// ==========================================================
// Color manipulation routines
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
// - Carsten Klein (c.klein@datagis.com)
// - Mihail Naydenov (mnaydenov@users.sourceforge.net)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "../stdafx.h"
// ----------------------------------------------------------
// Macros + structures
// ----------------------------------------------------------
#define GET_HI_NIBBLE(byte) ((byte) >> 4)
#define SET_HI_NIBBLE(byte, n) byte &= 0x0F, byte |= ((n) << 4)
#define GET_LO_NIBBLE(byte) ((byte) & 0x0F)
#define SET_LO_NIBBLE(byte, n) byte &= 0xF0, byte |= ((n) & 0x0F)
#define GET_NIBBLE(cn, byte) ((cn) ? (GET_HI_NIBBLE(byte)) : (GET_LO_NIBBLE(byte)))
#define SET_NIBBLE(cn, byte, n) if (cn) SET_HI_NIBBLE(byte, n); else SET_LO_NIBBLE(byte, n)
// ----------------------------------------------------------
/** @brief Inverts each pixel data.
@param src Input image to be processed.
@return Returns TRUE if successful, FALSE otherwise.
*/
BOOL DLL_CALLCONV
FreeImage_Invert(FIBITMAP *src) {
if (!FreeImage_HasPixels(src)) return FALSE;
unsigned i, x, y, k;
const unsigned width = FreeImage_GetWidth(src);
const unsigned height = FreeImage_GetHeight(src);
const unsigned bpp = FreeImage_GetBPP(src);
FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
if(image_type == FIT_BITMAP) {
switch(bpp) {
case 1 :
case 4 :
case 8 :
{
// if the dib has a colormap, just invert it
// else, keep the linear grayscale
if (FreeImage_GetColorType(src) == FIC_PALETTE) {
RGBQUAD *pal = FreeImage_GetPalette(src);
for(i = 0; i < FreeImage_GetColorsUsed(src); i++) {
pal[i].rgbRed = 255 - pal[i].rgbRed;
pal[i].rgbGreen = 255 - pal[i].rgbGreen;
pal[i].rgbBlue = 255 - pal[i].rgbBlue;
}
} else {
for(y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(src, y);
for (x = 0; x < FreeImage_GetLine(src); x++) {
bits[x] = ~bits[x];
}
}
}
break;
}
case 24 :
case 32 :
{
// Calculate the number of bytes per pixel (3 for 24-bit or 4 for 32-bit)
const unsigned bytespp = FreeImage_GetLine(src) / width;
for(y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
for(k = 0; k < bytespp; k++) {
bits[k] = ~bits[k];
}
bits += bytespp;
}
}
break;
}
default:
return FALSE;
}
}
else if((image_type == FIT_UINT16) || (image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) {
// Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
const unsigned wordspp = (FreeImage_GetLine(src) / width) / sizeof(uint16_t);
for(y = 0; y < height; y++) {
uint16_t *bits = (uint16_t*)FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
for(k = 0; k < wordspp; k++) {
bits[k] = ~bits[k];
}
bits += wordspp;
}
}
}
else {
// anything else ...
return FALSE;
}
return TRUE;
}
/** @brief Perfoms an histogram transformation on a 8, 24 or 32-bit image
according to the values of a lookup table (LUT).
The transformation is done as follows.
Image 8-bit : if the image has a color palette, the LUT is applied to this palette,
otherwise, it is applied to the grey values.
Image 24-bit & 32-bit : if channel == FICC_RGB, the same LUT is applied to each color
plane (R,G, and B). Otherwise, the LUT is applied to the specified channel only.
@param src Input image to be processed.
@param LUT Lookup table. The size of 'LUT' is assumed to be 256.
@param channel The color channel to be processed (only used with 24 & 32-bit DIB).
@return Returns TRUE if successful, FALSE otherwise.
