// ========================================================== // Helper class for rational numbers // // Design and implementation by // - Hervé Drolon // // This file is part of FreeImage 3 // // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER // THIS DISCLAIMER. // // Use at your own risk! // ========================================================== #include "../stdafx.h" #include "FIRational.h" /// Initialize and normalize a rational number void FIRational::initialize(LONG n, LONG d) { if(d) { _numerator = n; _denominator = d; // normalize rational normalize(); } else { _numerator = 0; _denominator = 0; } } /// Default constructor FIRational::FIRational() { _numerator = 0; _denominator = 0; } /// Constructor with longs FIRational::FIRational(LONG n, LONG d) { initialize(n, d); } /// Constructor with FITAG FIRational::FIRational(const FITAG *tag) { switch(FreeImage_GetTagType((FITAG*)tag)) { case FIDT_RATIONAL: // 64-bit unsigned fraction { DWORD *pvalue = (DWORD*)FreeImage_GetTagValue((FITAG*)tag); initialize((LONG)pvalue[0], (LONG)pvalue[1]); break; } case FIDT_SRATIONAL: // 64-bit signed fraction { LONG *pvalue = (LONG*)FreeImage_GetTagValue((FITAG*)tag); initialize((LONG)pvalue[0], (LONG)pvalue[1]); break; } } } FIRational::FIRational(float value) { if (value == (float)((LONG)value)) { _numerator = (LONG)value; _denominator = 1L; } else { int k, count; LONG n[4]; float x = fabs(value); int sign = (value > 0) ? 1 : -1; // make a continued-fraction expansion of x count = -1; for(k = 0; k < 4; k++) { n[k] = (LONG)floor(x); count++; x -= (float)n[k]; if(x == 0) break; x = 1 / x; } // compute the rational _numerator = 1; _denominator = n[count]; for(int i = count - 1; i >= 0; i--) { if(n[i] == 0) break; LONG _num = (n[i] * _numerator + _denominator); LONG _den = _numerator; _numerator = _num; _denominator = _den; } _numerator *= sign; } } /// Copy constructor FIRational::FIRational (const FIRational& r) { initialize(r._numerator, r._denominator); } /// Destructor FIRational::~FIRational() { } /// Assignement operator FIRational& FIRational::operator=(FIRational& r) { if(this != &r) { initialize(r._numerator, r._denominator); } return *this; } /// Get the numerator LONG FIRational::getNumerator() { return _numerator; } /// Get the denominator LONG FIRational::getDenominator() { return _denominator; } /// Calculate GCD LONG FIRational::gcd(LONG a, LONG b) { LONG temp; while (b) { // While non-zero value temp = b; // Save current value b = a % b; // Assign remainder of division a = temp; // Copy old value } return a; // Return GCD of numbers } /// Normalize numerator / denominator void FIRational::normalize() { if (_numerator != 1 && _denominator != 1) { // Is there something to do? // Calculate GCD LONG common = gcd(_numerator, _denominator); if (common != 1) { // If GCD is not one _numerator /= common; // Calculate new numerator _denominator /= common; // Calculate new denominator } } if(_denominator < 0) { // If sign is in denominator _numerator *= -1; // Multiply num and den by -1 _denominator *= -1; // To keep sign in numerator } } /// Checks if this rational number is an Integer, either positive or negative BOOL FIRational::isInteger() { if(_denominator == 1 || (_denominator != 0 && (_numerator % _denominator == 0)) || (_denominator == 0 && _numerator == 0)) return TRUE; return FALSE; } /// Convert as "numerator/denominator" std::string FIRational::toString() { std::ostringstream s; if(isInteger()) { s << intValue(); } else { s << _numerator << "/" << _denominator; } return s.str(); }