From 844c971d8aeb2693bc01739963f5da675b989d03 Mon Sep 17 00:00:00 2001
From: Kirill Volinsky
+Return to the PCRE index page.
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+Two aspects of performance are discussed below: memory usage and processing
+time. The way you express your pattern as a regular expression can affect both
+of them.
+
+Patterns are compiled by PCRE into a reasonably efficient interpretive code, so
+that most simple patterns do not use much memory. However, there is one case
+where the memory usage of a compiled pattern can be unexpectedly large. If a
+parenthesized subpattern has a quantifier with a minimum greater than 1 and/or
+a limited maximum, the whole subpattern is repeated in the compiled code. For
+example, the pattern
+pcreperform man page
+
+
+PCRE PERFORMANCE
+
+
+COMPILED PATTERN MEMORY USAGE
+
+
+ (abc|def){2,4}
+
+is compiled as if it were
+
+ (abc|def)(abc|def)((abc|def)(abc|def)?)?
+
+(Technical aside: It is done this way so that backtrack points within each of
+the repetitions can be independently maintained.)
+
+For regular expressions whose quantifiers use only small numbers, this is not +usually a problem. However, if the numbers are large, and particularly if such +repetitions are nested, the memory usage can become an embarrassment. For +example, the very simple pattern +
+ ((ab){1,1000}c){1,3} ++uses 51K bytes when compiled using the 8-bit library. When PCRE is compiled +with its default internal pointer size of two bytes, the size limit on a +compiled pattern is 64K data units, and this is reached with the above pattern +if the outer repetition is increased from 3 to 4. PCRE can be compiled to use +larger internal pointers and thus handle larger compiled patterns, but it is +better to try to rewrite your pattern to use less memory if you can. + +
+One way of reducing the memory usage for such patterns is to make use of PCRE's +"subroutine" +facility. Re-writing the above pattern as +
+ ((ab)(?2){0,999}c)(?1){0,2} ++reduces the memory requirements to 18K, and indeed it remains under 20K even +with the outer repetition increased to 100. However, this pattern is not +exactly equivalent, because the "subroutine" calls are treated as +atomic groups +into which there can be no backtracking if there is a subsequent matching +failure. Therefore, PCRE cannot do this kind of rewriting automatically. +Furthermore, there is a noticeable loss of speed when executing the modified +pattern. Nevertheless, if the atomic grouping is not a problem and the loss of +speed is acceptable, this kind of rewriting will allow you to process patterns +that PCRE cannot otherwise handle. + +
+When pcre_exec() or pcre[16|32]_exec() is used for matching, certain +kinds of pattern can cause it to use large amounts of the process stack. In +some environments the default process stack is quite small, and if it runs out +the result is often SIGSEGV. This issue is probably the most frequently raised +problem with PCRE. Rewriting your pattern can often help. The +pcrestack +documentation discusses this issue in detail. +
++Certain items in regular expression patterns are processed more efficiently +than others. It is more efficient to use a character class like [aeiou] than a +set of single-character alternatives such as (a|e|i|o|u). In general, the +simplest construction that provides the required behaviour is usually the most +efficient. Jeffrey Friedl's book contains a lot of useful general discussion +about optimizing regular expressions for efficient performance. This document +contains a few observations about PCRE. +
++Using Unicode character properties (the \p, \P, and \X escapes) is slow, +because PCRE has to use a multi-stage table lookup whenever it needs a +character's property. If you can find an alternative pattern that does not use +character properties, it will probably be faster. +
++By default, the escape sequences \b, \d, \s, and \w, and the POSIX +character classes such as [:alpha:] do not use Unicode properties, partly for +backwards compatibility, and partly for performance reasons. However, you can +set PCRE_UCP if you want Unicode character properties to be used. This can +double the matching time for items such as \d, when matched with +a traditional matching function; the performance loss is less with +a DFA matching function, and in both cases there is not much difference for +\b. +
++When a pattern begins with .* not in parentheses, or in parentheses that are +not the subject of a backreference, and the PCRE_DOTALL option is set, the +pattern is implicitly anchored by PCRE, since it can match only at the start of +a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this +optimization, because the . metacharacter does not then match a newline, and if +the subject string contains newlines, the pattern may match from the character +immediately following one of them instead of from the very start. For example, +the pattern +
+ .*second ++matches the subject "first\nand second" (where \n stands for a newline +character), with the match starting at the seventh character. In order to do +this, PCRE has to retry the match starting after every newline in the subject. + +
+If you are using such a pattern with subject strings that do not contain +newlines, the best performance is obtained by setting PCRE_DOTALL, or starting +the pattern with ^.* or ^.*? to indicate explicit anchoring. That saves PCRE +from having to scan along the subject looking for a newline to restart at. +
++Beware of patterns that contain nested indefinite repeats. These can take a +long time to run when applied to a string that does not match. Consider the +pattern fragment +
+ ^(a+)* ++This can match "aaaa" in 16 different ways, and this number increases very +rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 +times, and for each of those cases other than 0 or 4, the + repeats can match +different numbers of times.) When the remainder of the pattern is such that the +entire match is going to fail, PCRE has in principle to try every possible +variation, and this can take an extremely long time, even for relatively short +strings. + +
+An optimization catches some of the more simple cases such as +
+ (a+)*b ++where a literal character follows. Before embarking on the standard matching +procedure, PCRE checks that there is a "b" later in the subject string, and if +there is not, it fails the match immediately. However, when there is no +following literal this optimization cannot be used. You can see the difference +by comparing the behaviour of +
+ (a+)*\d ++with the pattern above. The former gives a failure almost instantly when +applied to a whole line of "a" characters, whereas the latter takes an +appreciable time with strings longer than about 20 characters. + +
+In many cases, the solution to this kind of performance issue is to use an +atomic group or a possessive quantifier. +
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+Last updated: 25 August 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page. +
-- cgit v1.2.3