@see FREE_IMAGE_COLOR_CHANNEL
*/
BOOL DLL_CALLCONV
FreeImage_AdjustCurve(FIBITMAP *src, uint8_t *LUT, FREE_IMAGE_COLOR_CHANNEL channel) {
unsigned x, y;
uint8_t *bits = NULL;
if(!FreeImage_HasPixels(src) || !LUT || (FreeImage_GetImageType(src) != FIT_BITMAP))
return FALSE;
int bpp = FreeImage_GetBPP(src);
if((bpp != 8) && (bpp != 24) && (bpp != 32))
return FALSE;
// apply the LUT
switch(bpp) {
case 8 :
{
// if the dib has a colormap, apply the LUT to it
// else, apply the LUT to pixel values
if(FreeImage_GetColorType(src) == FIC_PALETTE) {
RGBQUAD *rgb = FreeImage_GetPalette(src);
for (unsigned pal = 0; pal < FreeImage_GetColorsUsed(src); pal++) {
rgb->rgbRed = LUT[rgb->rgbRed];
rgb->rgbGreen = LUT[rgb->rgbGreen];
rgb->rgbBlue = LUT[rgb->rgbBlue];
rgb++;
}
}
else {
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[x] = LUT[ bits[x] ];
}
}
}
break;
}
case 24 :
case 32 :
{
int bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src);
switch(channel) {
case FICC_RGB :
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[FI_RGBA_BLUE] = LUT[ bits[FI_RGBA_BLUE] ]; // B
bits[FI_RGBA_GREEN] = LUT[ bits[FI_RGBA_GREEN] ]; // G
bits[FI_RGBA_RED] = LUT[ bits[FI_RGBA_RED] ]; // R
bits += bytespp;
}
}
break;
case FICC_BLUE :
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[FI_RGBA_BLUE] = LUT[ bits[FI_RGBA_BLUE] ]; // B
bits += bytespp;
}
}
break;
case FICC_GREEN :
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[FI_RGBA_GREEN] = LUT[ bits[FI_RGBA_GREEN] ]; // G
bits += bytespp;
}
}
break;
case FICC_RED :
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[FI_RGBA_RED] = LUT[ bits[FI_RGBA_RED] ]; // R
bits += bytespp;
}
}
break;
case FICC_ALPHA :
if(32 == bpp) {
for(y = 0; y < FreeImage_GetHeight(src); y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < FreeImage_GetWidth(src); x++) {
bits[FI_RGBA_ALPHA] = LUT[ bits[FI_RGBA_ALPHA] ]; // A
bits += bytespp;
}
}
}
break;
default:
break;
}
break;
}
}
return TRUE;
}
/** @brief Performs gamma correction on a 8, 24 or 32-bit image.
@param src Input image to be processed.
@param gamma Gamma value to use. A value of 1.0 leaves the image alone,
less than one darkens it, and greater than one lightens it.
@return Returns TRUE if successful, FALSE otherwise.
*/
BOOL DLL_CALLCONV
FreeImage_AdjustGamma(FIBITMAP *src, double gamma) {
uint8_t LUT[256]; // Lookup table
if(!FreeImage_HasPixels(src) || (gamma <= 0))
return FALSE;
// Build the lookup table
double exponent = 1 / gamma;
double v = 255.0 * (double)pow((double)255, -exponent);
for(int i = 0; i < 256; i++) {
double color = (double)pow((double)i, exponent) * v;
if(color > 255)
color = 255;
LUT[i] = (uint8_t)floor(color + 0.5);
}
// Apply the gamma correction
return FreeImage_AdjustCurve(src, LUT, FICC_RGB);
}
/** @brief Adjusts the brightness of a 8, 24 or 32-bit image by a certain amount.
@param src Input image to be processed.
@param percentage Where -100 <= percentage <= 100
A value 0 means no change, less than 0 will make the image darker
and greater than 0 will make the image brighter.
@return Returns TRUE if successful, FALSE otherwise.
*/
BOOL DLL_CALLCONV
FreeImage_AdjustBrightness(FIBITMAP *src, double percentage) {
uint8_t LUT[256]; // Lookup table
double value;
if(!FreeImage_HasPixels(src))
return FALSE;
// Build the lookup table
const double scale = (100 + percentage) / 100;
for(int i = 0; i < 256; i++) {
value = i * scale;
value = MAX(0.0, MIN(value, 255.0));
LUT[i] = (uint8_t)floor(value + 0.5);
}
return FreeImage_AdjustCurve(src, LUT, FICC_RGB);
}
/** @brief Adjusts the contrast of a 8, 24 or 32-bit image by a certain amount.
@param src Input image to be processed.
@param percentage Where -100 <= percentage <= 100
A value 0 means no change, less than 0 will decrease the contrast
and greater than 0 will increase the contrast of the image.
@return Returns TRUE if successful, FALSE otherwise.
