// ========================================================== // Channel processing support // // Design and implementation by // - Hervé Drolon (drolon@infonie.fr) // // This file is part of FreeImage 3 // // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER // THIS DISCLAIMER. // // Use at your own risk! // ========================================================== #include "../stdafx.h" /** @brief Retrieves the red, green, blue or alpha channel of a BGR[A] image. @param src Input image to be processed. @param channel Color channel to extract @return Returns the extracted channel if successful, returns NULL otherwise. */ FIBITMAP * DLL_CALLCONV FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { if(!FreeImage_HasPixels(src)) return NULL; FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src); unsigned bpp = FreeImage_GetBPP(src); // 24- or 32-bit if(image_type == FIT_BITMAP && ((bpp == 24) || (bpp == 32))) { int c; // select the channel to extract switch(channel) { case FICC_BLUE: c = FI_RGBA_BLUE; break; case FICC_GREEN: c = FI_RGBA_GREEN; break; case FICC_RED: c = FI_RGBA_RED; break; case FICC_ALPHA: if(bpp != 32) return NULL; c = FI_RGBA_ALPHA; break; default: return NULL; } // allocate a 8-bit dib unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_Allocate(width, height, 8) ; if(!dst) return NULL; // build a greyscale palette RGBQUAD *pal = FreeImage_GetPalette(dst); for(int i = 0; i < 256; i++) { pal[i].rgbBlue = pal[i].rgbGreen = pal[i].rgbRed = (uint8_t)i; } // perform extraction int bytespp = bpp / 8; // bytes / pixel for(unsigned y = 0; y < height; y++) { uint8_t *src_bits = FreeImage_GetScanLine(src, y); uint8_t *dst_bits = FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < width; x++) { dst_bits[x] = src_bits[c]; src_bits += bytespp; } } // copy metadata from src to dst FreeImage_CloneMetadata(dst, src); return dst; } // 48-bit RGB or 64-bit RGBA images if((image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) { int c; // select the channel to extract (always RGB[A]) switch(channel) { case FICC_BLUE: c = 2; break; case FICC_GREEN: c = 1; break; case FICC_RED: c = 0; break; case FICC_ALPHA: if(bpp != 64) return NULL; c = 3; break; default: return NULL; } // allocate a greyscale dib unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_AllocateT(FIT_UINT16, width, height) ; if(!dst) return NULL; // perform extraction int bytespp = bpp / 16; // words / pixel for(unsigned y = 0; y < height; y++) { unsigned short *src_bits = (unsigned short*)FreeImage_GetScanLine(src, y); unsigned short *dst_bits = (unsigned short*)FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < width; x++) { dst_bits[x] = src_bits[c]; src_bits += bytespp; } } // copy metadata from src to dst FreeImage_CloneMetadata(dst, src); return dst; } // 96-bit RGBF or 128-bit RGBAF images if((image_type == FIT_RGBF) || (image_type == FIT_RGBAF)) { int c; // select the channel to extract (always RGB[A]) switch(channel) { case FICC_BLUE: c = 2; break; case FICC_GREEN: c = 1; break; case FICC_RED: c = 0; break; case FICC_ALPHA: if(bpp != 128) return NULL; c = 3; break; default: return NULL; } // allocate a greyscale dib unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_AllocateT(FIT_FLOAT, width, height) ; if(!dst) return NULL; // perform extraction int bytespp = bpp / 32; // floats / pixel for(unsigned y = 0; y < height; y++) { float *src_bits = (float*)FreeImage_GetScanLine(src, y); float *dst_bits = (float*)FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < width; x++) { dst_bits[x] = src_bits[c]; src_bits += bytespp; } } // copy metadata from src to dst FreeImage_CloneMetadata(dst, src); return dst; } return NULL; } /** @brief Insert a greyscale dib into a RGB[A] image. Both src and dst must have the same width and height. @param dst Image to modify (RGB or RGBA) @param src Input greyscale image to insert @param channel Color channel to modify @return Returns TRUE if successful, FALSE otherwise. */ BOOL DLL_CALLCONV FreeImage_SetChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { int c; if(!