// ========================================================== // Bitmap conversion routines // Thresholding and halftoning functions // Design and implementation by // - Hervé Drolon (drolon@infonie.fr) // - Dennis Lim (dlkj@users.sourceforge.net) // - Thomas Chmielewski (Chmielewski.Thomas@oce.de) // // Main reference : Ulichney, R., Digital Halftoning, The MIT Press, Cambridge, MA, 1987 // // This file is part of FreeImage 3 // // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER // THIS DISCLAIMER. // // Use at your own risk! // ========================================================== #include "../stdafx.h" static const int WHITE = 255; static const int BLACK = 0; // Floyd & Steinberg error diffusion dithering // This algorithm use the following filter // * 7 // 3 5 1 (1/16) static FIBITMAP* FloydSteinberg(FIBITMAP *dib) { #define RAND(RN) (((seed = 1103515245 * seed + 12345) >> 12) % (RN)) #define INITERR(X, Y) (((int) X) - (((int) Y) ? WHITE : BLACK) + ((WHITE/2)-((int)X)) / 2) int seed = 0; int x, y, p, pixel, threshold, error; int width, height, pitch; BYTE *bits, *new_bits; FIBITMAP *new_dib = NULL; // allocate a 8-bit DIB width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); pitch = FreeImage_GetPitch(dib); new_dib = FreeImage_Allocate(width, height, 8); if(NULL == new_dib) return NULL; // allocate space for error arrays int *lerr = (int*)malloc (width * sizeof(int)); int *cerr = (int*)malloc (width * sizeof(int)); memset(lerr, 0, width * sizeof(int)); memset(cerr, 0, width * sizeof(int)); // left border error = 0; for(y = 0; y < height; y++) { bits = FreeImage_GetScanLine(dib, y); new_bits = FreeImage_GetScanLine(new_dib, y); threshold = (WHITE / 2 + RAND(129) - 64); pixel = bits[0] + error; p = (pixel > threshold) ? WHITE : BLACK; error = pixel - p; new_bits[0] = (BYTE)p; } // right border error = 0; for(y = 0; y < height; y++) { bits = FreeImage_GetScanLine(dib, y); new_bits = FreeImage_GetScanLine(new_dib, y); threshold = (WHITE / 2 + RAND(129) - 64); pixel = bits[width-1] + error; p = (pixel > threshold) ? WHITE : BLACK; error = pixel - p; new_bits[width-1] = (BYTE)p; } // top border bits = FreeImage_GetBits(dib); new_bits = FreeImage_GetBits(new_dib); error = 0; for(x = 0; x < width; x++) { threshold = (WHITE / 2 + RAND(129) - 64); pixel = bits[x] + error; p = (pixel > threshold) ? WHITE : BLACK; error = pixel - p; new_bits[x] = (BYTE)p; lerr[x] = INITERR(bits[x], p); } // interior bits for(y = 1; y < height; y++) { // scan left to right bits = FreeImage_GetScanLine(dib, y); new_bits = FreeImage_GetScanLine(new_dib, y); cerr[0] = INITERR(bits[0], new_bits[0]); for(x = 1; x < width - 1; x++) { error = (lerr[x-1] + 5 * lerr[x] + 3 * lerr[x+1] + 7 * cerr[x-1]) / 16; pixel = bits[x] + error; if(pixel > (WHITE / 2)) { new_bits[x] = WHITE; cerr[x] = pixel - WHITE; } else { new_bits[x] = BLACK; cerr[x] = pixel - BLACK; } } // set errors for ends of the row cerr[0] = INITERR (bits[0], new_bits[0]); cerr[width - 1] = INITERR (bits[width - 1], new_bits[width - 1]); // swap error buffers int *terr = lerr; lerr = cerr; cerr = terr; } free(lerr); free(cerr); return new_dib; } // ========================================================== // Bayer ordered dispersed dot dithering // // Function taken from "Ordered Dithering, Stephen Hawley, Graphics Gems, Academic Press, 1990" // This function is used to generate a Bayer dithering matrice whose dimension are 2^size by 2^size // static int dithervalue(int x, int y, int size) { int d = 0; /* * calculate the dither value at a particular * (x, y) over the size of the matrix. */ while (size-->0) { /* Think of d as the density. At every iteration, * d is shifted left one and a new bit is put in the * low bit based on x and y. If x is odd and y is even, * or x is even and y is odd, a bit is put in. This * generates the checkerboard seen in dithering. * This quantity is shifted left again and the low bit of * y is added in. * This whole thing interleaves a checkerboard