*/
BOOL DLL_CALLCONV
FreeImage_AdjustContrast(FIBITMAP *src, double percentage) {
uint8_t LUT[256]; // Lookup table
double value;
if(!FreeImage_HasPixels(src))
return FALSE;
// Build the lookup table
const double scale = (100 + percentage) / 100;
for(int i = 0; i < 256; i++) {
value = 128 + (i - 128) * scale;
value = MAX(0.0, MIN(value, 255.0));
LUT[i] = (uint8_t)floor(value + 0.5);
}
return FreeImage_AdjustCurve(src, LUT, FICC_RGB);
}
/** @brief Computes image histogram
For 24-bit and 32-bit images, histogram can be computed from red, green, blue and
black channels. For 8-bit images, histogram is computed from the black channel. Other
bit depth is not supported (nothing is done).
@param src Input image to be processed.
@param histo Histogram array to fill. The size of 'histo' is assumed to be 256.
@param channel Color channel to use
@return Returns TRUE if succesful, returns FALSE if the image bit depth isn't supported.
*/
BOOL DLL_CALLCONV
FreeImage_GetHistogram(FIBITMAP *src, uint32_t *histo, FREE_IMAGE_COLOR_CHANNEL channel) {
uint8_t pixel;
uint8_t *bits = NULL;
unsigned x, y;
if(!FreeImage_HasPixels(src) || !histo) return FALSE;
unsigned width = FreeImage_GetWidth(src);
unsigned height = FreeImage_GetHeight(src);
unsigned bpp = FreeImage_GetBPP(src);
if(bpp == 8) {
// clear histogram array
memset(histo, 0, 256 * sizeof(uint32_t));
// compute histogram for black channel
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
// get pixel value
pixel = bits[x];
histo[pixel]++;
}
}
return TRUE;
}
else if((bpp == 24) || (bpp == 32)) {
int bytespp = bpp / 8; // bytes / pixel
// clear histogram array
memset(histo, 0, 256 * sizeof(uint32_t));
switch(channel) {
case FICC_RED:
// compute histogram for red channel
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
pixel = bits[FI_RGBA_RED]; // R
histo[pixel]++;
bits += bytespp;
}
}
return TRUE;
case FICC_GREEN:
// compute histogram for green channel
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
pixel = bits[FI_RGBA_GREEN]; // G
histo[pixel]++;
bits += bytespp;
}
}
return TRUE;
case FICC_BLUE:
// compute histogram for blue channel
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
pixel = bits[FI_RGBA_BLUE]; // B
histo[pixel]++;
bits += bytespp;
}
}
return TRUE;
case FICC_BLACK:
case FICC_RGB:
// compute histogram for black channel
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(src, y);
for(x = 0; x < width; x++) {
// RGB to GREY conversion
pixel = GREY(bits[FI_RGBA_RED], bits[FI_RGBA_GREEN], bits[FI_RGBA_BLUE]);
histo[pixel]++;
bits += bytespp;
}
}
return TRUE;
default:
return FALSE;
}
}
return FALSE;
}
// ----------------------------------------------------------
/** @brief Creates a lookup table to be used with FreeImage_AdjustCurve() which
may adjust brightness and contrast, correct gamma and invert the image with a
single call to FreeImage_AdjustCurve().
This function creates a lookup table to be used with FreeImage_AdjustCurve()
which may adjust brightness and contrast, correct gamma and invert the image
with a single call to FreeImage_AdjustCurve(). If more than one of these image
display properties need to be adjusted, using a combined lookup table should be
preferred over calling each adjustment function separately. That's particularly
true for huge images or if performance is an issue. Then, the expensive process
of iterating over all pixels of an image is performed only once and not up to
four times.
Furthermore, the lookup table created does not depend on the order, in which
each single adjustment operation is performed. Due to rounding and byte casting
issues, it actually matters in which order individual adjustment operations
are performed. Both of the following snippets most likely produce different
results:
// snippet 1: contrast, brightness
FreeImage_AdjustContrast(dib, 15.0);
FreeImage_AdjustBrightness(dib, 50.0);
// snippet 2: brightness, contrast
FreeImage_AdjustBrightness(dib, 50.0);
FreeImage_AdjustContrast(dib, 15.0);
Better and even faster would be snippet 3:
// snippet 3:
uint8_t LUT[256];
FreeImage_GetAdjustColorsLookupTable(LUT, 50.0, 15.0, 1.0, FALSE);
FreeImage_AdjustCurve(dib, LUT, FICC_RGB);
This function is also used internally by FreeImage_AdjustColors(), which does
not return the lookup table, but uses it to call FreeImage_AdjustCurve() on the
passed image.
