// ========================================================== // Poisson solver based on a full multigrid algorithm // // Design and implementation by // - Hervé Drolon (drolon@infonie.fr) // Reference: // PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. // 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press. // // This file is part of FreeImage 3 // // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER // THIS DISCLAIMER. // // Use at your own risk! // ========================================================== #include "../stdafx.h" static const int NPRE = 1; // Number of relaxation sweeps before ... static const int NPOST = 1; // ... and after the coarse-grid correction is computed static const int NGMAX = 15; // Maximum number of grids /** Copy src into dst */ static inline void fmg_copyArray(FIBITMAP *dst, FIBITMAP *src) { memcpy(FreeImage_GetBits(dst), FreeImage_GetBits(src), FreeImage_GetHeight(dst) * FreeImage_GetPitch(dst)); } /** Fills src with zeros */ static inline void fmg_fillArrayWithZeros(FIBITMAP *src) { memset(FreeImage_GetBits(src), 0, FreeImage_GetHeight(src) * FreeImage_GetPitch(src)); } /** Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input in uf[0..2*nc-2][0..2*nc-2], the coarse-grid solution is returned in uc[0..nc-1][0..nc-1]. */ static void fmg_restrict(FIBITMAP *UC, FIBITMAP *UF, int nc) { int row_uc, row_uf, col_uc, col_uf; const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float); const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float); float *uc_bits = (float*)FreeImage_GetBits(UC); const float *uf_bits = (float*)FreeImage_GetBits(UF); // interior points { float *uc_scan = uc_bits + uc_pitch; for (row_uc = 1, row_uf = 2; row_uc < nc-1; row_uc++, row_uf += 2) { const float *uf_scan = uf_bits + row_uf * uf_pitch; for (col_uc = 1, col_uf = 2; col_uc < nc-1; col_uc++, col_uf += 2) { // calculate // UC(row_uc, col_uc) = // 0.5 * UF(row_uf, col_uf) + 0.125 * [ UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) + UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ] float *uc_pixel = uc_scan + col_uc; const float *uf_center = uf_scan + col_uf; *uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1) ); } uc_scan += uc_pitch; } } // boundary points const int ncc = 2*nc-1; { /* calculate the following: for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) { UC(row_uc, 0) = UF(row_uf, 0); UC(row_uc, nc-1) = UF(row_uf, ncc-1); } */ float *uc_scan = uc_bits; for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) { const float *uf_scan = uf_bits + row_uf * uf_pitch; uc_scan[0] = uf_scan[0]; uc_scan[nc-1] = uf_scan[ncc-1]; uc_scan += uc_pitch; } } { /* calculate the following: for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { UC(0, col_uc) = UF(0, col_uf); UC(nc-1, col_uc) = UF(ncc-1, col_uf); } */ float *uc_scan_top = uc_bits; float *uc_scan_bottom = uc_bits + (nc-1)*uc_pitch; const float *uf_scan_top = uf_bits + (ncc-1)*uf_pitch; const float *uf_scan_bottom = uf_bits; for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { uc_scan_top[col_uc] = uf_scan_top[col_uf]; uc_scan_bottom[col_uc] = uf_scan_bottom[col_uf]; } } } /** Solution of the model problem on the coarsest grid, where h = 1/2 . The right-hand side is input in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2]. */ static void fmg_solve(FIBITMAP *U, FIBITMAP *RHS) { // fill U with zeros fmg_fillArrayWithZeros(U); // calculate U(1, 1) = -h*h*RHS(1, 1)/4.0 where h = 1/2 float *u_scan = (float*)FreeImage_GetScanLine(U, 1); const float *rhs_scan = (float*)FreeImage_GetScanLine(RHS, 1); u_scan[1] = -rhs_scan[1] / 