// ========================================================== // High Dynamic Range bitmap conversion routines // // Design and implementation by // - Hervé Drolon (drolon@infonie.fr) // - Mihail Naydenov (mnaydenov@users.sourceforge.net) // // This file is part of FreeImage 3 // // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER // THIS DISCLAIMER. // // Use at your own risk! // ========================================================== #include "../stdafx.h" // ---------------------------------------------------------- // Convert RGB to and from Yxy, same as in Reinhard et al. SIGGRAPH 2002 // References : // [1] Radiance Home Page [Online] http://radsite.lbl.gov/radiance/HOME.html // [2] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, // Photographic Tone Reproduction for Digital Images, ACM Transactions on Graphics, // 21(3):267-276, 2002 (Proceedings of SIGGRAPH 2002). // [3] J. Tumblin and H.E. Rushmeier, // Tone Reproduction for Realistic Images. IEEE Computer Graphics and Applications, // 13(6):42-48, 1993. // ---------------------------------------------------------- /** nominal CRT primaries */ /* static const float CIE_x_r = 0.640F; static const float CIE_y_r = 0.330F; static const float CIE_x_g = 0.290F; static const float CIE_y_g = 0.600F; static const float CIE_x_b = 0.150F; static const float CIE_y_b = 0.060F; static const float CIE_x_w = 0.3333F; // use true white static const float CIE_y_w = 0.3333F; */ /** sRGB primaries */ static const float CIE_x_r = 0.640F; static const float CIE_y_r = 0.330F; static const float CIE_x_g = 0.300F; static const float CIE_y_g = 0.600F; static const float CIE_x_b = 0.150F; static const float CIE_y_b = 0.060F; static const float CIE_x_w = 0.3127F; // Illuminant D65 static const float CIE_y_w = 0.3290F; static const float CIE_D = ( CIE_x_r*(CIE_y_g - CIE_y_b) + CIE_x_g*(CIE_y_b - CIE_y_r) + CIE_x_b*(CIE_y_r - CIE_y_g) ); static const float CIE_C_rD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_g - CIE_y_b) - CIE_y_w*(CIE_x_g - CIE_x_b) + CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) ); static const float CIE_C_gD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_b - CIE_y_r) - CIE_y_w*(CIE_x_b - CIE_x_r) - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) ); static const float CIE_C_bD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_r - CIE_y_g) - CIE_y_w*(CIE_x_r - CIE_x_g) + CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) ); /** RGB to XYZ (no white balance) */ static const float RGB2XYZ[3][3] = { { CIE_x_r*CIE_C_rD / CIE_D, CIE_x_g*CIE_C_gD / CIE_D, CIE_x_b*CIE_C_bD / CIE_D }, { CIE_y_r*CIE_C_rD / CIE_D, CIE_y_g*CIE_C_gD / CIE_D, CIE_y_b*CIE_C_bD / CIE_D }, { (1 - CIE_x_r-CIE_y_r)*CIE_C_rD / CIE_D, (1 - CIE_x_g-CIE_y_g)*CIE_C_gD / CIE_D, (1 - CIE_x_b-CIE_y_b)*CIE_C_bD / CIE_D } }; /** XYZ to RGB (no white balance) */ static const float XYZ2RGB[3][3] = { {(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g) / CIE_C_rD, (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b) / CIE_C_rD, (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) / CIE_C_rD }, {(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b) / CIE_C_gD, (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) / CIE_C_gD, (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b) / CIE_C_gD }, {(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r) / CIE_C_bD, (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g) / CIE_C_bD, (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) / CIE_C_bD } }; /** This gives approximately the following matrices : static const float RGB2XYZ[3][3] = { { 0.41239083F, 0.35758433F, 0.18048081F }, { 0.21263903F, 0.71516865F, 0.072192319F }, { 0.019330820F, 0.11919473F, 0.95053220F } }; static const float XYZ2RGB[3][3] = { { 3.2409699F, -1.5373832F, -0.49861079F }, { -0.96924376F, 1.8759676F, 0.041555084F }, { 0.055630036F, -0.20397687F, 1.0569715F } }; */ // ---------------------------------------------------------- static const float EPSILON = 1e-06F; static const float INF = 1e+10F; /** Convert in-place floating point RGB data to Yxy.