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; // src and dst images should have the same width and height unsigned src_width = FreeImage_GetWidth(src); unsigned src_height = FreeImage_GetHeight(src); unsigned dst_width = FreeImage_GetWidth(dst); unsigned dst_height = FreeImage_GetHeight(dst); if((src_width != dst_width) || (src_height != dst_height)) return FALSE; // src image should be grayscale, dst image should be RGB or RGBA FREE_IMAGE_COLOR_TYPE src_type = FreeImage_GetColorType(src); FREE_IMAGE_COLOR_TYPE dst_type = FreeImage_GetColorType(dst); if((dst_type != FIC_RGB) && (dst_type != FIC_RGBALPHA) || (src_type != FIC_MINISBLACK)) { return FALSE; } FREE_IMAGE_TYPE src_image_type = FreeImage_GetImageType(src); FREE_IMAGE_TYPE dst_image_type = FreeImage_GetImageType(dst); if((dst_image_type == FIT_BITMAP) && (src_image_type == FIT_BITMAP)) { // src image should be grayscale, dst image should be 24- or 32-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); if((src_bpp != 8) || (dst_bpp != 24) && (dst_bpp != 32)) return FALSE; // select the channel to modify switch(channel) { case FICC_BLUE: c = FI_RGBA_BLUE; break; case FICC_GREEN: c = FI_RGBA_GREEN; break; case FICC_RED: c = FI_RGBA_RED; break; case FICC_ALPHA: if(dst_bpp != 32) return FALSE; c = FI_RGBA_ALPHA; break; default: return FALSE; } // perform insertion int bytespp = dst_bpp / 8; // bytes / pixel for(unsigned y = 0; y < dst_height; y++) { uint8_t *src_bits = FreeImage_GetScanLine(src, y); uint8_t *dst_bits = FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < dst_width; x++) { dst_bits[c] = src_bits[x]; dst_bits += bytespp; } } return TRUE; } if(((dst_image_type == FIT_RGB16) || (dst_image_type == FIT_RGBA16)) && (src_image_type == FIT_UINT16)) { // src image should be grayscale, dst image should be 48- or 64-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); if((src_bpp != 16) || (dst_bpp != 48) && (dst_bpp != 64)) return FALSE; // select the channel to modify (always RGB[A]) switch(channel) { case FICC_BLUE: c = 2; break; case FICC_GREEN: c = 1; break; case FICC_RED: c = 0; break; case FICC_ALPHA: if(dst_bpp != 64) return FALSE; c = 3; break; default: return FALSE; } // perform insertion int bytespp = dst_bpp / 16; // words / pixel for(unsigned y = 0; y < dst_height; y++) { unsigned short *src_bits = (unsigned short*)FreeImage_GetScanLine(src, y); unsigned short *dst_bits = (unsigned short*)FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < dst_width; x++) { dst_bits[c] = src_bits[x]; dst_bits += bytespp; } } return TRUE; } if(((dst_image_type == FIT_RGBF) || (dst_image_type == FIT_RGBAF)) && (src_image_type == FIT_FLOAT)) { // src image should be grayscale, dst image should be 96- or 128-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); if((src_bpp != 32) || (dst_bpp != 96) && (dst_bpp != 128)) return FALSE; // select the channel to modify (always RGB[A]) switch(channel) { case FICC_BLUE: c = 2; break; case FICC_GREEN: c = 1; break; case FICC_RED: c = 0; break; case FICC_ALPHA: if(dst_bpp != 128) return FALSE; c = 3; break; default: return FALSE; } // perform insertion int bytespp = dst_bpp / 32; // floats / pixel for(unsigned y = 0; y < dst_height; y++) { float *src_bits = (float*)FreeImage_GetScanLine(src, y); float *dst_bits = (float*)FreeImage_GetScanLine(dst, y); for(unsigned x = 0; x < dst_width; x++) { dst_bits[c] = src_bits[x]; dst_bits += bytespp; } } return TRUE; } return FALSE; } /** @brief Retrieves the real part, imaginary part, magnitude or phase of a complex image. @param src Input image to be processed. @param channel Channel to extract @return Returns the extracted channel if successful, returns NULL otherwise. */ FIBITMAP * DLL_CALLCONV FreeImage_GetComplexChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { unsigned x, y; double mag, phase; FICOMPLEX *src_bits = NULL; double *dst_bits = NULL; FIBITMAP *dst = NULL; if(!FreeImage_HasPixels(src)) return NULL; if(FreeImage_GetImageType(src) == FIT_COMPLEX) { // allocate a dib of type FIT_DOUBLE unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); dst = FreeImage_AllocateT(FIT_DOUBLE, width, height) ; if(!dst) return NULL; // perform extraction switch(channel) { case FICC_REAL: // real part for(y = 0; y < height; y++) { src_bits = (FICOMPLEX *)FreeImage_GetScanLine(src, y); dst_bits = (double *)FreeImage_GetScanLine(dst, y); for(x = 0; x < width; x++) { dst_bits[x] = src_bits[x].r; } } break; case FICC_IMAG: // imaginary part for(y = 0; y < height; y++) { src_bits = (FICOMPLEX *)FreeImage_GetScanLine(src, y); dst_bits = (double *)FreeImage_GetScanLine(dst, y); for(x = 0; x < width; x++) { dst_bits[x] = src_bits[x].i; } } break; case FICC_MAG: // magnitude for(y = 0; y < height; y++) { src_bits = (FICOMPLEX *)FreeImage_GetScanLine(src, y); dst_bits = (double *)FreeImage_GetScanLine(dst, y); for(x = 0; x < width; x++) { mag = src_bits[x].r * src_bits[x].r + src_bits[x].i * src_bits[x].i; dst_bits[x] = sqrt(mag); } } break; case FICC_PHASE: // phase for(y = 0; y < height; y++) { src_bits = (FICOMPLEX *)FreeImage_GetScanLine(src, y); dst_bits = (double *)FreeImage_GetScanLine(dst, y); for(x = 0; x < width; x++) { if((src_bits[x].r == 0) && (src_bits[x].i == 0)) { phase = 0; } else { phase = atan2(src_bits[x].i, src_bits[x].r); } dst_bits[x] = phase; } } break; } } // copy metadata from src to dst FreeImage_CloneMetadata(dst, src); return dst; } /** @brief Set the real or imaginary part of a complex image. Both src and dst must have the same width and height. @param dst Image to modify (image of type FIT_COMPLEX) @param src Input image of type FIT_DOUBLE @param channel Channel to modify @return Returns TRUE if successful, FALSE otherwise. */ BOOL DLL_CALLCONV FreeImage_SetComplexChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { unsigned x, y; double *src_bits = NULL; FICOMPLEX *dst_bits = NULL; if(!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; // src image should be of type FIT_DOUBLE, dst image should be of type FIT_COMPLEX const FREE_IMAGE_TYPE src_type = FreeImage_GetImageType(src); const FREE_IMAGE_TYPE dst_type = FreeImage_GetImageType(dst); if((src_type != FIT_DOUBLE) || (dst_type != FIT_COMPLEX)) return FALSE; // src and dst images should have the same width and height unsigned src_width = FreeImage_GetWidth(src); unsigned src_height = FreeImage_GetHeight(src); unsigned dst_width = FreeImage_GetWidth(dst); unsigned dst_height = FreeImage_GetHeight(dst); if((src_width != dst_width) || (src_height != dst_height)) return FALSE; // select the channel to modify switch(channel) { case FICC_REAL: // real part for(y = 0; y < dst_height; y++) { src_bits = (double *)FreeImage_GetScanLine(src, y); dst_bits = (FICOMPLEX *)FreeImage_GetScanLine(dst, y); for(x = 0; x < dst_width; x++) { dst_bits[x].r = src_bits[x]; } } break; case FICC_IMAG: // imaginary part for(y = 0; y < dst_height; y++) { src_bits = (double *)FreeImage_GetScanLine(src, y); dst_bits = (FICOMPLEX *)FreeImage_GetScanLine(dst, y); for(x = 0; x < dst_width; x++) { dst_bits[x].i = src_bits[x]; } } break; } return TRUE; }