/* * Argon2 source code package * * Written by Daniel Dinu and Dmitry Khovratovich, 2015 * * This work is licensed under a Creative Commons CC0 1.0 License/Waiver. * * You should have received a copy of the CC0 Public Domain Dedication along * with * this software. If not, see * . */ #include #include #include #include "argon2-core.h" #include "argon2.h" #include "private/common.h" #include "private/sse2_64_32.h" #if defined(HAVE_AVX2INTRIN_H) && defined(HAVE_EMMINTRIN_H) && \ defined(HAVE_TMMINTRIN_H) && defined(HAVE_SMMINTRIN_H) # ifdef __GNUC__ # pragma GCC target("sse2") # pragma GCC target("ssse3") # pragma GCC target("sse4.1") # pragma GCC target("avx2") # endif # ifdef _MSC_VER # include /* for _mm_set_epi64x */ # endif #include #include #include #include # include "blamka-round-avx2.h" static void fill_block(__m256i *state, const uint8_t *ref_block, uint8_t *next_block) { __m256i block_XY[ARGON2_HWORDS_IN_BLOCK]; uint32_t i; for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { block_XY[i] = state[i] = _mm256_xor_si256( state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i]))); } for (i = 0; i < 4; ++i) { BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5], state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]); } for (i = 0; i < 4; ++i) { BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i], state[16 + i], state[20 + i], state[24 + i], state[28 + i]); } for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { state[i] = _mm256_xor_si256(state[i], block_XY[i]); _mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]); } } static void fill_block_with_xor(__m256i *state, const uint8_t *ref_block, uint8_t *next_block) { __m256i block_XY[ARGON2_HWORDS_IN_BLOCK]; uint32_t i; for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { state[i] = _mm256_xor_si256( state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i]))); block_XY[i] = _mm256_xor_si256( state[i], _mm256_loadu_si256((__m256i const *) (&next_block[32 * i]))); } for (i = 0; i < 4; ++i) { BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5], state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]); } for (i = 0; i < 4; ++i) { BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i], state[16 + i], state[20 + i], state[24 + i], state[28 + i]); } for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) { state[i] = _mm256_xor_si256(state[i], block_XY[i]); _mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]); } } static void generate_addresses(const argon2_instance_t *instance, const argon2_position_t *position, uint64_t *pseudo_rands) { block address_block, input_block, tmp_block; uint32_t i; init_block_value(&address_block, 0); init_block_value(&input_block, 0); if (instance != NULL && position != NULL) { input_block.v[0] = position->pass; input_block.v[1] = position->lane; input_block.v[2] = position->slice; input_block.v[3] = instance->memory_blocks; input_block.v[4] = instance->passes; input_block.v[5] = instance->type; for (i = 0; i < instance->segment_length; ++i) { if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { /* Temporary zero-initialized blocks */ __m256i zero_block[ARGON2_HWORDS_IN_BLOCK]; __m256i zero2_block[ARGON2_HWORDS_IN_BLOCK]; memset(zero_block, 0, sizeof(zero_block)); memset(zero2_block, 0, sizeof(zero2_block)); init_block_value(&address_block, 0); init_block_value(&tmp_block, 0); /* Increasing index counter */ input_block.v[6]++; /* First iteration of G */ fill_block_with_xor(zero_block, (uint8_t *) &input_block.v, (uint8_t *) &tmp_block.v); /* Second iteration of G */ fill_block_with_xor(zero2_block, (uint8_t *) &tmp_block.v, (uint8_t *) &address_block.v); } pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; } } } void fill_segment_avx2(const argon2_instance_t *instance, argon2_position_t position) { block *ref_block = NULL, *curr_block = NULL; uint64_t pseudo_rand, ref_index, ref_lane; uint32_t prev_offset, curr_offset; uint32_t starting_index, i; __m256i state[ARGON2_HWORDS_IN_BLOCK]; int data_independent_addressing = 1; /* Pseudo-random values that determine the reference block position */ uint64_t *pseudo_rands = NULL; if (instance == NULL) { return; } if (instance->type == Argon2_id && (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) { data_independent_addressing = 0; } pseudo_rands = instance->pseudo_rands; if (data_independent_addressing) { generate_addresses(instance, &position, pseudo_rands); } starting_index = 0; if ((0 == position.pass) && (0 == position.slice)) { starting_index = 2; /* we have already generated the first two blocks */ } /* Offset of the current block */ curr_offset = position.lane * instance->lane_length + position.slice * instance->segment_length + starting_index; if (0 == curr_offset % instance->lane_length) { /* Last block in this lane */ prev_offset = curr_offset + instance->lane_length - 1; } else { /* Previous block */ prev_offset = curr_offset - 1; } memcpy(state, ((instance->region->memory + prev_offset)->v), ARGON2_BLOCK_SIZE); for (i = starting_index; i < instance->segment_length; ++i, ++curr_offset, ++prev_offset) { /*1.1 Rotating prev_offset if needed */ if (curr_offset % instance->lane_length == 1) { prev_offset = curr_offset - 1; } /* 1.2 Computing the index of the reference block */ /* 1.2.1 Taking pseudo-random value from the previous block */ if (data_independent_addressing) { #pragma warning(push) #pragma warning(disable : 6385) pseudo_rand = pseudo_rands[i]; #pragma warning(pop) } else { pseudo_rand = instance->region->memory[prev_offset].v[0]; } /* 1.2.2 Computing the lane of the reference block */ ref_lane = ((pseudo_rand >> 32)) % instance->lanes; if ((position.pass == 0) && (position.slice == 0)) { /* Can not reference other lanes yet */ ref_lane = position.lane; } /* 1.2.3 Computing the number of possible reference block within the * lane. */ position.index = i; ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, ref_lane == position.lane); /* 2 Creating a new block */ ref_block = instance->region->memory + instance->lane_length * ref_lane + ref_index; curr_block = instance->region->memory + curr_offset; if (position.pass != 0) { fill_block_with_xor(state, (uint8_t *) ref_block->v, (uint8_t *) curr_block->v); } else { fill_block(state, (uint8_t *) ref_block->v, (uint8_t *) curr_block->v); } } } #endif