@param LUT Output lookup table to be used with FreeImage_AdjustCurve(). The
size of 'LUT' is assumed to be 256.
@param brightness Percentage brightness value where -100 <= brightness <= 100
A value of 0 means no change, less than 0 will make the image darker and greater
than 0 will make the image brighter.
@param contrast Percentage contrast value where -100 <= contrast <= 100
A value of 0 means no change, less than 0 will decrease the contrast
and greater than 0 will increase the contrast of the image.
@param gamma Gamma value to be used for gamma correction. A value of 1.0 leaves
the image alone, less than one darkens it, and greater than one lightens it.
This parameter must not be zero or smaller than zero. If so, it will be ignored
and no gamma correction will be performed using the lookup table created.
@param invert If set to TRUE, the image will be inverted.
@return Returns the number of adjustments applied to the resulting lookup table
compared to a blind lookup table.
*/
int DLL_CALLCONV
FreeImage_GetAdjustColorsLookupTable(uint8_t *LUT, double brightness, double contrast, double gamma, BOOL invert) {
double dblLUT[256];
double value;
int result = 0;
if ((brightness == 0.0) && (contrast == 0.0) && (gamma == 1.0) && (!invert)) {
// nothing to do, if all arguments have their default values
// return a blind LUT
for (int i = 0; i < 256; i++) {
LUT[i] = (uint8_t)i;
}
return 0;
}
// first, create a blind LUT, which does nothing to the image
for (int i = 0; i < 256; i++) {
dblLUT[i] = i;
}
if (contrast != 0.0) {
// modify lookup table with contrast adjustment data
const double v = (100.0 + contrast) / 100.0;
for (int i = 0; i < 256; i++) {
value = 128 + (dblLUT[i] - 128) * v;
dblLUT[i] = MAX(0.0, MIN(value, 255.0));
}
result++;
}
if (brightness != 0.0) {
// modify lookup table with brightness adjustment data
const double v = (100.0 + brightness) / 100.0;
for (int i = 0; i < 256; i++) {
value = dblLUT[i] * v;
dblLUT[i] = MAX(0.0, MIN(value, 255.0));
}
result++;
}
if ((gamma > 0) && (gamma != 1.0)) {
// modify lookup table with gamma adjustment data
double exponent = 1 / gamma;
const double v = 255.0 * (double)pow((double)255, -exponent);
for (int i = 0; i < 256; i++) {
value = pow(dblLUT[i], exponent) * v;
dblLUT[i] = MAX(0.0, MIN(value, 255.0));
}
result++;
}
if (!invert) {
for (int i = 0; i < 256; i++) {
LUT[i] = (uint8_t)floor(dblLUT[i] + 0.5);
}
} else {
for (int i = 0; i < 256; i++) {
LUT[i] = 255 - (uint8_t)floor(dblLUT[i] + 0.5);
}
result++;
}
// return the number of adjustments made
return result;
}
/** @brief Adjusts an image's brightness, contrast and gamma as well as it may
optionally invert the image within a single operation.
This function adjusts an image's brightness, contrast and gamma as well as it
may optionally invert the image within a single operation. If more than one of
these image display properties need to be adjusted, using this function should
be preferred over calling each adjustment function separately. That's
particularly true for huge images or if performance is an issue.
This function relies on FreeImage_GetAdjustColorsLookupTable(), which creates a
single lookup table, that combines all adjustment operations requested.
Furthermore, the lookup table created by FreeImage_GetAdjustColorsLookupTable()
does not depend on the order, in which each single adjustment operation is
performed. Due to rounding and byte casting issues, it actually matters in which
order individual adjustment operations are performed. Both of the following
snippets most likely produce different results:
// snippet 1: contrast, brightness
FreeImage_AdjustContrast(dib, 15.0);
FreeImage_AdjustBrightness(dib, 50.0);
// snippet 2: brightness, contrast
FreeImage_AdjustBrightness(dib, 50.0);
FreeImage_AdjustContrast(dib, 15.0);
Better and even faster would be snippet 3:
// snippet 3:
FreeImage_AdjustColors(dib, 50.0, 15.0, 1.0, FALSE);
@param dib Input/output image to be processed.