16; } /** Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The coarsegrid solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2 + 1. The fine-grid solution is returned in uf[0..nf-1][0..nf-1]. */ static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) { int row_uc, row_uf, col_uc, col_uf; const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float); const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float); float *uf_bits = (float*)FreeImage_GetBits(UF); const float *uc_bits = (float*)FreeImage_GetBits(UC); // do elements that are copies { const int nc = nf/2 + 1; float *uf_scan = uf_bits; const float *uc_scan = uc_bits; for (row_uc = 0; row_uc < nc; row_uc++) { for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { // calculate UF(2*row_uc, col_uf) = UC(row_uc, col_uc); uf_scan[col_uf] = uc_scan[col_uc]; } uc_scan += uc_pitch; uf_scan += 2 * uf_pitch; } } // do odd-numbered columns, interpolating vertically { for(row_uf = 1; row_uf < nf-1; row_uf += 2) { float *uf_scan = uf_bits + row_uf * uf_pitch; for (col_uf = 0; col_uf < nf; col_uf += 2) { // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) ) uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf) ); } } } // do even-numbered columns, interpolating horizontally { float *uf_scan = uf_bits; for(row_uf = 0; row_uf < nf; row_uf++) { for (col_uf = 1; col_uf < nf-1; col_uf += 2) { // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ) uf_scan[col_uf] = 0.5F * ( uf_scan[col_uf + 1] + uf_scan[col_uf - 1] ); } uf_scan += uf_pitch; } } } /** Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the solution u[0..n-1][0..n-1], using the right-hand side function rhs[0..n-1][0..n-1]. */ static void fmg_relaxation(FIBITMAP *U, FIBITMAP *RHS, int n) { int row, col, ipass, isw, jsw; const float h = 1.0F / (n - 1); const float h2 = h*h; const int u_pitch = FreeImage_GetPitch(U) / sizeof(float); const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float); float *u_bits = (float*)FreeImage_GetBits(U); const float *rhs_bits = (float*)FreeImage_GetBits(RHS); for (ipass = 0, jsw = 1; ipass < 2; ipass++, jsw = 3-jsw) { // Red and black sweeps float *u_scan = u_bits + u_pitch; const float *rhs_scan = rhs_bits + rhs_pitch; for (row = 1, isw = jsw; row < n-1; row++, isw = 3-isw) { for (col = isw; col < n-1; col += 2) { // Gauss-Seidel formula // calculate U(row, col) = // 0.25 * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - h2 * RHS(row, col) ] float *u_center = u_scan + col; const float *rhs_center = rhs_scan + col; *u_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1); *u_center -= h2 * *rhs_center; *u_center *= 0.25F; } u_scan += u_pitch; rhs_scan += rhs_pitch; } } } /** Returns minus the residual for the model problem. Input quantities are u[0..n-1][0..n-1] and rhs[0..n-1][0..n-1], while res[0..n-1][0..n-1] is returned. */ static void fmg_residual(FIBITMAP *RES, FIBITMAP *U, FIBITMAP *RHS, int n) { int row, col; const float h = 1.0F / (n-1); const float h2i = 1.0F / (h*h); const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float); const int u_pitch = FreeImage_GetPitch(U) / sizeof(float); const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float); float *res_bits = (float*)FreeImage_GetBits(RES); const float *u_bits = (float*)FreeImage_GetBits(U); const float *rhs_bits = (float*)FreeImage_GetBits(RHS); // interior points { float *res_scan = res_bits + res_pitch; const float *u_scan = u_bits + u_pitch; const float *rhs_scan = rhs_bits + rhs_pitch; for (row = 1; row < n-1; row++) { for (col = 1; col < n-1; col++) { // calculate