dct (j_decompress_ptr cinfo) idct = (my_idct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_idct_controller)); - cinfo->idct = (struct jpeg_inverse_dct *) idct; + cinfo->idct = &idct->pub; idct->pub.start_pass = start_pass; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; diff --git a/plugins/AdvaImg/src/LibJPEG/jdhuff.c b/plugins/AdvaImg/src/LibJPEG/jdhuff.c index b18ff7a20a..85a98bd3ef 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdhuff.c +++ b/plugins/AdvaImg/src/LibJPEG/jdhuff.c @@ -2,7 +2,7 @@ * jdhuff.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2012 by Guido Vollbeding. + * Modified 2006-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -627,6 +627,22 @@ jpeg_huff_decode (bitread_working_state * state, } +/* + * Finish up at the end of a Huffman-compressed scan. + */ + +METHODDEF(void) +finish_pass_huff (j_decompress_ptr cinfo) +{ + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; + + /* Throw away any unused bits remaining in bit buffer; */ + /* include any full bytes in next_marker's count of discarded bytes */ + cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; + entropy->bitstate.bits_left = 0; +} + + /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. @@ -638,10 +654,7 @@ process_restart (j_decompress_ptr cinfo) huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci; - /* Throw away any unused bits remaining in bit buffer; */ - /* include any full bytes in next_marker's count of discarded bytes */ - cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; - entropy->bitstate.bits_left = 0; + finish_pass_huff(cinfo); /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) @@ -846,17 +859,15 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) /* * MCU decoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. + * Note: we assume such scans can be multi-component, + * although the spec is not very clear on the point. */ METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; - int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ - int blkn; - JBLOCKROW block; + int p1, blkn; BITREAD_STATE_VARS; /* Process restart marker if needed; may have to suspend */ @@ -873,15 +884,15 @@ decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ + /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { - block = MCU_data[blkn]; - /* Encoded data is simply the next bit of the two's-complement DC value */ CHECK_BIT_BUFFER(br_state, 1, return FALSE); if (GET_BITS(1)) - (*block)[0] |= p1; + MCU_data[blkn][0][0] |= p1; /* Note: since we use |=, repeating the assignment later is safe */ } @@ -1517,6 +1528,7 @@ jinit_huff_decoder (j_decompress_ptr cinfo) SIZEOF(huff_entropy_decoder)); cinfo->entropy = &entropy->pub; entropy->pub.start_pass = start_pass_huff_decoder; + entropy->pub.finish_pass = finish_pass_huff; if (cinfo->progressive_mode) { /* Create progression status table */ diff --git a/plugins/AdvaImg/src/LibJPEG/jdinput.c b/plugins/AdvaImg/src/LibJPEG/jdinput.c index de6f7ed8e9..80bdef568a 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdinput.c +++ b/plugins/AdvaImg/src/LibJPEG/jdinput.c @@ -2,7 +2,7 @@ * jdinput.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2002-2009 by Guido Vollbeding. + * Modified 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -196,7 +196,7 @@ jpeg_core_output_dimensions (j_decompress_ptr cinfo) /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; - /* jdinput.c has already initialized DCT_scaled_size, + /* initial_setup has already initialized DCT_scaled_size, * and has computed unscaled downsampled_width and downsampled_height. */ @@ -216,8 +216,8 @@ initial_setup (j_decompress_ptr cinfo) (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); - /* For now, precision must match compiled-in value... */ - if (cinfo->data_precision != BITS_IN_JSAMPLE) + /* Only 8 to 12 bits data precision are supported for DCT based JPEG */ + if (cinfo->data_precision < 8 || cinfo->data_precision > 12) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ @@ -537,6 +537,7 @@ start_input_pass (j_decompress_ptr cinfo) METHODDEF(void) finish_input_pass (j_decompress_ptr cinfo) { + (*cinfo->entropy->finish_pass) (cinfo); cinfo->inputctl->consume_input = consume_markers; } @@ -646,7 +647,7 @@ jinit_input_controller (j_decompress_ptr cinfo) inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller)); - cinfo->inputctl = (struct jpeg_input_controller *) inputctl; + cinfo->inputctl = &inputctl->pub; /* Initialize method pointers */ inputctl->pub.consume_input = consume_markers; inputctl->pub.reset_input_controller = reset_input_controller; diff --git a/plugins/AdvaImg/src/LibJPEG/jdmarker.c b/plugins/AdvaImg/src/LibJPEG/jdmarker.c index 47ebee9576..b1faf88fb7 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdmarker.c +++ b/plugins/AdvaImg/src/LibJPEG/jdmarker.c @@ -2,7 +2,7 @@ * jdmarker.c * * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2009-2012 by Guido Vollbeding. + * Modified 2009-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -269,8 +269,8 @@ get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog, /* We don't support files in which the image height is initially specified */ /* as 0 and is later redefined by DNL. As long as we have to check that, */ /* might as well have a general sanity check. */ - if (cinfo->image_height <= 0 || cinfo->image_width <= 0 - || cinfo->num_components <= 0) + if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || + cinfo->num_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); if (length != (cinfo->num_components * 3)) @@ -350,6 +350,9 @@ get_sos (j_decompress_ptr cinfo) /* Detect the case where component id's are not unique, and, if so, */ /* create a fake component id using the same logic as in get_sof. */ + /* Note: This also ensures that all of the SOF components are */ + /* referenced in the single scan case, which prevents access to */ + /* uninitialized memory in later decoding stages. */ for (ci = 0; ci < i; ci++) { if (c == cinfo->cur_comp_info[ci]->component_id) { c = cinfo->cur_comp_info[0]->component_id; @@ -493,6 +496,8 @@ get_dht (j_decompress_ptr cinfo) if (count > 256 || ((INT32) count) > length) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); + MEMZERO(huffval, SIZEOF(huffval)); /* pre-zero array for later copy */ + for (i = 0; i < count; i++) INPUT_BYTE(cinfo, huffval[i], return FALSE); @@ -735,12 +740,13 @@ examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data, cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]); cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]); /* Check version. - * Major version must be 1, anything else signals an incompatible change. + * Major version must be 1 or 2, anything else signals an incompatible + * change. * (We used to treat this as an error, but now it's a nonfatal warning, * because some bozo at Hijaak couldn't read the spec.) * Minor version should be 0..2, but process anyway if newer. */ - if (cinfo->JFIF_major_version != 1) + if (cinfo->JFIF_major_version != 1 && cinfo->JFIF_major_version != 2) WARNMS2(cinfo, JWRN_JFIF_MAJOR, cinfo->JFIF_major_version, cinfo->JFIF_minor_version); /* Generate trace messages */ diff --git a/plugins/AdvaImg/src/LibJPEG/jdmaster.c b/plugins/AdvaImg/src/LibJPEG/jdmaster.c index 03d4dd08b8..ed6b499607 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdmaster.c +++ b/plugins/AdvaImg/src/LibJPEG/jdmaster.c @@ -2,7 +2,7 @@ * jdmaster.c * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2002-2011 by Guido Vollbeding. + * Modified 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -51,7 +51,8 @@ use_merged_upsample (j_decompress_ptr cinfo) /* jdmerge.c only supports YCC=>RGB color conversion */ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || cinfo->out_color_space != JCS_RGB || - cinfo->out_color_components != RGB_PIXELSIZE) + cinfo->out_color_components != RGB_PIXELSIZE || + cinfo->color_transform) return FALSE; /* and it only handles 2h1v or 2h2v sampling ratios */ if (cinfo->comp_info[0].h_samp_factor != 2 || @@ -158,9 +159,11 @@ jpeg_calc_output_dimensions (j_decompress_ptr cinfo) cinfo->out_color_components = 1; break; case JCS_RGB: + case JCS_BG_RGB: cinfo->out_color_components = RGB_PIXELSIZE; break; case JCS_YCbCr: + case JCS_BG_YCC: cinfo->out_color_components = 3; break; case JCS_CMYK: @@ -273,10 +276,19 @@ master_selection (j_decompress_ptr cinfo) long samplesperrow; JDIMENSION jd_samplesperrow; + /* For now, precision must match compiled-in value... */ + if (cinfo->data_precision != BITS_IN_JSAMPLE) + ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); + /* Initialize dimensions and other stuff */ jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo); + /* Sanity check on image dimensions */ + if (cinfo->output_height <= 0 || cinfo->output_width <= 0 || + cinfo->out_color_components <= 0) + ERREXIT(cinfo, JERR_EMPTY_IMAGE); + /* Width of an output scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; jd_samplesperrow = (JDIMENSION) samplesperrow; @@ -521,7 +533,7 @@ jinit_master_decompress (j_decompress_ptr cinfo) master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); - cinfo->master = (struct jpeg_decomp_master *) master; + cinfo->master = &master->pub; master->pub.prepare_for_output_pass = prepare_for_output_pass; master->pub.finish_output_pass = finish_output_pass; diff --git a/plugins/AdvaImg/src/LibJPEG/jdmerge.c b/plugins/AdvaImg/src/LibJPEG/jdmerge.c index 9e3a595de0..605e858cbd 100644 --- a/plugins/AdvaImg/src/LibJPEG/jdmerge.c +++ b/plugins/AdvaImg/src/LibJPEG/jdmerge.c @@ -2,6 +2,7 @@ * jdmerge.c * * Copyright (C) 1994-1996, Thomas G. Lane. + * Modified 2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -103,17 +104,17 @@ build_ycc_rgb_table (j_decompress_ptr cinfo) for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ - /* Cr=>R value is nearest int to 1.40200 * x */ + /* Cr=>R value is nearest int to 1.402 * x */ upsample->Cr_r_tab[i] = (int) - RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); - /* Cb=>B value is nearest int to 1.77200 * x */ + RIGHT_SHIFT(FIX(1.402) * x + ONE_HALF, SCALEBITS); + /* Cb=>B value is nearest int to 1.772 * x */ upsample->Cb_b_tab[i] = (int) - RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); - /* Cr=>G value is scaled-up -0.71414 * x */ - upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; - /* Cb=>G value is scaled-up -0.34414 * x */ + RIGHT_SHIFT(FIX(1.772) * x + ONE_HALF, SCALEBITS); + /* Cr=>G value is scaled-up -0.714136286 * x */ + upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x; + /* Cb=>G value is scaled-up -0.344136286 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ - upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; + upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; } } diff --git a/plugins/AdvaImg/src/LibJPEG/jfdctint.c b/plugins/AdvaImg/src/LibJPEG/jfdctint.c index 529eaf8670..4dd7cb9e6c 100644 --- a/plugins/AdvaImg/src/LibJPEG/jfdctint.c +++ b/plugins/AdvaImg/src/LibJPEG/jfdctint.c @@ -2,7 +2,7 @@ * jfdctint.c * * Copyright (C) 1991-1996, Thomas G. Lane. - * Modification developed 2003-2009 by Guido Vollbeding. + * Modification developed 2003-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -165,16 +165,18 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * cK represents sqrt(2) * cos(K*pi/16). + */ dataptr = data; for (ctr = 0; ctr < DCTSIZE; ctr++) { elemptr = sample_data[ctr] + start_col; /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); @@ -196,47 +198,49 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-1); - dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS); + + dataptr[2] = (DCTELEM) + RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS-PASS1_BITS); + dataptr[6] = (DCTELEM) + RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS-PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-1); - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS); + dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS); + dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); + dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } @@ -244,12 +248,13 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. + * cK represents sqrt(2) * cos(K*pi/16). */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; @@ -271,47 +276,49 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS+PASS1_BITS-1); + dataptr[DCTSIZE*2] = (DCTELEM) - RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); + RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) - RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); + RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS+PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS+PASS1_BITS-1); - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } @@ -338,10 +345,11 @@ jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/14). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * cK represents sqrt(2) * cos(K*pi/14). + */ dataptr = data; for (ctr = 0; ctr < 7; ctr++) { @@ -472,10 +480,11 @@ jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/12). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * cK represents sqrt(2) * cos(K*pi/12). + */ dataptr = data; for (ctr = 0; ctr < 6; ctr++) { @@ -585,12 +594,13 @@ jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/10). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * cK represents sqrt(2) * cos(K*pi/10). + */ dataptr = data; for (ctr = 0; ctr < 5; ctr++) { @@ -695,11 +705,12 @@ jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */ - /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We must also scale the output by (8/4)**2 = 2**2, which we add here. + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. + */ dataptr = data; for (ctr = 0; ctr < 4; ctr++) { @@ -737,6 +748,7 @@ jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ dataptr = data; @@ -787,12 +799,13 @@ jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2**2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/6). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We scale the results further by 2**2 as part of output adaption + * scaling for different DCT size. + * cK represents sqrt(2) * cos(K*pi/6). + */ dataptr = data; for (ctr = 0; ctr < 3; ctr++) { @@ -869,8 +882,9 @@ jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + */ /* Row 0 */ elemptr = sample_data[0] + start_col; @@ -935,11 +949,12 @@ jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/18). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * we scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * cK represents sqrt(2) * cos(K*pi/18). + */ dataptr = data; ctr = 0; @@ -1084,11 +1099,12 @@ jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/20). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * we scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * cK represents sqrt(2) * cos(K*pi/20). + */ dataptr = data; ctr = 0; @@ -1248,11 +1264,12 @@ jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* we scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* cK represents sqrt(2) * cos(K*pi/22). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * we scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * cK represents sqrt(2) * cos(K*pi/22). + */ dataptr = data; ctr = 0; @@ -1430,9 +1447,10 @@ jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/24). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + * cK represents sqrt(2) * cos(K*pi/24). + */ dataptr = data; ctr = 0; @@ -1596,9 +1614,10 @@ jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/26). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + * cK represents sqrt(2) * cos(K*pi/26). + */ dataptr = data; ctr = 0; @@ -1794,9 +1813,10 @@ jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/28). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + * cK represents sqrt(2) * cos(K*pi/28). + */ dataptr = data; ctr = 0; @@ -1995,9 +2015,10 @@ jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* cK represents sqrt(2) * cos(K*pi/30). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + * cK represents sqrt(2) * cos(K*pi/30). + */ dataptr = data; ctr = 0; @@ -2173,10 +2194,11 @@ jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* cK represents sqrt(2) * cos(K*pi/32). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * cK represents sqrt(2) * cos(K*pi/32). + */ dataptr = data; ctr = 0; @@ -2275,6 +2297,7 @@ jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. * We must also scale the output by (8/16)**2 = 1/2**2. + * cK represents sqrt(2) * cos(K*pi/32). */ dataptr = data; @@ -2380,10 +2403,11 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). + */ dataptr = data; ctr = 0; @@ -2475,12 +2499,13 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. * We must also scale the output by 8/16 = 1/2. + * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; @@ -2501,43 +2526,43 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS+PASS1_BITS+1); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ + dataptr[DCTSIZE*2] = (DCTELEM) + DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS+PASS1_BITS+1); + dataptr[DCTSIZE*6] = (DCTELEM) + DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS+PASS1_BITS+1); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, - CONST_BITS+PASS1_BITS+1); - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, - CONST_BITS+PASS1_BITS+1); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); + dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); + dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); + dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+PASS1_BITS+1); dataptr++; /* advance pointer to next column */ } @@ -2564,10 +2589,11 @@ jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Zero bottom row of output coefficient block. */ MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). + */ dataptr = data; for (ctr = 0; ctr < 7; ctr++) { @@ -2727,10 +2753,11 @@ jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Zero 2 bottom rows of output coefficient block. */ MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). + */ dataptr = data; for (ctr = 0; ctr < 6; ctr++) { @@ -2866,10 +2893,11 @@ jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Zero 3 bottom rows of output coefficient block. */ MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). + */ dataptr = data; for (ctr = 0; ctr < 5; ctr++) { @@ -2999,17 +3027,19 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Zero 4 bottom rows of output coefficient block. */ MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by 8/4 = 2, which we add here. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We must also scale the output by 8/4 = 2, which we add here. + * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ dataptr = data; for (ctr = 0; ctr < 4; ctr++) { elemptr = sample_data[ctr] + start_col; /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); @@ -3032,47 +3062,49 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-2); - dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS-1); - dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS-1); + + dataptr[2] = (DCTELEM) + RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS-PASS1_BITS-1); + dataptr[6] = (DCTELEM) + RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS-PASS1_BITS-1); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-2); - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1); - dataptr[3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1); - dataptr[5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1); - dataptr[7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS-1); + dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS-1); + dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS-1); + dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS-1); dataptr += DCTSIZE; /* advance pointer to next row */ } @@ -3080,7 +3112,8 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. - * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + * 4-point FDCT kernel, + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ dataptr = data; @@ -3099,7 +3132,7 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Odd part */ - tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ + tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); @@ -3134,12 +3167,13 @@ jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). + */ dataptr = data; for (ctr = 0; ctr < 3; ctr++) { @@ -3234,12 +3268,13 @@ jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */ - /* 4-point FDCT kernel, */ - /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. + * 4-point FDCT kernel, + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. + */ dataptr = data; for (ctr = 0; ctr < 2; ctr++) { @@ -3323,10 +3358,12 @@ jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) */ /* Even part */ + /* Apply unsigned->signed conversion */ data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); /* Odd part */ + data[1] = (DCTELEM) ((tmp0 - tmp1) << 5); } @@ -3350,9 +3387,11 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) int ctr; SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ dataptr = data; ctr = 0; @@ -3360,7 +3399,7 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) elemptr = sample_data[ctr] + start_col; /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); @@ -3382,39 +3421,43 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), - CONST_BITS-PASS1_BITS); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ + dataptr[2] = (DCTELEM) + DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS-PASS1_BITS); + dataptr[6] = (DCTELEM) + DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS-PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ - - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); + dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); + dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); + dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-PASS1_BITS); ctr++; @@ -3541,10 +3584,11 @@ jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). + */ dataptr = data; ctr = 0; @@ -3721,10 +3765,11 @@ jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). + */ dataptr = data; ctr = 0; @@ -3870,10 +3915,11 @@ jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). + */ dataptr = data; ctr = 0; @@ -4015,11 +4061,13 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We must also scale the output by 8/4 = 2, which we add here. */ - /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We must also scale the output by 8/4 = 2, which we add here. + * 4-point FDCT kernel, + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. + */ dataptr = data; for (ctr = 0; ctr < DCTSIZE; ctr++) { @@ -4057,12 +4105,13 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. + * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ dataptr = data; for (ctr = 0; ctr < 4; ctr++) { /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + * rotator "c1" should be "c6". */ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; @@ -4084,47 +4133,49 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS+PASS1_BITS-1); + dataptr[DCTSIZE*2] = (DCTELEM) - RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); + RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ + CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) - RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); + RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ + CONST_BITS+PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). * i0..i3 in the paper are tmp0..tmp3 here. */ - tmp10 = tmp0 + tmp3; - tmp11 = tmp1 + tmp2; tmp12 = tmp0 + tmp2; tmp13 = tmp1 + tmp3; - z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ + + z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS+PASS1_BITS-1); - tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ - tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ - tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ - tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ - tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ - tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ - tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ - tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ - + tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ + tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ tmp12 += z1; tmp13 += z1; - dataptr[DCTSIZE*1] = (DCTELEM) - RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) - RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) - RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*7] = (DCTELEM) - RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp0 += z1 + tmp12; + tmp3 += z1 + tmp13; + + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ + tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp1 += z1 + tmp13; + tmp2 += z1 + tmp12; + + dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } @@ -4150,12 +4201,13 @@ jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - /* We scale the results further by 2 as part of output adaption */ - /* scaling for different DCT size. */ - /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * We scale the results further by 2 as part of output adaption + * scaling for different DCT size. + * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). + */ dataptr = data; for (ctr = 0; ctr < 6; ctr++) { @@ -4255,9 +4307,10 @@ jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT. */ - /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */ + /* Pass 1: process rows. + * Note results are scaled up by sqrt(8) compared to a true DCT. + * We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. + */ dataptr = data; for (ctr = 0; ctr < 4; ctr++) { @@ -4329,18 +4382,23 @@ jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) /* Pre-zero output coefficient block. */ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); - tmp0 = GETJSAMPLE(sample_data[0][start_col]); - tmp1 = GETJSAMPLE(sample_data[1][start_col]); + /* Pass 1: empty. */ - /* We leave the results scaled up by an overall factor of 8. + /* Pass 2: process columns. + * We leave the results scaled up by an overall factor of 8. * We must also scale the output by (8/1)*(8/2) = 2**5. */ /* Even part */ + + tmp0 = GETJSAMPLE(sample_data[0][start_col]); + tmp1 = GETJSAMPLE(sample_data[1][start_col]); + /* Apply unsigned->signed conversion */ data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); /* Odd part */ + data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5); } diff --git a/plugins/AdvaImg/src/LibJPEG/jidctint.c b/plugins/AdvaImg/src/LibJPEG/jidctint.c index 49ef79f560..6be271c6e7 100644 --- a/plugins/AdvaImg/src/LibJPEG/jidctint.c +++ b/plugins/AdvaImg/src/LibJPEG/jidctint.c @@ -2,7 +2,7 @@ * jidctint.c * * Copyright (C) 1991-1998, Thomas G. Lane. - * Modification developed 2002-2009 by Guido Vollbeding. + * Modification developed 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -165,6 +165,8 @@ /* * Perform dequantization and inverse DCT on one block of coefficients. + * + * cK represents sqrt(2) * cos(K*pi/16). */ GLOBAL(void) @@ -184,9 +186,10 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ + /* Pass 1: process columns from input, store into work array. + * Note results are scaled up by sqrt(8) compared to a true IDCT; + * furthermore, we scale the results by 2**PASS1_BITS. + */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; @@ -223,15 +226,16 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, continue; } - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ + z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); @@ -256,25 +260,25 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - + z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; @@ -288,15 +292,16 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); - + inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ + /* Pass 2: process rows from work array, store into output array. + * Note that we must descale the results by a factor of 8 == 2**3, + * and also undo the PASS1_BITS scaling. + */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { @@ -330,15 +335,16 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, } #endif - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ + z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ /* Add fudge factor here for final descale. */ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); @@ -346,7 +352,7 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, tmp0 = (z2 + z3) << CONST_BITS; tmp1 = (z2 - z3) << CONST_BITS; - + tmp10 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; tmp11 = tmp1 + tmp3; @@ -364,21 +370,21 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; @@ -2835,9 +2841,11 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, int workspace[8*8]; /* buffers data between passes */ SHIFT_TEMPS - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ + /* Pass 1: process columns from input, store into work array. + * Note results are scaled up by sqrt(8) compared to a true IDCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; @@ -2851,14 +2859,14 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ - + if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; - + wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; @@ -2867,23 +2875,24 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; - + inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - + + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ + z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ + z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z2 <<= CONST_BITS; @@ -2893,44 +2902,44 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, tmp0 = z2 + z3; tmp1 = z2 - z3; - + tmp10 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; tmp11 = tmp1 + tmp3; tmp12 = tmp1 - tmp3; - + /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ - + tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); - + z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; - + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - + wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); @@ -2939,7 +2948,7 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); - + inptr++; /* advance pointers to next column */ quantptr++; wsptr++; @@ -2948,6 +2957,7 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 8 rows from work array, store into output array. * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ + wsptr = workspace; for (ctr = 0; ctr < 8; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3109,6 +3119,7 @@ jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -3164,6 +3175,7 @@ jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 7 rows from work array, store into output array. * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ + wsptr = workspace; for (ctr = 0; ctr < 7; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3304,6 +3316,7 @@ jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -3346,6 +3359,7 @@ jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 6 rows from work array, store into output array. * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ + wsptr = workspace; for (ctr = 0; ctr < 6; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3480,6 +3494,7 @@ jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -3520,6 +3535,7 @@ jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 5 rows from work array, store into output array. * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ + wsptr = workspace; for (ctr = 0; ctr < 5; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3639,8 +3655,10 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. - * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + * 4-point IDCT kernel, + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -3675,31 +3693,34 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, wsptr[8*2] = (int) (tmp12 - tmp2); } - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ + /* Pass 2: process rows from work array, store into output array. + * Note that we must descale the results by a factor of 8 == 2**3, + * and also undo the PASS1_BITS scaling. + * 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ wsptr = workspace; for (ctr = 0; ctr < 4; ctr++) { outptr = output_buf[ctr] + output_col; - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ + /* Add fudge factor here for final descale. */ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z3 = (INT32) wsptr[4]; - + tmp0 = (z2 + z3) << CONST_BITS; tmp1 = (z2 - z3) << CONST_BITS; - + tmp10 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; tmp11 = tmp1 + tmp3; @@ -3717,21 +3738,21 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; @@ -3793,6 +3814,7 @@ jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -3823,6 +3845,7 @@ jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 3 rows from work array, store into output array. * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + wsptr = workspace; for (ctr = 0; ctr < 3; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3924,6 +3947,7 @@ jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, * 4-point IDCT kernel, * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. */ + wsptr = workspace; for (ctr = 0; ctr < 2; ctr++) { outptr = output_buf[ctr] + output_col; @@ -3979,7 +4003,7 @@ jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { - INT32 tmp0, tmp10; + INT32 tmp0, tmp1; ISLOW_MULT_TYPE * quantptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); @@ -3994,18 +4018,18 @@ jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Even part */ - tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]); + tmp0 = DEQUANTIZE(coef_block[0], quantptr[0]); /* Add fudge factor here for final descale. */ - tmp10 += ONE << 2; + tmp0 += ONE << 2; /* Odd part */ - tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]); + tmp1 = DEQUANTIZE(coef_block[1], quantptr[1]); /* Final output stage */ - outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK]; - outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK]; + outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK]; + outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK]; } @@ -4036,6 +4060,7 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -4134,69 +4159,72 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); } - - /* Pass 2: process rows from work array, store into output array. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ + + /* Pass 2: process rows from work array, store into output array. + * Note that we must descale the results by a factor of 8 == 2**3, + * and also undo the PASS1_BITS scaling. + * 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ wsptr = workspace; for (ctr = 0; ctr < 16; ctr++) { outptr = output_buf[ctr] + output_col; - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - + + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ + z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ + /* Add fudge factor here for final descale. */ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z3 = (INT32) wsptr[4]; - + tmp0 = (z2 + z3) << CONST_BITS; tmp1 = (z2 - z3) << CONST_BITS; - + tmp10 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; tmp11 = tmp1 + tmp3; tmp12 = tmp1 - tmp3; - + /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ - + tmp0 = (INT32) wsptr[7]; tmp1 = (INT32) wsptr[5]; tmp2 = (INT32) wsptr[3]; tmp3 = (INT32) wsptr[1]; - + z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; - + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - + outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; @@ -4221,7 +4249,7 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; - + wsptr += DCTSIZE; /* advance pointer to next row */ } } @@ -4254,6 +4282,7 @@ jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -4341,6 +4370,7 @@ jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 14 rows from work array, store into output array. * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ + wsptr = workspace; for (ctr = 0; ctr < 14; ctr++) { outptr = output_buf[ctr] + output_col; @@ -4437,6 +4467,7 @@ jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -4520,6 +4551,7 @@ jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 12 rows from work array, store into output array. * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + wsptr = workspace; for (ctr = 0; ctr < 12; ctr++) { outptr = output_buf[ctr] + output_col; @@ -4601,6 +4633,7 @@ jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -4676,6 +4709,7 @@ jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 10 rows from work array, store into output array. * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ + wsptr = workspace; for (ctr = 0; ctr < 10; ctr++) { outptr = output_buf[ctr] + output_col; @@ -4750,9 +4784,11 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, int workspace[4*8]; /* buffers data between passes */ SHIFT_TEMPS - /* Pass 1: process columns from input, store into work array. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ + /* Pass 1: process columns from input, store into work array. + * Note results are scaled up by sqrt(8) compared to a true IDCT; + * furthermore, we scale the results by 2**PASS1_BITS. + * 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; @@ -4789,16 +4825,17 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, continue; } - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ + /* Even part: reverse the even part of the forward DCT. + * The rotator is c(-6). + */ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - - z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); - tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); - + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ + tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ + tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ + z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z2 <<= CONST_BITS; @@ -4808,7 +4845,7 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, tmp0 = z2 + z3; tmp1 = z2 - z3; - + tmp10 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; tmp11 = tmp1 + tmp3; @@ -4826,21 +4863,21 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, z2 = tmp0 + tmp2; z3 = tmp1 + tmp3; - z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ - z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */ + z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */ + z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */ z2 += z1; z3 += z1; - z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */ tmp0 += z1 + z2; tmp3 += z1 + z3; - z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */ tmp1 += z1 + z3; tmp2 += z1 + z2; @@ -4861,8 +4898,10 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, } /* Pass 2: process 8 rows from work array, store into output array. - * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). + * 4-point IDCT kernel, + * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. */ + wsptr = workspace; for (ctr = 0; ctr < 8; ctr++) { outptr = output_buf[ctr] + output_col; @@ -4900,7 +4939,7 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; - + wsptr += 4; /* advance pointer to next row */ } } @@ -4932,6 +4971,7 @@ jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 1: process columns from input, store into work array. * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -4974,6 +5014,7 @@ jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Pass 2: process 6 rows from work array, store into output array. * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ + wsptr = workspace; for (ctr = 0; ctr < 6; ctr++) { outptr = output_buf[ctr] + output_col; @@ -5037,6 +5078,7 @@ jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, * 4-point IDCT kernel, * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. */ + inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; @@ -5106,7 +5148,7 @@ jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { - INT32 tmp0, tmp10; + INT32 tmp0, tmp1; ISLOW_MULT_TYPE * quantptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); SHIFT_TEMPS @@ -5117,19 +5159,19 @@ jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, /* Even part */ - tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); + tmp0 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); /* Add fudge factor here for final descale. */ - tmp10 += ONE << 2; + tmp0 += ONE << 2; /* Odd part */ - tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); + tmp1 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); /* Final output stage */ - output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) + output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK]; - output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) + output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK]; } diff --git a/plugins/AdvaImg/src/LibJPEG/jmorecfg.h b/plugins/AdvaImg/src/LibJPEG/jmorecfg.h index f2600cc8ff..1f645d7ff4 100644 --- a/plugins/AdvaImg/src/LibJPEG/jmorecfg.h +++ b/plugins/AdvaImg/src/LibJPEG/jmorecfg.h @@ -2,7 +2,7 @@ * jmorecfg.h * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 1997-2012 by Guido Vollbeding. + * Modified 1997-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -15,13 +15,22 @@ /* * Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) + * 9 for 9-bit sample values + * 10 for 10-bit sample values + * 11 for 11-bit sample values * 12 for 12-bit sample values - * Only 8 and 12 are legal data precisions for lossy JPEG according to the - * JPEG standard, and the IJG code does not support anything else! - * We do not support run-time selection of data precision, sorry. + * Only 8, 9, 10, 11, and 12 bits sample data precision are supported for + * full-feature DCT processing. Further depths up to 16-bit may be added + * later for the lossless modes of operation. + * Run-time selection and conversion of data precision will be added later + * and are currently not supported, sorry. + * Exception: The transcoding part (jpegtran) supports all settings in a + * single instance, since it operates on the level of DCT coefficients and + * not sample values. The DCT coefficients are of the same type (16 bits) + * in all cases (see below). */ -#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */ +#define BITS_IN_JSAMPLE 8 /* use 8, 9, 10, 11, or 12 */ /* @@ -77,6 +86,48 @@ typedef char JSAMPLE; #endif /* BITS_IN_JSAMPLE == 8 */ +#if BITS_IN_JSAMPLE == 9 +/* JSAMPLE should be the smallest type that will hold the values 0..511. + * On nearly all machines "short" will do nicely. + */ + +typedef short JSAMPLE; +#define GETJSAMPLE(value) ((int) (value)) + +#define MAXJSAMPLE 511 +#define CENTERJSAMPLE 256 + +#endif /* BITS_IN_JSAMPLE == 9 */ + + +#if BITS_IN_JSAMPLE == 10 +/* JSAMPLE should be the smallest type that will hold the values 0..1023. + * On nearly all machines "short" will do nicely. + */ + +typedef short JSAMPLE; +#define GETJSAMPLE(value) ((int) (value)) + +#define MAXJSAMPLE 1023 +#define CENTERJSAMPLE 512 + +#endif /* BITS_IN_JSAMPLE == 10 */ + + +#if BITS_IN_JSAMPLE == 11 +/* JSAMPLE should be the smallest type that will hold the values 0..2047. + * On nearly all machines "short" will do nicely. + */ + +typedef short JSAMPLE; +#define GETJSAMPLE(value) ((int) (value)) + +#define MAXJSAMPLE 2047 +#define CENTERJSAMPLE 1024 + +#endif /* BITS_IN_JSAMPLE == 11 */ + + #if BITS_IN_JSAMPLE == 12 /* JSAMPLE should be the smallest type that will hold the values 0..4095. * On nearly all machines "short" will do nicely. @@ -299,11 +350,12 @@ typedef enum { FALSE = 0, TRUE = 1 } boolean; #define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/ #define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ -/* Note: if you selected 12-bit data precision, it is dangerous to turn off - * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit - * precision, so jchuff.c normally uses entropy optimization to compute - * usable tables for higher precision. If you don't want to do optimization, - * you'll have to supply different default Huffman tables. +/* Note: if you selected more than 8-bit data precision, it is dangerous to + * turn off ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only + * good for 8-bit precision, so arithmetic coding is recommended for higher + * precision. The Huffman encoder normally uses entropy optimization to + * compute usable tables for higher precision. Otherwise, you'll have to + * supply different default Huffman tables. * The exact same statements apply for progressive JPEG: the default tables * don't work for progressive mode. (This may get fixed, however.) */ @@ -314,7 +366,7 @@ typedef enum { FALSE = 0, TRUE = 1 } boolean; #define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ -#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ +#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? (Requires DCT_ISLOW)*/ #define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ #define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ #undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ diff --git a/plugins/AdvaImg/src/LibJPEG/jpegint.h b/plugins/AdvaImg/src/LibJPEG/jpegint.h index 18404efd00..ec14a1ebc8 100644 --- a/plugins/AdvaImg/src/LibJPEG/jpegint.h +++ b/plugins/AdvaImg/src/LibJPEG/jpegint.h @@ -2,7 +2,7 @@ * jpegint.h * * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 1997-2011 by Guido Vollbeding. + * Modified 1997-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -211,8 +211,8 @@ struct jpeg_marker_reader { /* Entropy decoding */ struct jpeg_entropy_decoder { JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); - JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, - JBLOCKROW *MCU_data)); + JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); + JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); }; /* Inverse DCT (also performs dequantization) */ diff --git a/plugins/AdvaImg/src/LibJPEG/jpeglib.h b/plugins/AdvaImg/src/LibJPEG/jpeglib.h index b5e85d2d73..8eb0085e9a 100644 --- a/plugins/AdvaImg/src/LibJPEG/jpeglib.h +++ b/plugins/AdvaImg/src/LibJPEG/jpeglib.h @@ -2,7 +2,7 @@ * jpeglib.h * * Copyright (C) 1991-1998, Thomas G. Lane. - * Modified 2002-2012 by Guido Vollbeding. + * Modified 2002-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -39,12 +39,12 @@ extern "C" { #define JPEG_LIB_VERSION 90 /* Compatibility version 9.0 */ #define JPEG_LIB_VERSION_MAJOR 9 -#define JPEG_LIB_VERSION_MINOR 0 +#define JPEG_LIB_VERSION_MINOR 1 /* Various constants determining the sizes of things. - * All of these are specified by the JPEG standard, so don't change them - * if you want to be compatible. + * All of these are specified by the JPEG standard, + * so don't change them if you want to be compatible. */ #define DCTSIZE 8 /* The basic DCT block is 8x8 coefficients */ @@ -157,16 +157,21 @@ typedef struct { /* The downsampled dimensions are the component's actual, unpadded number * of samples at the main buffer (preprocessing/compression interface); * DCT scaling is included, so - * downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE) + * downsampled_width = + * ceil(image_width * Hi/Hmax * DCT_h_scaled_size/block_size) * and similarly for height. */ JDIMENSION downsampled_width; /* actual width in samples */ JDIMENSION downsampled_height; /* actual height in samples */ - /* This flag is used only for decompression. In cases where some of the - * components will be ignored (eg grayscale output from YCbCr image), - * we can skip most computations for the unused components. + /* For decompression, in cases where some of the components will be + * ignored (eg grayscale output from YCbCr image), we can skip most + * computations for the unused components. + * For compression, some of the components will need further quantization + * scale by factor of 2 after DCT (eg BG_YCC output from normal RGB input). + * The field is first set TRUE for decompression, FALSE for compression + * in initial_setup, and then adapted in color conversion setup. */ - boolean component_needed; /* do we need the value of this component? */ + boolean component_needed; /* These values are computed before starting a scan of the component. */ /* The decompressor output side may not use these variables. */ @@ -215,10 +220,12 @@ struct jpeg_marker_struct { typedef enum { JCS_UNKNOWN, /* error/unspecified */ JCS_GRAYSCALE, /* monochrome */ - JCS_RGB, /* red/green/blue */ - JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */ + JCS_RGB, /* red/green/blue, standard RGB (sRGB) */ + JCS_YCbCr, /* Y/Cb/Cr (also known as YUV), standard YCC */ JCS_CMYK, /* C/M/Y/K */ - JCS_YCCK /* Y/Cb/Cr/K */ + JCS_YCCK, /* Y/Cb/Cr/K */ + JCS_BG_RGB, /* big gamut red/green/blue, bg-sRGB */ + JCS_BG_YCC /* big gamut Y/Cb/Cr, bg-sYCC */ } J_COLOR_SPACE; /* Supported color transforms. */ diff --git a/plugins/AdvaImg/src/LibJPEG/jpegtran.c b/plugins/AdvaImg/src/LibJPEG/jpegtran.c index c15664a4f4..f3175aee24 100644 --- a/plugins/AdvaImg/src/LibJPEG/jpegtran.c +++ b/plugins/AdvaImg/src/LibJPEG/jpegtran.c @@ -1,7 +1,7 @@ /* * jpegtran.c * - * Copyright (C) 1995-2012, Thomas G. Lane, Guido Vollbeding. + * Copyright (C) 1995-2013, Thomas G. Lane, Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -66,8 +66,8 @@ usage (void) fprintf(stderr, "Switches for modifying the image:\n"); #if TRANSFORMS_SUPPORTED fprintf(stderr, " -crop WxH+X+Y Crop to a rectangular subarea\n"); - fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n"); fprintf(stderr, " -flip [horizontal|vertical] Mirror image (left-right or top-bottom)\n"); + fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n"); fprintf(stderr, " -perfect Fail if there is non-transformable edge blocks\n"); fprintf(stderr, " -rotate [90|180|270] Rotate image (degrees clockwise)\n"); #endif @@ -76,6 +76,7 @@ usage (void) fprintf(stderr, " -transpose Transpose image\n"); fprintf(stderr, " -transverse Transverse transpose image\n"); fprintf(stderr, " -trim Drop non-transformable edge blocks\n"); + fprintf(stderr, " -wipe WxH+X+Y Wipe (gray out) a rectangular subarea\n"); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef C_ARITH_CODING_SUPPORTED @@ -187,7 +188,8 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv, #if TRANSFORMS_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); - if (! jtransform_parse_crop_spec(&transformoption, argv[argn])) { + if (transformoption.crop /* reject multiple crop/wipe requests */ || + ! jtransform_parse_crop_spec(&transformoption, argv[argn])) { fprintf(stderr, "%s: bogus -crop argument '%s'\n", progname, argv[argn]); exit(EXIT_FAILURE); @@ -336,6 +338,21 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv, /* Trim off any partial edge MCUs that the transform can't handle. */ transformoption.trim = TRUE; + } else if (keymatch(arg, "wipe", 1)) { +#if TRANSFORMS_SUPPORTED + if (++argn >= argc) /* advance to next argument */ + usage(); + if (transformoption.crop /* reject multiple crop/wipe requests */ || + ! jtransform_parse_crop_spec(&transformoption, argv[argn])) { + fprintf(stderr, "%s: bogus -wipe argument '%s'\n", + progname, argv[argn]); + exit(EXIT_FAILURE); + } + select_transform(JXFORM_WIPE); +#else + select_transform(JXFORM_NONE); /* force an error */ +#endif + } else { usage(); /* bogus switch */ } diff --git a/plugins/AdvaImg/src/LibJPEG/jversion.h b/plugins/AdvaImg/src/LibJPEG/jversion.h index 41726ccbc2..8bd2b522ce 100644 --- a/plugins/AdvaImg/src/LibJPEG/jversion.h +++ b/plugins/AdvaImg/src/LibJPEG/jversion.h @@ -1,7 +1,7 @@ /* * jversion.h * - * Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding. + * Copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -9,6 +9,6 @@ */ -#define JVERSION "9 13-Jan-2013" +#define JVERSION "9a 19-Jan-2014" -#define JCOPYRIGHT "Copyright (C) 2013, Thomas G. Lane, Guido Vollbeding" +#define JCOPYRIGHT "Copyright (C) 2014, Thomas G. Lane, Guido Vollbeding" diff --git a/plugins/AdvaImg/src/LibJPEG/libjpeg.txt b/plugins/AdvaImg/src/LibJPEG/libjpeg.txt index b4e1d886c6..b602ab3095 100644 --- a/plugins/AdvaImg/src/LibJPEG/libjpeg.txt +++ b/plugins/AdvaImg/src/LibJPEG/libjpeg.txt @@ -95,8 +95,8 @@ use.) Unsupported ISO options include: * Lossless JPEG * DNL marker * Nonintegral subsampling ratios -We support both 8- and 12-bit data precision, but this is a compile-time -choice rather than a run-time choice; hence it is difficult to use both +We support 8-bit to 12-bit data precision, but this is a compile-time choice +rather than a run-time choice; hence it is difficult to use different precisions in a single application. By itself, the library handles only interchange JPEG datastreams --- in @@ -225,7 +225,7 @@ For best results, source data values should have the precision specified by BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress data that's only 6 bits/channel, you should left-justify each value in a byte before passing it to the compressor. If you need to compress data -that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12. +that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 9 to 12. (See "Library compile-time options", later.) @@ -1273,9 +1273,10 @@ Special color spaces The JPEG standard itself is "color blind" and doesn't specify any particular color space. It is customary to convert color data to a luminance/chrominance color space before compressing, since this permits greater compression. The -existing de-facto JPEG file format standards specify YCbCr or grayscale data -(JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special -applications such as multispectral images, other color spaces can be used, +existing JPEG file interchange format standards specify YCbCr or GRAYSCALE +data (JFIF version 1), GRAYSCALE, RGB, YCbCr, CMYK, or YCCK (Adobe), or BG_RGB +or BG_YCC (big gamut color spaces, JFIF version 2). For special applications +such as multispectral images, other color spaces can be used, but it must be understood that such files will be unportable. The JPEG library can handle the most common colorspace conversions (namely @@ -1292,22 +1293,25 @@ jpeg_set_colorspace(). Of course you must select a supported transformation. jccolor.c currently supports the following transformations: RGB => YCbCr RGB => GRAYSCALE + RGB => BG_YCC YCbCr => GRAYSCALE + YCbCr => BG_YCC CMYK => YCCK plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB, -YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN. - -The de-facto file format standards (JFIF and Adobe) specify APPn markers that -indicate the color space of the JPEG file. It is important to ensure that -these are written correctly, or omitted if the JPEG file's color space is not -one of the ones supported by the de-facto standards. jpeg_set_colorspace() -will