@param brightness Percentage brightness value where -100 <= brightness <= 100
A value of 0 means no change, less than 0 will make the image darker and greater
than 0 will make the image brighter.
@param contrast Percentage contrast value where -100 <= contrast <= 100
A value of 0 means no change, less than 0 will decrease the contrast
and greater than 0 will increase the contrast of the image.
@param gamma Gamma value to be used for gamma correction. A value of 1.0 leaves
the image alone, less than one darkens it, and greater than one lightens it.
This parameter must not be zero or smaller than zero. If so, it will be ignored
and no gamma correction will be performed on the image.
@param invert If set to TRUE, the image will be inverted.
@return Returns TRUE on success, FALSE otherwise (e.g. when the bitdeph of the
source dib cannot be handled).
*/
BOOL DLL_CALLCONV
FreeImage_AdjustColors(FIBITMAP *dib, double brightness, double contrast, double gamma, BOOL invert) {
uint8_t LUT[256];
if (!FreeImage_HasPixels(dib) || (FreeImage_GetImageType(dib) != FIT_BITMAP)) {
return FALSE;
}
int bpp = FreeImage_GetBPP(dib);
if ((bpp != 8) && (bpp != 24) && (bpp != 32)) {
return FALSE;
}
if (FreeImage_GetAdjustColorsLookupTable(LUT, brightness, contrast, gamma, invert)) {
return FreeImage_AdjustCurve(dib, LUT, FICC_RGB);
}
return FALSE;
}
/** @brief Applies color mapping for one or several colors on a 1-, 4- or 8-bit
palletized or a 16-, 24- or 32-bit high color image.
This function maps up to count colors specified in srccolors to
these specified in dstcolors. Thereby, color srccolors[N],
if found in the image, will be replaced by color dstcolors[N]. If
parameter swap is TRUE, additionally all colors specified in
dstcolors are also mapped to these specified in srccolors. For
high color images, the actual image data will be modified whereas, for
palletized images only the palette will be changed.
The function returns the number of pixels changed or zero, if no pixels were
changed.
Both arrays srccolors and dstcolors are assumed not to hold less
than count colors.
For 16-bit images, all colors specified are transparently converted to their
proper 16-bit representation (either in RGB555 or RGB565 format, which is
determined by the image's red- green- and blue-mask).
Note, that this behaviour is different from what FreeImage_ApplyPaletteIndexMapping()
does, which modifies the actual image data on palletized images.
@param dib Input/output image to be processed.
@param srccolors Array of colors to be used as the mapping source.
@param dstcolors Array of colors to be used as the mapping destination.
@param count The number of colors to be mapped. This is the size of both
srccolors and dstcolors.
@param ignore_alpha If TRUE, 32-bit images and colors are treated as 24-bit.
@param swap If TRUE, source and destination colors are swapped, that is,
each destination color is also mapped to the corresponding source color.
@return Returns the total number of pixels changed.
*/
unsigned DLL_CALLCONV
FreeImage_ApplyColorMapping(FIBITMAP *dib, RGBQUAD *srccolors, RGBQUAD *dstcolors, unsigned count, BOOL ignore_alpha, BOOL swap) {
unsigned result = 0;
if (!FreeImage_HasPixels(dib) || (FreeImage_GetImageType(dib) != FIT_BITMAP)) {
return 0;
}
// validate parameters
if ((!srccolors) || (!dstcolors)|| (count < 1)) {
return 0;
}
int bpp = FreeImage_GetBPP(dib);
switch (bpp) {
case 1:
case 4:
case 8: {
unsigned size = FreeImage_GetColorsUsed(dib);
RGBQUAD *pal = FreeImage_GetPalette(dib);
RGBQUAD *a, *b;
for (unsigned x = 0; x < size; x++) {
for (unsigned j = 0; j < count; j++) {