RES(row, col) = // -h2i * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - 4 * U(row, col) ] + RHS(row, col); float *res_center = res_scan + col; const float *u_center = u_scan + col; const float *rhs_center = rhs_scan + col; *res_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1) - 4 * *u_center; *res_center *= -h2i; *res_center += *rhs_center; } res_scan += res_pitch; u_scan += u_pitch; rhs_scan += rhs_pitch; } } // boundary points { memset(FreeImage_GetScanLine(RES, 0), 0, FreeImage_GetPitch(RES)); memset(FreeImage_GetScanLine(RES, n-1), 0, FreeImage_GetPitch(RES)); float *left = res_bits; float *right = res_bits + (n-1); for(int k = 0; k < n; k++) { *left = 0; *right = 0; left += res_pitch; right += res_pitch; } } } /** Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2+1. The fine-grid solution is returned in uf[0..nf-1][0..nf-1]. res[0..nf-1][0..nf-1] is used for temporary storage. */ static void fmg_addint(FIBITMAP *UF, FIBITMAP *UC, FIBITMAP *RES, int nf) { fmg_prolongate(RES, UC, nf); const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float); const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float); float *uf_bits = (float*)FreeImage_GetBits(UF); const float *res_bits = (float*)FreeImage_GetBits(RES); for(int row = 0; row < nf; row++) { for(int col = 0; col < nf; col++) { // calculate UF(row, col) = UF(row, col) + RES(row, col); uf_bits[col] += res_bits[col]; } uf_bits += uf_pitch; res_bits += res_pitch; } } /** Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem (19.0.6). On input u[0..n-1][0..n-1] contains the right-hand side c, while on output it returns the solution. The dimension n must be of the form 2^j + 1 for some integer j. (j is actually the number of grid levels used in the solution, called ng below.) ncycle is the number of V-cycles to be used at each level. */ static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { int j, jcycle, jj, jpost, jpre, nf, ngrid; FIBITMAP **IRHO = NULL; FIBITMAP **IU = NULL; FIBITMAP **IRHS = NULL; FIBITMAP **IRES = NULL; int ng = 0; // number of allocated grids // -------------------------------------------------------------------------- #define _CREATE_ARRAY_GRID_(array, array_size) \ array = (FIBITMAP**)malloc(array_size * sizeof(FIBITMAP*));\ if(!array) throw(1);\ memset(array, 0, array_size * sizeof(FIBITMAP*)) #define _FREE_ARRAY_GRID_(array, array_size) \ if(NULL != array) {\ for(int k = 0; k < array_size; k++) {\ if(NULL != array[k]) {\ FreeImage_Unload(array[k]); array[k] = NULL;\ }\ }\ free(array);\ } // -------------------------------------------------------------------------- try { int nn = n; // check grid size and grid levels while (nn >>= 1) ng++; if (n != 1 + (1L << ng)) { FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: n = %d, while n-1 must be a power of 2.", n); throw(1); } if (ng > NGMAX) { FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: ng = %d while NGMAX = %d, increase NGMAX.", ng, NGMAX); throw(1); } // allocate grid arrays { _CREATE_ARRAY_GRID_(IRHO, ng); _CREATE_ARRAY_GRID_(IU, ng); _CREATE_ARRAY_GRID_(IRHS, ng); _CREATE_ARRAY_GRID_(IRES, ng); } nn = n/2 + 1; ngrid = ng - 2; // allocate storage for r.h.s. on grid (ng - 2) ... IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IRHO[ngrid]) throw(1); // ... and fill it by restricting from the fine grid fmg_restrict(IRHO[ngrid], U, nn); // similarly allocate storage and fill r.h.s. on all coarse grids. while (nn > 3) { nn = nn/2 + 1; ngrid--; IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IRHO[ngrid]) throw(1); fmg_restrict(IRHO[ngrid], IRHO[ngrid+1], nn); } nn = 