set the compression parameters to include or omit the APPn markers -properly, so long as it is told the truth about the JPEG color space. -For example, if you are writing some random 3-component color space without -conversion, don't try to fake out the library by setting in_color_space and -jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an -APPn marker of your own devising to identify the colorspace --- see "Special -markers", below. +BG_RGB => BG_RGB, YCbCr => YCbCr, BG_YCC => BG_YCC, CMYK => CMYK, +YCCK => YCCK, and UNKNOWN => UNKNOWN. + +The file interchange format standards (JFIF and Adobe) specify APPn markers +that indicate the color space of the JPEG file. It is important to ensure +that these are written correctly, or omitted if the JPEG file's color space +is not one of the ones supported by the interchange standards. +jpeg_set_colorspace() will set the compression parameters to include or omit +the APPn markers properly, so long as it is told the truth about the JPEG +color space. For example, if you are writing some random 3-component color +space without conversion, don't try to fake out the library by setting +in_color_space and jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. +You may want to write an APPn marker of your own devising to identify +the colorspace --- see "Special markers", below. When told that the color space is UNKNOWN, the library will default to using luminance-quality compression parameters for all color components. You may @@ -1325,6 +1329,8 @@ set out_color_space to override this. Again, you must select a supported transformation. jdcolor.c currently supports YCbCr => RGB YCbCr => GRAYSCALE + BG_YCC => RGB + BG_YCC => GRAYSCALE RGB => GRAYSCALE GRAYSCALE => RGB YCCK => CMYK @@ -2585,10 +2591,10 @@ different sizes. If the image dimensions are not a multiple of the MCU size, you must also pad the data correctly (usually, this is done by replicating the last column and/or row). The data must be padded to a multiple of a DCT block in each component: that is, each downsampled row must contain a -multiple of 8 valid samples, and there must be a multiple of 8 sample rows -for each component. (For applications such as conversion of digital TV -images, the standard image size is usually a multiple of the DCT block size, -so that no padding need actually be done.) +multiple of block_size valid samples, and there must be a multiple of +block_size sample rows for each component. (For applications such as +conversion of digital TV images, the standard image size is usually a +multiple of the DCT block size, so that no padding need actually be done.) The procedure for compression of raw data is basically the same as normal compression, except that you call jpeg_write_raw_data() in place of @@ -2614,22 +2620,22 @@ The scanlines count passed to and returned from jpeg_write_raw_data is measured in terms of the component with the largest v_samp_factor. jpeg_write_raw_data() processes one MCU row per call, which is to say -v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines -value must be at least max_v_samp_factor*DCTSIZE, and the return value will -be exactly that amount (or possibly some multiple of that amount, in future -library versions). This is true even on the last call at the bottom of the -image; don't forget to pad your data as necessary. +v_samp_factor*block_size sample rows of each component. The passed num_lines +value must be at least max_v_samp_factor*block_size, and the return value +will be exactly that amount (or possibly some multiple of that amount, in +future library versions). This is true even on the last call at the bottom +of the image; don't forget to pad your data as necessary. The required dimensions of the supplied data can be computed for each component as - cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row - cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image + cinfo->comp_info[i].width_in_blocks*block_size samples per row + cinfo->comp_info[i].height_in_blocks*block_size rows in image after jpeg_start_compress() has initialized those fields. If the valid data is smaller than this, it must be padded appropriately. For some sampling factors and image sizes, additional dummy DCT blocks are inserted to make the image a multiple of the MCU dimensions. The library creates such dummy blocks itself; it does not read them from your supplied data. Therefore you -need never pad by more than DCTSIZE samples. An example may help here. +need never pad by more than block_size samples. An example may help here. Assume 2h2v downsampling of YCbCr data, that is cinfo->comp_info[0].h_samp_factor = 2 for Y cinfo->comp_info[0].v_samp_factor = 2 @@ -2671,8 +2677,8 @@ Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The decompression process is otherwise the same as usual. jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a -buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is -the same as for raw-data compression). The buffer you pass must be large +buffer of at least max_v_samp_factor*block_size scanlines (scanline counting +is the same as for raw-data compression). The buffer you pass must be large enough to hold the actual data plus padding to DCT-block boundaries. As with compression, any entirely dummy DCT blocks are not processed so you need not allocate space for them, but the total scanline count includes them. The @@ -2928,10 +2934,10 @@ This does not count any memory allocated by the application, such as a buffer to hold the final output image. The above figures are valid for 8-bit JPEG data precision and a machine with -32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and -quantization pixel buffer. The "fixed-size" data will be somewhat smaller -with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual -color spaces will require different amounts of space. +32-bit ints. For 9-bit to 12-bit JPEG data, double the size of the strip +buffers and quantization pixel buffer. The "fixed-size" data will be +somewhat smaller with 16-bit ints, larger with 64-bit ints. Also, CMYK +or other unusual color spaces will require different amounts of space. The full-image coefficient and pixel buffers, if needed at all, do not have to be fully RAM resident; you can have the library use temporary @@ -2953,27 +2959,34 @@ Library compile-time options A number of compile-time options are available by modifying jmorecfg.h. -The JPEG standard provides for both the baseline 8-bit DCT process and -a 12-bit DCT process. The IJG code supports 12-bit JPEG if you define -BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be -larger than a char, so it affects the surrounding application's image data. -The sample applications cjpeg and djpeg can support 12-bit mode only for PPM -and GIF file formats; you must disable the other file formats to compile a -12-bit cjpeg or djpeg. (install.txt has more information about that.) -At present, a 12-bit library can handle *only* 12-bit images, not both -precisions. (If you need to include both 8- and 12-bit libraries in a single -application, you could probably do it by defining NEED_SHORT_EXTERNAL_NAMES -for just one of the copies. You'd have to access the 8-bit and 12-bit copies -from separate application source files. This is untested ... if you try it, -we'd like to hear whether it works!) - -Note that a 12-bit library always compresses in Huffman optimization mode, -in order to generate valid Huffman tables. This is necessary because our -default Huffman tables only cover 8-bit data. If you need to output 12-bit -files in one pass, you'll have to supply suitable default Huffman tables. -You may also want to supply your own DCT quantization tables; the existing -quality-scaling code has been developed for 8-bit use, and probably doesn't -generate especially good tables for 12-bit. +The IJG code currently supports 8-bit to 12-bit sample data precision by +defining BITS_IN_JSAMPLE as 8, 9, 10, 11, or 12. +Note that a value larger than 8 causes JSAMPLE to be larger than a char, +so it affects the surrounding application's image data. +The sample applications cjpeg and djpeg can support deeper than 8-bit data +only for PPM and GIF file formats; you must disable the other file formats +to compile a 9-bit to 12-bit cjpeg or djpeg. (install.txt has more +information about that.) +Run-time selection and conversion of data precision are currently not +supported and may be added later. +Exception: The transcoding part (jpegtran) supports all settings in a +single instance, since it operates on the level of DCT coefficients and +not sample values. +(If you need to include an 8-bit library and a 9-bit to 12-bit library for +compression or decompression in a single application, you could probably do +it by defining NEED_SHORT_EXTERNAL_NAMES for just one of the copies. You'd +have to access the 8-bit and the 9-bit to 12-bit copies from separate +application source files. This is untested ... if you try it, we'd like to +hear whether it works!) + +Note that the standard Huffman tables are only valid for 8-bit data precision. +If you selected more than 8-bit data precision, cjpeg uses arithmetic coding +by default. The Huffman encoder normally uses entropy optimization to +compute usable tables for higher precision. Otherwise, you'll have to +supply different default Huffman tables. You may also want to supply your +own DCT quantization tables; the existing quality-scaling code has been +developed for 8-bit use, and probably doesn't generate especially good tables +for 9-bit to 12-bit. The maximum number of components (color channels) in the image is determined by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we diff --git a/plugins/AdvaImg/src/LibJPEG/structure.txt b/plugins/AdvaImg/src/LibJPEG/structure.txt index ae9f89f6df..04d957746e 100644 --- a/plugins/AdvaImg/src/LibJPEG/structure.txt +++ b/plugins/AdvaImg/src/LibJPEG/structure.txt @@ -1,6 +1,6 @@ IJG JPEG LIBRARY: SYSTEM ARCHITECTURE -Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. +Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding. This file is part of the Independent JPEG Group's software. For conditions of distribution and use, see the accompanying README file. @@ -170,16 +170,16 @@ can be simplified a little if they work on padded data: it's not necessary to have special cases at the right and bottom edges. Therefore the interface buffer is always an integral number of blocks wide and high, and we expect compression preprocessing to pad the source data properly. Padding will occur -only to the next block (N-sample) boundary. In an interleaved-scan situation, -additional dummy blocks may be used to fill out MCUs, but the MCU assembly and -disassembly logic will create or discard these blocks internally. (This is -advantageous for speed reasons, since we avoid DCTing the dummy blocks. -It also permits a small reduction in file