/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* .
*/
#include
#include
#include
#include "argon2-core.h"
#include "argon2.h"
#include "private/common.h"
#include "private/sse2_64_32.h"
#if defined(HAVE_AVX2INTRIN_H) && defined(HAVE_EMMINTRIN_H) && \
defined(HAVE_TMMINTRIN_H) && defined(HAVE_SMMINTRIN_H)
# ifdef __GNUC__
# pragma GCC target("sse2")
# pragma GCC target("ssse3")
# pragma GCC target("sse4.1")
# pragma GCC target("avx2")
# endif
# ifdef _MSC_VER
# include /* for _mm_set_epi64x */
# endif
#include
#include
#include
#include
# include "blamka-round-avx2.h"
static void
fill_block(__m256i *state, const uint8_t *ref_block, uint8_t *next_block)
{
__m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
uint32_t i;
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
block_XY[i] = state[i] = _mm256_xor_si256(
state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i])));
}
for (i = 0; i < 4; ++i) {
BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
}
for (i = 0; i < 4; ++i) {
BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
}
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
state[i] = _mm256_xor_si256(state[i], block_XY[i]);
_mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]);
}
}
static void
fill_block_with_xor(__m256i *state, const uint8_t *ref_block,
uint8_t *next_block)
{
__m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
uint32_t i;
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
state[i] = _mm256_xor_si256(
state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i])));
block_XY[i] = _mm256_xor_si256(
state[i], _mm256_loadu_si256((__m256i const *) (&next_block[32 * i])));
}
for (i = 0; i < 4; ++i) {
BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
}
for (i = 0; i < 4; ++i) {
BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
}
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
state[i] = _mm256_xor_si256(state[i], block_XY[i]);
_mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]);
}
}
static void
generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position, uint64_t *pseudo_rands)
{
block address_block, input_block, tmp_block;
uint32_t i;
init_block_value(&address_block, 0);
init_block_value(&input_block, 0);
if (instance != NULL && position != NULL) {
input_block.v[0] = position->pass;
input_block.v[1] = position->lane;
input_block.v[2] = position->slice;
input_block.v[3] = instance->memory_blocks;
input_block.v[4] = instance->passes;
input_block.v[5] = instance->type;
for (i = 0; i < instance->segment_length; ++i) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
/* Temporary zero-initialized blocks */
__m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
__m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
memset(zero_block, 0, sizeof(zero_block));
memset(zero2_block, 0, sizeof(zero2_block));
init_block_value(&address_block, 0);
init_block_value(&tmp_block, 0);
/* Increasing index counter */
input_block.v[6]++;
/* First iteration of G */
fill_block_with_xor(zero_block, (uint8_t *) &input_block.v,
(uint8_t *) &tmp_block.v);
/* Second iteration of G */
fill_block_with_xor(zero2_block, (uint8_t *) &tmp_block.v,
(uint8_t *) &address_block.v);
}
pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
}
}
}
void
fill_segment_avx2(const argon2_instance_t *instance,
argon2_position_t position)
{
block *ref_block = NULL, *curr_block = NULL;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index, i;
__m256i state[ARGON2_HWORDS_IN_BLOCK];
int data_independent_addressing = 1;
/* Pseudo-random values that determine the reference block position */
uint64_t *pseudo_rands = NULL;
if (instance == NULL) {
return;
}
if (instance->type == Argon2_id &&
(position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
data_independent_addressing = 0;
}
pseudo_rands = instance->pseudo_rands;
if (data_independent_addressing) {
generate_addresses(instance, &position, pseudo_rands);
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
}
/* Offset of the current block */
curr_offset = position.lane * instance->lane_length +
position.slice * instance->segment_length + starting_index;
if (0 == curr_offset % instance->lane_length) {
/* Last block in this lane */
prev_offset = curr_offset + instance->lane_length - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
memcpy(state, ((instance->region->memory + prev_offset)->v),
ARGON2_BLOCK_SIZE);
for (i = starting_index; i < instance->segment_length;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % instance->lane_length == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
#pragma warning(push)
#pragma warning(disable : 6385)
pseudo_rand = pseudo_rands[i];
#pragma warning(pop)
} else {
pseudo_rand = instance->region->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block = instance->region->memory +
instance->lane_length * ref_lane + ref_index;
curr_block = instance->region->memory + curr_offset;
if (position.pass != 0) {
fill_block_with_xor(state, (uint8_t *) ref_block->v,
(uint8_t *) curr_block->v);
} else {
fill_block(state, (uint8_t *) ref_block->v,
(uint8_t *) curr_block->v);
}
}
}
#endif