bit pattern * and y's bits, which is the value you want. */ d = (d <<1 | (x&1 ^ y&1))<<1 | y&1; x >>= 1; y >>= 1; } return d; } // Ordered dithering with a Bayer matrix of size 2^order by 2^order // static FIBITMAP* OrderedDispersedDot(FIBITMAP *dib, int order) { int x, y; int width, height; BYTE *bits, *new_bits; FIBITMAP *new_dib = NULL; // allocate a 8-bit DIB width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); new_dib = FreeImage_Allocate(width, height, 8); if(NULL == new_dib) return NULL; // build the dithering matrix int l = (1 << order); // square of dither matrix order; the dimensions of the matrix BYTE *matrix = (BYTE*)malloc(l*l * sizeof(BYTE)); for(int i = 0; i < l*l; i++) { // according to "Purdue University: Digital Image Processing Laboratory: Image Halftoning, April 30th, 2006 matrix[i] = (BYTE)( 255 * (((double)dithervalue(i / l, i % l, order) + 0.5) / (l*l)) ); } // perform the dithering for(y = 0; y < height; y++) { // scan left to right bits = FreeImage_GetScanLine(dib, y); new_bits = FreeImage_GetScanLine(new_dib, y); for(x = 0; x < width; x++) { if(bits[x] > matrix[(x % l) + l * (y % l)]) { new_bits[x] = WHITE; } else { new_bits[x] = BLACK; } } } free(matrix); return new_dib; } // ========================================================== // Ordered clustered dot dithering // // NB : The predefined dither matrices are the same as matrices used in // the Netpbm package (http://netpbm.sourceforge.net) and are defined in Ulichney's book. // See also : The newsprint web site at http://www.cl.cam.ac.uk/~and1000/newsprint/ // for more technical info on this dithering technique // static FIBITMAP* OrderedClusteredDot(FIBITMAP *dib, int order) { // Order-3 clustered dithering matrix. int cluster3[] = { 9,11,10, 8, 6, 7, 12,17,16, 5, 0, 1, 13,14,15, 4, 3, 2, 8, 6, 7, 9,11,10, 5, 0, 1,12,17,16, 4, 3, 2,13,14,15 }; // Order-4 clustered dithering matrix. int cluster4[] = { 18,20,19,16,13,11,12,15, 27,28,29,22, 4, 3, 2, 9, 26,31,30,21, 5, 0, 1,10, 23,25,24,17, 8, 6, 7,14, 13,11,12,15,18,20,19,16, 4, 3, 2, 9,27,28,29,22, 5, 0, 1,10,26,31,30,21, 8, 6, 7,14,23,25,24,17 }; // Order-8 clustered dithering matrix. int cluster8[] = { 64, 69, 77, 87, 86, 76, 68, 67, 63, 58, 50, 40, 41, 51, 59, 60, 70, 94,100,109,108, 99, 93, 75, 57, 33, 27, 18, 19, 28, 34, 52, 78,101,114,116,115,112, 98, 83, 49, 26, 13, 11, 12, 15, 29, 44, 88,110,123,124,125,118,107, 85, 39, 17, 4, 3, 2, 9, 20, 42, 89,111,122,127,126,117,106, 84, 38, 16, 5, 0, 1, 10, 21, 43, 79,102,119,121,120,113, 97, 82, 48, 25, 8, 6, 7, 14, 30, 45, 71, 95,103,104,105, 96, 92, 74, 56, 32, 24, 23, 22, 31, 35, 53, 65, 72, 80, 90, 91, 81, 73, 66, 62, 55, 47, 37, 36, 46, 54, 61, 63, 58, 50, 40, 41, 51, 59, 60, 64, 69, 77, 87, 86, 76, 68, 67, 57, 33, 27, 18, 19, 28, 34, 52, 70, 94,100,109,108, 99, 93, 75, 49, 26, 13, 11, 12, 15, 29, 44, 78,101,114,116,115,112, 98, 83, 39, 17, 4, 3, 2, 9, 20, 42, 88,110,123,124,125,118,107, 85, 38, 16, 5, 0, 1, 10, 21, 43, 89,111,122,127,126,117,106, 84, 48, 25, 8, 6, 7, 14, 30, 45, 79,102,119,121,120,113, 97, 82, 56, 32, 24, 23, 22, 31, 35, 53, 71, 95,103,104,105, 96, 92, 74, 62, 55, 47, 37, 36, 46, 54, 61, 65, 72, 80, 90, 91, 81, 73, 66 }; int x, y, pixel; int width, height; BYTE *bits, *new_bits; FIBITMAP *new_dib = NULL; // allocate a 8-bit DIB width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); new_dib = FreeImage_Allocate(width, height, 8); if(NULL == new_dib) return NULL; // select the dithering matrix int *matrix = NULL; switch(order) { case 3: matrix = &cluster3[0]; break; case 4: matrix = &cluster4[0]; break; case 8: matrix = &cluster8[0]; break; default: return NULL; } // scale the dithering matrix int l = 2 * order; int scale = 256 / (l * order); for(y = 0; y < l; y++) { for(x = 0; x < l; x++) { matrix[y*l + x] *= scale; } } // perform the dithering for(y = 0; y < height; y++) { // scan left to right bits = FreeImage_GetScanLine(dib, y); new_bits = FreeImage_GetScanLine(new_dib, y); for(x = 0; x < width; x++) { pixel = bits[x]; if(pixel >= matrix[(y % l) + l * (x % l)]) { new_bits[x] = WHITE; } else { new_bits[x] = BLACK; } } } return new_dib; } // ========================================================== // Halftoning function // FIBITMAP * DLL_CALLCONV FreeImage_Dither(FIBITMAP *dib, FREE_IMAGE_DITHER algorithm) { FIBITMAP *input = NULL, *dib8 = NULL; if(!FreeImage_HasPixels(dib)) return NULL; const unsigned bpp = FreeImage_GetBPP(dib); if(bpp == 1) { // Just clone the dib and adjust the palette if needed FIBITMAP *new_dib = FreeImage_Clone(dib); if(NULL == new_dib) return NULL; if(FreeImage_GetColorType(new_dib) == FIC_PALETTE) { // Build a monochrome palette RGBQUAD *pal = FreeImage_GetPalette(new_dib); pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0; pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255; } return new_dib; } // Convert the input dib to a 8-bit greyscale dib // switch(bpp) { case 8: if(FreeImage_GetColorType(dib) == FIC_MINISBLACK) { input = dib; } else { input = FreeImage_ConvertToGreyscale(dib); } break; case 4: case 16: case 24: case 32: input = FreeImage_ConvertToGreyscale(dib); break; } if(NULL == input) return NULL; // Apply the dithering algorithm switch(algorithm) { case FID_FS: dib8 = FloydSteinberg(input); break; case FID_BAYER4x4: dib8 = OrderedDispersedDot(input, 2); break; case FID_BAYER8x8: dib8 = OrderedDispersedDot(input, 3); break; case FID_BAYER16x16: dib8 = OrderedDispersedDot(input, 4); break; case FID_CLUSTER6x6: dib8 = OrderedClusteredDot(input, 3); break; case FID_CLUSTER8x8: dib8 = OrderedClusteredDot(input, 4); break; case FID_CLUSTER16x16: dib8 = OrderedClusteredDot(input, 8); break; } if(input != dib) { FreeImage_Unload(input); } // Build a greyscale palette (needed by threshold) RGBQUAD *grey_pal = FreeImage_GetPalette(dib8); for(int i = 0; i < 256; i++) { grey_pal[i].rgbRed = (BYTE)i; grey_pal[i].rgbGreen = (BYTE)i; grey_pal[i].rgbBlue = (BYTE)i; } // Convert to 1-bit FIBITMAP *new_dib = FreeImage_Threshold(dib8, 128); FreeImage_Unload(dib8); // copy metadata from src to dst FreeImage_CloneMetadata(new_dib, dib); return new_dib; } // ========================================================== // Thresholding function // FIBITMAP * DLL_CALLCONV FreeImage_Threshold(FIBITMAP *dib, BYTE T) { FIBITMAP *dib8 = NULL; if(!FreeImage_HasPixels(dib)) return NULL; const unsigned bpp = FreeImage_GetBPP(dib); if(bpp == 1) { // Just clone the dib and adjust the palette if needed FIBITMAP *new_dib = FreeImage_Clone(dib); if(NULL == new_dib) return NULL; if(FreeImage_GetColorType(new_dib) == FIC_PALETTE) { // Build a monochrome palette RGBQUAD *pal = FreeImage_GetPalette(new_dib); pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0; pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255; } return new_dib; } // Convert the input dib to a 8-bit greyscale dib // switch(bpp) { case 8: if(FreeImage_GetColorType(dib) == FIC_MINISBLACK) { dib8 = dib; } else { dib8 = FreeImage_ConvertToGreyscale(dib); } break; case 4: case 16: case 24: case 32: dib8 = FreeImage_ConvertToGreyscale(dib); break; } if(NULL == dib8) return NULL; // Allocate a new 1-bit DIB int width = FreeImage_GetWidth(dib); int height = FreeImage_GetHeight(dib); FIBITMAP *new_dib = FreeImage_Allocate(width, height, 1); if(NULL == new_dib) return NULL; // Build a monochrome palette RGBQUAD *pal = FreeImage_GetPalette(new_dib); pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0; pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255; // Perform the thresholding // for(int y = 0; y < height; y++) { BYTE *bits8 = FreeImage_GetScanLine(dib8, y); BYTE *bits1 = FreeImage_GetScanLine(new_dib, y); for(int x = 0; x < width; x++) { if(bits8[x] < T) { // Set bit(x, y) to 0 bits1[x >> 3] &= (0xFF7F >> (x & 0x7)); } else { // Set bit(x, y) to 1 bits1[x >> 3] |= (0x80 >> (x & 0x7)); } } } if(dib8 != dib) { FreeImage_Unload(dib8); } // copy metadata from src to dst FreeImage_CloneMetadata(new_dib, dib); return new_dib; }