a = srccolors;
b = dstcolors;
for (int i = (swap ? 0 : 1); i < 2; i++) {
if ((pal[x].rgbBlue == a[j].rgbBlue)&&(pal[x].rgbGreen == a[j].rgbGreen) &&(pal[x].rgbRed== a[j].rgbRed)) {
pal[x].rgbBlue = b[j].rgbBlue;
pal[x].rgbGreen = b[j].rgbGreen;
pal[x].rgbRed = b[j].rgbRed;
result++;
j = count;
break;
}
a = dstcolors;
b = srccolors;
}
}
}
return result;
}
case 16: {
uint16_t *src16 = (uint16_t *)malloc(sizeof(uint16_t) * count);
if (NULL == src16) {
return 0;
}
uint16_t *dst16 = (uint16_t *)malloc(sizeof(uint16_t) * count);
if (NULL == dst16) {
free(src16);
return 0;
}
for (unsigned j = 0; j < count; j++) {
src16[j] = RGBQUAD_TO_WORD(dib, (srccolors + j));
dst16[j] = RGBQUAD_TO_WORD(dib, (dstcolors + j));
}
unsigned height = FreeImage_GetHeight(dib);
unsigned width = FreeImage_GetWidth(dib);
uint16_t *a, *b;
for (unsigned y = 0; y < height; y++) {
uint16_t *bits = (uint16_t *)FreeImage_GetScanLine(dib, y);
for (unsigned x = 0; x < width; x++, bits++) {
for (unsigned j = 0; j < count; j++) {
a = src16;
b = dst16;
for (int i = (swap ? 0 : 1); i < 2; i++) {
if (*bits == a[j]) {
*bits = b[j];
result++;
j = count;
break;
}
a = dst16;
b = src16;
}
}
}
}
free(src16);
free(dst16);
return result;
}
case 24: {
unsigned height = FreeImage_GetHeight(dib);
unsigned width = FreeImage_GetWidth(dib);
RGBQUAD *a, *b;
for (unsigned y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(dib, y);
for (unsigned x = 0; x < width; x++, bits += 3) {
for (unsigned j = 0; j < count; j++) {
a = srccolors;
b = dstcolors;
for (int i = (swap ? 0 : 1); i < 2; i++) {
if ((bits[FI_RGBA_BLUE] == a[j].rgbBlue) && (bits[FI_RGBA_GREEN] == a[j].rgbGreen) &&(bits[FI_RGBA_RED] == a[j].rgbRed)) {
bits[FI_RGBA_BLUE] = b[j].rgbBlue;
bits[FI_RGBA_GREEN] = b[j].rgbGreen;
bits[FI_RGBA_RED] = b[j].rgbRed;
result++;
j = count;
break;
}
a = dstcolors;
b = srccolors;
}
}
}
}
return result;
}
case 32: {
unsigned height = FreeImage_GetHeight(dib);
unsigned width = FreeImage_GetWidth(dib);
RGBQUAD *a, *b;
for (unsigned y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(dib, y);
for (unsigned x = 0; x < width; x++, bits += 4) {
for (unsigned j = 0; j < count; j++) {
a = srccolors;
b = dstcolors;
for (int i = (swap ? 0 : 1); i < 2; i++) {
if ((bits[FI_RGBA_BLUE] == a[j].rgbBlue) &&(bits[FI_RGBA_GREEN] == a[j].rgbGreen) &&(bits[FI_RGBA_RED] == a[j].rgbRed)
&&((ignore_alpha) || (bits[FI_RGBA_ALPHA] == a[j].rgbReserved))) {
bits[FI_RGBA_BLUE] = b[j].rgbBlue;
bits[FI_RGBA_GREEN] = b[j].rgbGreen;
bits[FI_RGBA_RED] = b[j].rgbRed;
if (!ignore_alpha) {
bits[FI_RGBA_ALPHA] = b[j].rgbReserved;
}
result++;
j = count;
break;
}
a = dstcolors;
b = srccolors;
}
}
}
}
return result;
}
default: {
return 0;
}
}
}
/** @brief Swaps two specified colors on a 1-, 4- or 8-bit palletized
or a 16-, 24- or 32-bit high color image.
This function swaps the two specified colors color_a and color_b
on a palletized or high color image. For high color images, the actual image
data will be modified whereas, for palletized images only the palette will be
changed.
Note, that this behaviour is different from what FreeImage_SwapPaletteIndices()
does, which modifies the actual image data on palletized images.
This is just a thin wrapper for FreeImage_ApplyColorMapping() and resolves to:
return FreeImage_ApplyColorMapping(dib, color_a, color_b, 1, ignore_alpha, TRUE);
@param dib Input/output image to be processed.
@param color_a On of the two colors to be swapped.
@param color_b The other of the two colors to be swapped.
@param ignore_alpha If TRUE, 32-bit images and colors are treated as 24-bit.
@return Returns the total number of pixels changed.