On output, pixel->red == Y, pixel->green == x, pixel->blue == y @param dib Input RGBF / Output Yxy image @return Returns TRUE if successful, returns FALSE otherwise */ BOOL ConvertInPlaceRGBFToYxy(FIBITMAP *dib) { float result[3]; if(FreeImage_GetImageType(dib) != FIT_RGBF) return FALSE; const unsigned width = FreeImage_GetWidth(dib); const unsigned height = FreeImage_GetHeight(dib); const unsigned pitch = FreeImage_GetPitch(dib); uint8_t *bits = (uint8_t*)FreeImage_GetBits(dib); for(unsigned y = 0; y < height; y++) { FIRGBF *pixel = (FIRGBF*)bits; for(unsigned x = 0; x < width; x++) { result[0] = result[1] = result[2] = 0; for (int i = 0; i < 3; i++) { result[i] += RGB2XYZ[i][0] * pixel[x].red; result[i] += RGB2XYZ[i][1] * pixel[x].green; result[i] += RGB2XYZ[i][2] * pixel[x].blue; } const float W = result[0] + result[1] + result[2]; const float Y = result[1]; if(W > 0) { pixel[x].red = Y; // Y pixel[x].green = result[0] / W; // x pixel[x].blue = result[1] / W; // y } else { pixel[x].red = pixel[x].green = pixel[x].blue = 0; } } // next line bits += pitch; } return TRUE; } /** Convert in-place Yxy image to floating point RGB data.
On input, pixel->red == Y, pixel->green == x, pixel->blue == y @param dib Input Yxy / Output RGBF image @return Returns TRUE if successful, returns FALSE otherwise */ BOOL ConvertInPlaceYxyToRGBF(FIBITMAP *dib) { float result[3]; float X, Y, Z; if(FreeImage_GetImageType(dib) != FIT_RGBF) return FALSE; const unsigned width = FreeImage_GetWidth(dib); const unsigned height = FreeImage_GetHeight(dib); const unsigned pitch = FreeImage_GetPitch(dib); uint8_t *bits = (uint8_t*)FreeImage_GetBits(dib); for(unsigned y = 0; y < height; y++) { FIRGBF *pixel = (FIRGBF*)bits; for(unsigned x = 0; x < width; x++) { Y = pixel[x].red; // Y result[1] = pixel[x].green; // x result[2] = pixel[x].blue; // y if ((Y > EPSILON) && (result[1] > EPSILON) && (result[2] > EPSILON)) { X = (result[1] * Y) / result[2]; Z = (X / result[1]) - X - Y; } else { X = Z = EPSILON; } pixel[x].red = X; pixel[x].green = Y; pixel[x].blue = Z; result[0] = result[1] = result[2] = 0; for (int i = 0; i < 3; i++) { result[i] += XYZ2RGB[i][0] * pixel[x].red; result[i] += XYZ2RGB[i][1] * pixel[x].green; result[i] += XYZ2RGB[i][2] * pixel[x].blue; } pixel[x].red = result[0]; // R pixel[x].green = result[1]; // G pixel[x].blue = result[2]; // B } // next line bits += pitch; } return TRUE; } /** Get the maximum, minimum and average luminance.