size, because the compressor can -choose dummy block contents so as to minimize their size in compressed form. -Finally, it makes the interface buffer specification independent of whether -the file is actually interleaved or not.) Applications that wish to deal -directly with the downsampled data must provide similar buffering and padding -for odd-sized images. +only to the next block (block_size-sample) boundary. In an interleaved-scan +situation, additional dummy blocks may be used to fill out MCUs, but the MCU +assembly and disassembly logic will create or discard these blocks internally. +(This is advantageous for speed reasons, since we avoid DCTing the dummy +blocks. It also permits a small reduction in file size, because the +compressor can choose dummy block contents so as to minimize their size +in compressed form. Finally, it makes the interface buffer specification +independent of whether the file is actually interleaved or not.) +Applications that wish to deal directly with the downsampled data must +provide similar buffering and padding for odd-sized images. *** Poor man's object-oriented programming *** @@ -345,9 +345,10 @@ The objects shown above are: require context rows above and below the current row group; the preprocessing controller is responsible for supplying these rows via proper buffering. The downsampler is responsible for edge expansion at the right - edge (i.e., extending each sample row to a multiple of N samples); but the - preprocessing controller is responsible for vertical edge expansion (i.e., - duplicating the bottom sample row as needed to make a multiple of N rows). + edge (i.e., extending each sample row to a multiple of block_size samples); + but the preprocessing controller is responsible for vertical edge expansion + (i.e., duplicating the bottom sample row as needed to make a multiple of + block_size rows). * Coefficient controller: buffer controller for the DCT-coefficient data. This controller handles MCU assembly, including insertion of dummy DCT @@ -651,8 +652,8 @@ contain quantized coefficients everywhere outside the DCT/IDCT subsystems. quantization a la JPEG Part 3.) Notice that the allocation unit is now a row of 8x8 coefficient blocks, -corresponding to N rows of samples. Otherwise the structure is much the same -as for samples, and for the same reasons. +corresponding to block_size rows of samples. Otherwise the structure +is much the same as for samples, and for the same reasons. On machines where malloc() can't handle a request bigger than 64Kb, this data structure limits us to rows of less than 512 JBLOCKs, or a picture width of diff --git a/plugins/AdvaImg/src/LibJPEG/transupp.c b/plugins/AdvaImg/src/LibJPEG/transupp.c index e0af04cbd8..0524d1fc29 100644 --- a/plugins/AdvaImg/src/LibJPEG/transupp.c +++ b/plugins/AdvaImg/src/LibJPEG/transupp.c @@ -1,7 +1,7 @@ /* * transupp.c * - * Copyright (C) 1997-2012, Thomas G. Lane, Guido Vollbeding. + * Copyright (C) 1997-2013, Thomas G. Lane, Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -113,6 +113,116 @@ do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, } +LOCAL(void) +do_crop_ext (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, + JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, + jvirt_barray_ptr *src_coef_arrays, + jvirt_barray_ptr *dst_coef_arrays) +/* Crop. This is only used when no rotate/flip is requested with the crop. + * Extension: If the destination size is larger than the source, we fill in + * the extra area with zero (neutral gray). Note we also have to zero partial + * iMCUs at the right and bottom edge of the source image area in this case. + */ +{ + JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height; + JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; + int ci, offset_y; + JBLOCKARRAY src_buffer, dst_buffer; + jpeg_component_info *compptr; + + MCU_cols = srcinfo->output_width / + (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); + MCU_rows = srcinfo->output_height / + (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); + + for (ci = 0; ci < dstinfo->num_components; ci++) { + compptr = dstinfo->comp_info + ci; + comp_width = MCU_cols * compptr->h_samp_factor; + comp_height = MCU_rows * compptr->v_samp_factor; + x_crop_blocks = x_crop_offset * compptr->h_samp_factor; + y_crop_blocks = y_crop_offset * compptr->v_samp_factor; + for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; + dst_blk_y += compptr->v_samp_factor) { + dst_buffer = (*srcinfo->mem->access_virt_barray) + ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, + (JDIMENSION) compptr->v_samp_factor, TRUE); + if (dstinfo->jpeg_height > srcinfo->output_height) { + if (dst_blk_y < y_crop_blocks || + dst_blk_y >= comp_height + y_crop_blocks) { + for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { + FMEMZERO(dst_buffer[offset_y], + compptr->width_in_blocks * SIZEOF(JBLOCK)); + } + continue; + } + src_buffer = (*srcinfo->mem->access_virt_barray) + ((j_common_ptr) srcinfo, src_coef_arrays[ci], + dst_blk_y - y_crop_blocks, + (JDIMENSION) compptr->v_samp_factor, FALSE); + } else { + src_buffer = (*srcinfo->mem->access_virt_barray) + ((j_common_ptr) srcinfo, src_coef_arrays[ci], + dst_blk_y + y_crop_blocks, + (JDIMENSION) compptr->v_samp_factor, FALSE); + } + for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { + if (dstinfo->jpeg_width > srcinfo->output_width) { + if (x_crop_blocks > 0) { + FMEMZERO(dst_buffer[offset_y], + x_crop_blocks * SIZEOF(JBLOCK)); + } + jcopy_block_row(src_buffer[offset_y], + dst_buffer[offset_y] + x_crop_blocks, + comp_width); + if (compptr->width_in_blocks > comp_width + x_crop_blocks) { + FMEMZERO(dst_buffer[offset_y] + + comp_width + x_crop_blocks, + (compptr->width_in_blocks - + comp_width - x_crop_blocks) * SIZEOF(JBLOCK)); + } + } else { + jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, + dst_buffer[offset_y], + compptr->width_in_blocks); + } + } + } + } +} + + +LOCAL(void) +do_wipe (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, + JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, + jvirt_barray_ptr *src_coef_arrays, + JDIMENSION drop_width, JDIMENSION drop_height) +/* Wipe - drop content of specified area, fill with zero (neutral gray) */ +{ + JDIMENSION comp_width, comp_height; + JDIMENSION blk_y, x_wipe_blocks, y_wipe_blocks; + int ci, offset_y; + JBLOCKARRAY buffer; + jpeg_component_info *compptr; + + for (ci = 0; ci < dstinfo->num_components; ci++) { + compptr = dstinfo->comp_info + ci; + comp_width = drop_width * compptr->h_samp_factor; + comp_height = drop_height * compptr->v_samp_factor; + x_wipe_blocks = x_crop_offset * compptr->h_samp_factor; + y_wipe_blocks = y_crop_offset * compptr->v_samp_factor; + for (blk_y = 0; blk_y < comp_height; blk_y += compptr->v_samp_factor) { + buffer = (*srcinfo->mem->access_virt_barray) + ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y + y_wipe_blocks, + (JDIMENSION) compptr->v_samp_factor, TRUE); + for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { + FMEMZERO(buffer[offset_y] + x_wipe_blocks, + comp_width * SIZEOF(JBLOCK)); + } + } + } +} + + LOCAL(void) do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, @@ -888,7 +998,8 @@ jtransform_request_workspace (j_decompress_ptr srcinfo, /* Determine number of components in output image */ if (info->force_grayscale && - srcinfo->jpeg_color_space == JCS_YCbCr && + (srcinfo->jpeg_color_space == JCS_YCbCr || + srcinfo->jpeg_color_space == JCS_BG_YCC) && srcinfo->num_components == 3) /* We'll only process the first component */ info->num_components = 1; @@ -965,39 +1076,81 @@ jtransform_request_workspace (j_decompress_ptr srcinfo, info->crop_xoffset = 0; /* default to +0 */ if (info->crop_yoffset_set == JCROP_UNSET) info->crop_yoffset = 0; /* default to +0 */ - if (info->crop_xoffset >= info->output_width || - info->crop_yoffset >= info->output_height) - ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); - if (info->crop_width_set == JCROP_UNSET) + if (info->crop_width_set == JCROP_UNSET) { + if (info->crop_xoffset >= info->output_width) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); info->crop_width = info->output_width - info->crop_xoffset; - if (info->crop_height_set == JCROP_UNSET) + } else { + /* Check for crop extension */ + if (info->crop_width > info->output_width) { + /* Crop extension does not work when transforming! */ + if (info->transform != JXFORM_NONE || + info->crop_xoffset >= info->crop_width || + info->crop_xoffset > info->crop_width - info->output_width) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); + } else { + if (info->crop_xoffset >= info->output_width || + info->crop_width <= 0 || + info->crop_xoffset > info->output_width - info->crop_width) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); + } + } + if (info->crop_height_set == JCROP_UNSET) { + if (info->crop_yoffset >= info->output_height) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); info->crop_height = info->output_height - info->crop_yoffset; - /* Ensure parameters are valid */ - if (info->crop_width <= 0 || info->crop_width > info->output_width || - info->crop_height <= 0 || info->crop_height > info->output_height || - info->crop_xoffset > info->output_width - info->crop_width || - info->crop_yoffset > info->output_height - info->crop_height) - ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); + } else { + /* Check for crop extension */ + if (info->crop_height > info->output_height) { + /* Crop extension does not work when transforming! */ + if (info->transform != JXFORM_NONE || + info->crop_yoffset >= info->crop_height || + info->crop_yoffset > info->crop_height - info->output_height) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); + } else { + if (info->crop_yoffset >= info->output_height || + info->crop_height <= 0 || + info->crop_yoffset > info->output_height - info->crop_height) + ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); + } + } /* Convert negative crop offsets into regular offsets */ - if (info->crop_xoffset_set == JCROP_NEG) - xoffset = info->output_width - info->crop_width - info->crop_xoffset; - else + if (info->crop_xoffset_set != JCROP_NEG) xoffset = info->crop_xoffset; - if (info->crop_yoffset_set == JCROP_NEG) - yoffset = info->output_height - info->crop_height - info->crop_yoffset; + else if (info->crop_width > info->output_width) /* crop extension */ + xoffset = info->crop_width - info->output_width - info->crop_xoffset; else + xoffset = info->output_width - info->crop_width - info->crop_xoffset; + if (info->crop_yoffset_set != JCROP_NEG) yoffset = info->crop_yoffset; - /* Now adjust so that upper left corner falls at an iMCU boundary */ - if (info->crop_width_set == JCROP_FORCE) - info->output_width = info->crop_width; - else - info->output_width = - info->crop_width + (xoffset % info->iMCU_sample_width); - if (info->crop_height_set == JCROP_FORCE) - info->output_height = info->crop_height; + else if (info->crop_height > info->output_height) /* crop extension */ + yoffset = info->crop_height - info->output_height - info->crop_yoffset; else - info->output_height = - info->crop_height + (yoffset % info->iMCU_sample_height); + yoffset = info->output_height - info->crop_height - info->crop_yoffset; + /* Now adjust so that upper left corner falls at an iMCU boundary */ + if (info->transform == JXFORM_WIPE) { + /* Ensure the effective wipe region will cover the requested */ + info->drop_width = (JDIMENSION) jdiv_round_up + ((long) (info->crop_width + (xoffset % info->iMCU_sample_width)), + (long) info->iMCU_sample_width); + info->drop_height = (JDIMENSION) jdiv_round_up + ((long) (info->crop_height + (yoffset % info->iMCU_sample_height)), + (long) info->iMCU_sample_height); + } else { + /* Ensure the effective crop region will cover the requested */ + if (info->crop_width_set == JCROP_FORCE || + info->crop_width > info->output_width) + info->output_width = info->crop_width; + else + info->output_width = + info->crop_width + (xoffset % info->iMCU_sample_width); + if (info->crop_height_set == JCROP_FORCE || + info->crop_height > info->output_height) + info->output_height = info->crop_height; + else + info->output_height = + info->crop_height + (yoffset % info->iMCU_sample_height); + } /* Save x/y offsets measured in iMCUs */ info->x_crop_offset = xoffset / info->iMCU_sample_width; info->y_crop_offset = yoffset / info->iMCU_sample_height; @@ -1013,7 +1166,9 @@ jtransform_request_workspace (j_decompress_ptr srcinfo, transpose_it = FALSE; switch (info->transform) { case JXFORM_NONE: - if (info->x_crop_offset != 0 || info->y_crop_offset != 0) + if (info->x_crop_offset != 0 || info->y_crop_offset != 0 || + info->output_width > srcinfo->output_width || + info->output_height > srcinfo->output_height) need_workspace = TRUE; /* No workspace needed if neither cropping nor transforming */ break; @@ -1067,6 +1222,8 @@ jtransform_request_workspace (j_decompress_ptr srcinfo, need_workspace = TRUE; transpose_it = TRUE; break; + case JXFORM_WIPE: + break; } /* Allocate workspace if needed. @@ -1327,12 +1484,13 @@ jtransform_adjust_parameters (j_decompress_ptr srcinfo, { /* If force-to-grayscale is requested, adjust destination parameters */ if (info->force_grayscale) { - /* First, ensure we have YCbCr or grayscale data, and that the source's + /* First, ensure we have YCC or grayscale data, and that the source's * Y channel is full resolution. (No reasonable person would make Y * be less than full resolution, so actually coping with that case * isn't worth extra code space. But we check it to avoid crashing.) */ - if (((dstinfo->jpeg_color_space == JCS_YCbCr && + if ((((dstinfo->jpeg_color_space == JCS_YCbCr || + dstinfo->jpeg_color_space == JCS_BG_YCC) && dstinfo->num_components == 3) || (dstinfo->jpeg_color_space == JCS_GRAYSCALE && dstinfo->num_components == 1)) && @@ -1427,7 +1585,11 @@ jtransform_execute_transform (j_decompress_ptr srcinfo, */ switch (info->transform) { case JXFORM_NONE: - if (info->x_crop_offset != 0 || info->y_crop_offset != 0) + if (info->output_width > srcinfo->output_width || + info->output_height > srcinfo->output_height) + do_crop_ext(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, + src_coef_arrays, dst_coef_arrays); + else if (info->x_crop_offset != 0 || info->y_crop_offset != 0) do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; @@ -1463,6 +1625,10 @@ jtransform_execute_transform (j_decompress_ptr srcinfo, do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; + case JXFORM_WIPE: + do_wipe(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, + src_coef_arrays, info->drop_width, info->drop_height); + break; } } diff --git a/plugins/AdvaImg/src/LibJPEG/transupp.h b/plugins/AdvaImg/src/LibJPEG/transupp.h index 6e4d65afbe..28a1a9cb7a 100644 --- a/plugins/AdvaImg/src/LibJPEG/transupp.h +++ b/plugins/AdvaImg/src/LibJPEG/transupp.h @@ -1,7 +1,7 @@ /* * transupp.h * - * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding. + * Copyright (C) 1997-2013, Thomas G. Lane, Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * @@ -51,14 +51,17 @@ * * We also offer a lossless-crop option, which discards data outside a given * image region but losslessly preserves what is inside. Like the rotate and - * flip transforms, lossless crop is restricted by the JPEG format: the upper - * left corner of the selected region must fall on an iMCU boundary. If this - * does not hold for the given crop parameters, we silently move the upper left - * corner up and/or left to make it so, simultaneously increasing the region - * dimensions to keep the lower right crop corner unchanged. (Thus, the + * flip transforms, lossless crop is restricted by the current JPEG format: the + * upper left corner of the selected region must fall on an iMCU boundary. If + * this does not hold for the given crop parameters, we silently move the upper + * left corner up and/or left to make it so, simultaneously increasing the + * region dimensions to keep the lower right crop corner unchanged. (Thus, the * output image covers at least the requested region, but may cover more.) * The adjustment of the region dimensions may be optionally disabled. * + * A complementary lossless-wipe option is provided to discard (gray out) data + * inside a given image region while losslessly preserving what is outside. + * * We also provide a lossless-resize option, which is kind of a lossless-crop * operation in the DCT coefficient block domain - it discards higher-order * coefficients and losslessly preserves lower-order coefficients of a @@ -102,7 +105,8 @@ typedef enum { JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */ JXFORM_ROT_90, /* 90-degree clockwise rotation */ JXFORM_ROT_180, /* 180-degree rotation */ - JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */ + JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */ + JXFORM_WIPE /* wipe */ } JXFORM_CODE; /* @@ -130,7 +134,7 @@ typedef struct { boolean perfect; /* if TRUE, fail if partial MCUs are requested */ boolean trim; /* if TRUE, trim partial MCUs as needed */ boolean force_grayscale; /* if TRUE, convert color image to grayscale */ - boolean crop; /* if TRUE, crop source image */ + boolean crop; /* if TRUE, crop or wipe source image */ /* Crop parameters: application need not set these unless crop is TRUE. * These can be filled in by jtransform_parse_crop_spec(). @@ -151,6 +155,8 @@ typedef struct { JDIMENSION output_height; JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */ JDIMENSION y_crop_offset; + JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */ + JDIMENSION drop_height; int iMCU_sample_width; /* destination iMCU size */ int iMCU_sample_height; } jpeg_transform_info; diff --git a/plugins/AdvaImg/src/LibJPEG/usage.txt b/plugins/AdvaImg/src/LibJPEG/usage.txt index c8ea77cd26..ca9f7d74a4 100644 --- a/plugins/AdvaImg/src/LibJPEG/usage.txt +++ b/plugins/AdvaImg/src/LibJPEG/usage.txt @@ -158,10 +158,10 @@ file size is about the same --- often a little smaller. Switches for advanced users: - -arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG - is not yet widely implemented, so many decoders will - be unable to view an arithmetic coded JPEG file at - all. + -arithmetic Use arithmetic coding. + CAUTION: arithmetic coded JPEG is not yet widely + implemented, so many decoders will be unable to + view an arithmetic coded JPEG file at all. -block N Set DCT block size. All N from 1 to 16 are possible. Default is 8 (baseline format). @@ -188,6 +188,25 @@ Switches for advanced users: so many decoders will be unable to view a reversible color transformed JPEG file at all. + -bgycc Create big gamut YCC JPEG file. + In this type of encoding the color difference + components are quantized further by a factor of 2 + compared to the normal Cb/Cr values, thus creating + space to allow larger color values with higher + saturation than the normal gamut limits to be encoded. + In order to compensate for the loss of color fidelity + compared to a normal YCC encoded file, the color + quantization tables can be adjusted accordingly. + For example, cjpeg -bgycc -quality 80,90 will give + similar results as cjpeg -quality 80. + CAUTION: For correct decompression a decoder with big + gamut YCC support (JFIF version 2) is required. + An old decoder may or may not display a big gamut YCC + encoded JPEG file, depending on JFIF version check + and corresponding warning/error configuration. + In case of a granted decompression the old decoder + will display the image with half saturated colors. + -dct int Use integer DCT method (default). -dct fast Use fast integer DCT (less accurate). -dct float Use floating-point DCT method. @@ -387,7 +406,8 @@ quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At present, -optimize mode is always selected when generating progressive JPEG files.) -GIF input files are no longer supported, to avoid the Unisys LZW patent. +GIF input files are no longer supported, to avoid the Unisys LZW patent +(now expired). (Conversion of GIF files to JPEG is usually a bad idea anyway.) @@ -415,8 +435,9 @@ it may run out of memory even with -maxmemory 0. In that case you can still decompress, with some loss of image quality, by specifying -onepass for one-pass quantization. -To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files. These -are larger than they should be, but are readable by standard GIF decoders. +To avoid the Unisys LZW patent (now expired), djpeg produces uncompressed GIF +files. These are larger than they should be, but are readable by standard GIF +decoders. HINTS FOR BOTH PROGRAMS @@ -533,14 +554,20 @@ image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format: the upper left corner of the selected region must fall on an iMCU boundary. If this does not hold for the given crop parameters, we silently move the upper -left corner up and/or left to make it so, simultaneously increasing the region -dimensions to keep the lower right crop corner unchanged. (Thus, the output -image covers at least the requested region, but may cover more.) +left corner up and/or left to make it so, simultaneously increasing the +region dimensions to keep the lower right crop corner unchanged. (Thus, the +output image covers at least the requested region, but may cover more.) +The adjustment of the region dimensions may be optionally disabled. The image can be losslessly cropped by giving the switch: -crop WxH+X+Y Crop to a rectangular subarea of width W, height H starting at point X,Y. +A complementary lossless-wipe option is provided to discard (gray out) data +inside a given image region while losslessly preserving what is outside: + -wipe WxH+X+Y Wipe (gray out) a rectangular subarea of + width W, height H starting at point X,Y. + Other not-strictly-lossless transformation switches are: -grayscale Force grayscale output. -- cgit v1.2.3