3; IU[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IU[0]) throw(1); IRHS[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IRHS[0]) throw(1); // initial solution on coarsest grid fmg_solve(IU[0], IRHO[0]); // irho[0] no longer needed ... FreeImage_Unload(IRHO[0]); IRHO[0] = NULL; ngrid = ng; // nested iteration loop for (j = 1; j < ngrid; j++) { nn = 2*nn - 1; IU[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IU[j]) throw(1); IRHS[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IRHS[j]) throw(1); IRES[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); if(!IRES[j]) throw(1); fmg_prolongate(IU[j], IU[j-1], nn); // interpolate from coarse grid to next finer grid // set up r.h.s. fmg_copyArray(IRHS[j], j != (ngrid - 1) ? IRHO[j] : U); // V-cycle loop for (jcycle = 0; jcycle < ncycle; jcycle++) { nf = nn; // downward stoke of the V for (jj = j; jj >= 1; jj--) { // pre-smoothing for (jpre = 0; jpre < NPRE; jpre++) { fmg_relaxation(IU[jj], IRHS[jj], nf); } fmg_residual(IRES[jj], IU[jj], IRHS[jj], nf); nf = nf/2 + 1; // restriction of the residual is the next r.h.s. fmg_restrict(IRHS[jj-1], IRES[jj], nf); // zero for initial guess in next relaxation fmg_fillArrayWithZeros(IU[jj-1]); } // bottom of V: solve on coarsest grid fmg_solve(IU[0], IRHS[0]); nf = 3; // upward stroke of V. for (jj = 1; jj <= j; jj++) { nf = 2*nf - 1; // use res for temporary storage inside addint fmg_addint(IU[jj], IU[jj-1], IRES[jj], nf); // post-smoothing for (jpost = 0; jpost < NPOST; jpost++) { fmg_relaxation(IU[jj], IRHS[jj], nf); } } } } // return solution in U fmg_copyArray(U, IU[ngrid-1]); // delete allocated arrays _FREE_ARRAY_GRID_(IRES, ng); _FREE_ARRAY_GRID_(IRHS, ng); _FREE_ARRAY_GRID_(IU, ng); _FREE_ARRAY_GRID_(IRHO, ng); return TRUE; } catch(int) { // delete allocated arrays _FREE_ARRAY_GRID_(IRES, ng); _FREE_ARRAY_GRID_(IRHS, ng); _FREE_ARRAY_GRID_(IU, ng); _FREE_ARRAY_GRID_(IRHO, ng); return FALSE; } } // -------------------------------------------------------------------------- /** Poisson solver based on a multigrid algorithm. This routine solves a Poisson equation, remap result pixels to [0..1] and returns the solution. NB: The input image is first stored inside a square image whose size is (2^j + 1)x(2^j + 1) for some integer j, where j is such that 2^j is the nearest larger dimension corresponding to MAX(image width, image height). @param Laplacian Laplacian image @param ncycle Number of cycles in the multigrid algorithm (usually 2 or 3) @return Returns the solved PDE equations if successful, returns NULL otherwise */ FIBITMAP* DLL_CALLCONV FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) { if(!FreeImage_HasPixels(Laplacian)) return NULL; int width = FreeImage_GetWidth(Laplacian); int height = FreeImage_GetHeight(Laplacian); // get nearest larger dimension length that is acceptable by the algorithm int n = MAX(width, height); int size = 0; while((n >>= 1) > 0) size++; if((1 << size) < MAX(width, height)) { size++; } // size must be of the form 2^j + 1 for some integer j size = 1 + (1 << size); // allocate a temporary square image I FIBITMAP *I = FreeImage_AllocateT(FIT_FLOAT, size, size); if(!I) return NULL; // copy Laplacian into I and shift pixels to create a boundary FreeImage_Paste(I, Laplacian, 1, 1, 255); // solve the PDE equation fmg_mglin(I, size, ncycle); // shift pixels back FIBITMAP *U = FreeImage_Copy(I, 1, 1, width + 1, height + 1); FreeImage_Unload(I); // remap pixels to [0..1] NormalizeY(U, 0, 1); // copy metadata from src to dst FreeImage_CloneMetadata(U, Laplacian); // return the integrated image return U; }