On input, pixel->red == Y, pixel->green == x, pixel->blue == y @param Yxy Source Yxy image to analyze @param maxLum Maximum luminance @param minLum Minimum luminance @param worldLum Average luminance (world adaptation luminance) @return Returns TRUE if successful, returns FALSE otherwise */ BOOL LuminanceFromYxy(FIBITMAP *Yxy, float *maxLum, float *minLum, float *worldLum) { if(FreeImage_GetImageType(Yxy) != FIT_RGBF) return FALSE; const unsigned width = FreeImage_GetWidth(Yxy); const unsigned height = FreeImage_GetHeight(Yxy); const unsigned pitch = FreeImage_GetPitch(Yxy); float max_lum = 0, min_lum = 0; double sum = 0; uint8_t *bits = (uint8_t*)FreeImage_GetBits(Yxy); for(unsigned y = 0; y < height; y++) { const FIRGBF *pixel = (FIRGBF*)bits; for(unsigned x = 0; x < width; x++) { const float Y = MAX(0.0F, pixel[x].red);// avoid negative values max_lum = (max_lum < Y) ? Y : max_lum; // max Luminance in the scene min_lum = (min_lum < Y) ? min_lum : Y; // min Luminance in the scene sum += log(2.3e-5F + Y); // contrast constant in Tumblin paper } // next line bits += pitch; } // maximum luminance *maxLum = max_lum; // minimum luminance *minLum = min_lum; // average log luminance double avgLogLum = (sum / (width * height)); // world adaptation luminance *worldLum = (float)exp(avgLogLum); return TRUE; } /** Clamp RGBF image highest values to display white, then convert to 24-bit RGB */ FIBITMAP* ClampConvertRGBFTo24(FIBITMAP *src) { if(FreeImage_GetImageType(src) != FIT_RGBF) return FALSE; const unsigned width = FreeImage_GetWidth(src); const unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_Allocate(width, height, 24, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); if(!dst) return NULL; const unsigned src_pitch = FreeImage_GetPitch(src); const unsigned dst_pitch = FreeImage_GetPitch(dst); uint8_t *src_bits = (uint8_t*)FreeImage_GetBits(src); uint8_t *dst_bits = (uint8_t*)FreeImage_GetBits(dst); for(unsigned y = 0; y < height; y++) { const FIRGBF *src_pixel = (FIRGBF*)src_bits; uint8_t *dst_pixel = (uint8_t*)dst_bits; for(unsigned x = 0; x < width; x++) { const float red = (src_pixel[x].red > 1) ? 1 : src_pixel[x].red; const float green = (src_pixel[x].green > 1) ? 1 : src_pixel[x].green; const float blue = (src_pixel[x].blue > 1) ? 1 : src_pixel[x].blue; dst_pixel[FI_RGBA_RED] = (uint8_t)(255.0F * red + 0.5F); dst_pixel[FI_RGBA_GREEN] = (uint8_t)(255.0F * green + 0.5F); dst_pixel[FI_RGBA_BLUE] = (uint8_t)(255.0F * blue + 0.5F); dst_pixel += 3; } src_bits += src_pitch; dst_bits += dst_pitch; } return dst; } /** Extract the luminance channel L from a RGBF image. Luminance is calculated from the sRGB model (RGB2XYZ matrix) using a D65 white point : L = ( 0.2126 * r ) + ( 0.7152 * g ) + ( 0.0722 * b ) Reference : A Standard Default Color Space for the Internet - sRGB. [online] http://www.w3.org/Graphics/Color/sRGB */ FIBITMAP* ConvertRGBFToY(FIBITMAP *src) { if(FreeImage_GetImageType(src) != FIT_RGBF) return FALSE; const unsigned width = FreeImage_GetWidth(src); const unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_AllocateT(FIT_FLOAT, width, height); if(!dst) return NULL; const unsigned src_pitch = FreeImage_GetPitch(src); const unsigned dst_pitch = FreeImage_GetPitch(dst); uint8_t *src_bits = (uint8_t*)FreeImage_GetBits(src); uint8_t *dst_bits = (uint8_t*)FreeImage_GetBits(dst); for(unsigned y = 0; y < height; y++) { const FIRGBF *src_pixel = (FIRGBF*)src_bits; float *dst_pixel = (float*)dst_bits; for(unsigned x = 0; x < width; x++) { const float L = LUMA_REC709(src_pixel[x].red, src_pixel[x].green, src_pixel[x].blue); dst_pixel[x] = (L > 0) ? L : 0; } // next line src_bits += src_pitch; dst_bits += dst_pitch; } return dst; } /** Get the maximum, minimum, average luminance and log average luminance from a Y image @param dib Source Y image to analyze @param maxLum Maximum luminance @param minLum Minimum luminance @param Lav Average luminance @param Llav Log average luminance (also known as 'world adaptation luminance') @return Returns TRUE if successful, returns FALSE otherwise @see ConvertRGBFToY, FreeImage_TmoReinhard05Ex */ BOOL LuminanceFromY(FIBITMAP *dib, float *maxLum, float *minLum, float *Lav, float *Llav) { if(FreeImage_GetImageType(dib) != FIT_FLOAT) return FALSE; unsigned width = FreeImage_GetWidth(dib); unsigned height = FreeImage_GetHeight(dib); unsigned pitch = FreeImage_GetPitch(dib); float max_lum = -1e20F, min_lum = 1e20F; double sumLum = 0, sumLogLum = 0; uint8_t *bits = (uint8_t*)FreeImage_GetBits(dib); for(unsigned y = 0; y < height; y++) { const float *pixel = (float*)bits; for(unsigned x = 0; x < width; x++) { const float Y = pixel[x]; max_lum = (max_lum < Y) ? Y : max_lum; // max Luminance in the scene min_lum = ((Y > 0) && (min_lum < Y)) ? min_lum : Y; // min Luminance in the scene sumLum += Y; // average luminance sumLogLum += log(2.3e-5F + Y); // contrast constant in Tumblin paper } // next line bits += pitch; } // maximum luminance *maxLum = max_lum; // minimum luminance *minLum = min_lum; // average luminance *Lav = (float)(sumLum / (width * height)); // average log luminance, a.k.a. world adaptation luminance *Llav = (float)exp(sumLogLum / (width * height)); return TRUE; } // -------------------------------------------------------------------------- static void findMaxMinPercentile(FIBITMAP *Y, float minPrct, float *minLum, float maxPrct, float *maxLum) { int x, y; int width = FreeImage_GetWidth(Y); int height = FreeImage_GetHeight(Y); int pitch = FreeImage_GetPitch(Y); std::vector vY(width * height); uint8_t *bits = (uint8_t*)FreeImage_GetBits(Y); for(y = 0; y < height; y++) { float *pixel = (float*)bits; for(x = 0; x < width; x++) { if(pixel[x] != 0) { vY.push_back(pixel[x]); } } bits += pitch; } std::sort(vY.begin(), vY.end()); *minLum = vY.at( int(minPrct * vY.size()) ); *maxLum = vY.at( int(maxPrct * vY.size()) ); } /** Clipping function
Remove any extremely bright and/or extremely dark pixels and normalize between 0 and 1. @param Y Input/Output image @param minPrct Minimum percentile @param maxPrct Maximum percentile */ void NormalizeY(FIBITMAP *Y, float minPrct, float maxPrct) { int x, y; float maxLum, minLum; if(minPrct > maxPrct) { // swap values float t = minPrct; minPrct = maxPrct; maxPrct = t; } if(minPrct < 0) minPrct = 0; if(maxPrct > 1) maxPrct = 1; int width = FreeImage_GetWidth(Y); int height = FreeImage_GetHeight(Y); int pitch = FreeImage_GetPitch(Y); // find max & min luminance values if((minPrct > 0) || (maxPrct < 1)) { maxLum = 0, minLum = 0; findMaxMinPercentile(Y, minPrct, &minLum, maxPrct, &maxLum); } else { maxLum = -1e20F, minLum = 1e20F; uint8_t *bits = (uint8_t*)FreeImage_GetBits(Y); for(y = 0; y < height; y++) { const float *pixel = (float*)bits; for(x = 0; x < width; x++) { const float value = pixel[x]; maxLum = (maxLum < value) ? value : maxLum; // max Luminance in the scene minLum = (minLum < value) ? minLum : value; // min Luminance in the scene } // next line bits += pitch; } } if(maxLum == minLum) return; // normalize to range 0..1 const float divider = maxLum - minLum; uint8_t *bits = (uint8_t*)FreeImage_GetBits(Y); for(y = 0; y < height; y++) { float *pixel = (float*)bits; for(x = 0; x < width; x++) { pixel[x] = (pixel[x] - minLum) / divider; if(pixel[x] <= 0) pixel[x] = EPSILON; if(pixel[x] > 1) pixel[x] = 1; } // next line bits += pitch; } }