*/
unsigned DLL_CALLCONV
FreeImage_SwapColors(FIBITMAP *dib, RGBQUAD *color_a, RGBQUAD *color_b, BOOL ignore_alpha) {
return FreeImage_ApplyColorMapping(dib, color_a, color_b, 1, ignore_alpha, TRUE);
}
/** @brief Applies palette index mapping for one or several indices on a 1-, 4-
or 8-bit palletized image.
This function maps up to count palette indices specified in
srcindices to these specified in dstindices. Thereby, index
srcindices[N], if present in the image, will be replaced by index
dstindices[N]. If parameter swap is TRUE, additionally all indices
specified in dstindices are also mapped to these specified in
srcindices.
The function returns the number of pixels changed or zero, if no pixels were
changed.
Both arrays srcindices and dstindices are assumed not to hold less
than count indices.
Note, that this behaviour is different from what FreeImage_ApplyColorMapping()
does, which modifies the actual image data on palletized images.
@param dib Input/output image to be processed.
@param srcindices Array of palette indices to be used as the mapping source.
@param dstindices Array of palette indices to be used as the mapping destination.
@param count The number of palette indices to be mapped. This is the size of both
srcindices and dstindices.
@param swap If TRUE, source and destination palette indices are swapped, that is,
each destination index is also mapped to the corresponding source index.
@return Returns the total number of pixels changed.
*/
unsigned DLL_CALLCONV
FreeImage_ApplyPaletteIndexMapping(FIBITMAP *dib, uint8_t *srcindices, uint8_t *dstindices, unsigned count, BOOL swap) {
unsigned result = 0;
if (!FreeImage_HasPixels(dib) || (FreeImage_GetImageType(dib) != FIT_BITMAP)) {
return 0;
}
// validate parameters
if ((!srcindices) || (!dstindices)|| (count < 1)) {
return 0;
}
unsigned height = FreeImage_GetHeight(dib);
unsigned width = FreeImage_GetLine(dib);
uint8_t *a, *b;
int bpp = FreeImage_GetBPP(dib);
switch (bpp) {
case 1: {
return result;
}
case 4: {
int skip_last = (FreeImage_GetWidth(dib) & 0x01);
unsigned max_x = width - 1;
for (unsigned y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(dib, y);
for (unsigned x = 0; x < width; x++) {
int start = ((skip_last) && (x == max_x)) ? 1 : 0;
for (int cn = start; cn < 2; cn++) {
for (unsigned j = 0; j < count; j++) {
a = srcindices;
b = dstindices;
for (int i = ((swap) ? 0 : 1); i < 2; i++) {
if (GET_NIBBLE(cn, bits[x]) == (a[j] & 0x0F)) {
SET_NIBBLE(cn, bits[x], b[j]);
result++;
j = count;
break;
}
a = dstindices;
b = srcindices;
}
}
}
}
}
return result;
}
case 8: {
for (unsigned y = 0; y < height; y++) {
uint8_t *bits = FreeImage_GetScanLine(dib, y);
for (unsigned x = 0; x < width; x++) {
for (unsigned j = 0; j < count; j++) {
a = srcindices;
b = dstindices;
for (int i = ((swap) ? 0 : 1); i < 2; i++) {
if (bits[x] == a[j]) {
bits[x] = b[j];
result++;
j = count;
break;
}
a = dstindices;
b = srcindices;
}
}
}
}
return result;
}
default: {
return 0;
}
}
}
/** @brief Swaps two specified palette indices on a 1-, 4- or 8-bit palletized
image.
This function swaps the two specified palette indices index_a and
index_b on a palletized image. Therefore, not the palette, but the
actual image data will be modified.
Note, that this behaviour is different from what FreeImage_SwapColors() does
on palletized images, which only swaps the colors in the palette.
This is just a thin wrapper for FreeImage_ApplyColorMapping() and resolves to:
return FreeImage_ApplyPaletteIndexMapping(dib, index_a, index_b, 1, TRUE);
@param dib Input/output image to be processed.
@param index_a On of the two palette indices to be swapped.
@param index_b The other of the two palette indices to be swapped.
@return Returns the total number of pixels changed.
*/
unsigned DLL_CALLCONV
FreeImage_SwapPaletteIndices(FIBITMAP *dib, uint8_t *index_a, uint8_t *index_b) {
return FreeImage_ApplyPaletteIndexMapping(dib, index_a, index_b, 1, TRUE);
}