/////////////////////////////////////////////////////////////////////// // C Implementation of Wu's Color Quantizer (v. 2) // (see Graphics Gems vol. II, pp. 126-133) // // Author: Xiaolin Wu // Dept. of Computer Science // Univ. of Western Ontario // London, Ontario N6A 5B7 // wu@csd.uwo.ca // // Algorithm: Greedy orthogonal bipartition of RGB space for variance // minimization aided by inclusion-exclusion tricks. // For speed no nearest neighbor search is done. Slightly // better performance can be expected by more sophisticated // but more expensive versions. // // The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of // additional documentation and a cure to a previous bug. // // Free to distribute, comments and suggestions are appreciated. /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// // History // ------- // July 2000: C++ Implementation of Wu's Color Quantizer // and adaptation for the FreeImage 2 Library // Author: Hervé Drolon (drolon@infonie.fr) // March 2004: Adaptation for the FreeImage 3 library (port to big endian processors) // Author: Hervé Drolon (drolon@infonie.fr) /////////////////////////////////////////////////////////////////////// #include "Quantizers.h" #include "FreeImage.h" #include "Utilities.h" /////////////////////////////////////////////////////////////////////// // Size of a 3D array : 33 x 33 x 33 #define SIZE_3D 35937 // 3D array indexation #define INDEX(r, g, b) ((r << 10) + (r << 6) + r + (g << 5) + g + b) #define MAXCOLOR 256 // Constructor / Destructor WuQuantizer::WuQuantizer(FIBITMAP *dib) { width = FreeImage_GetWidth(dib); height = FreeImage_GetHeight(dib); pitch = FreeImage_GetPitch(dib); m_dib = dib; gm2 = NULL; wt = mr = mg = mb = NULL; Qadd = NULL; // Allocate 3D arrays gm2 = (float*)malloc(SIZE_3D * sizeof(float)); wt = (LONG*)malloc(SIZE_3D * sizeof(LONG)); mr = (LONG*)malloc(SIZE_3D * sizeof(LONG)); mg = (LONG*)malloc(SIZE_3D * sizeof(LONG)); mb = (LONG*)malloc(SIZE_3D * sizeof(LONG)); // Allocate Qadd Qadd = (WORD *)malloc(sizeof(WORD) * width * height); if (!gm2 || !wt || !mr || !mg || !mb || !Qadd) { if(gm2) free(gm2); if(wt) free(wt); if(mr) free(mr); if(mg) free(mg); if(mb) free(mb); if(Qadd) free(Qadd); throw FI_MSG_ERROR_MEMORY; } memset(gm2, 0, SIZE_3D * sizeof(float)); memset(wt, 0, SIZE_3D * sizeof(LONG)); memset(mr, 0, SIZE_3D * sizeof(LONG)); memset(mg, 0, SIZE_3D * sizeof(LONG)); memset(mb, 0, SIZE_3D * sizeof(LONG)); memset(Qadd, 0, sizeof(WORD) * width * height); } WuQuantizer::~WuQuantizer() { if(gm2) free(gm2); if(wt) free(wt); if(mr) free(mr); if(mg) free(mg); if(mb) free(mb); if(Qadd) free(Qadd); } // Histogram is in elements 1..HISTSIZE along each axis, // element 0 is for base or marginal value // NB: these must start out 0! // Build 3-D color histogram of counts, r/g/b, c^2 void WuQuantizer::Hist3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2, int ReserveSize, RGBQUAD *ReservePalette) { int ind = 0; int inr, ing, inb, table[256]; int i; unsigned y, x; for(i = 0; i < 256; i++) table[i] = i * i; for(y = 0; y < height; y++) { BYTE *bits = FreeImage_GetScanLine(m_dib, y); for(x = 0; x < width; x++) { inr = (bits[FI_RGBA_RED] >> 3) + 1; ing = (bits[FI_RGBA_GREEN] >> 3) + 1; inb = (bits[FI_RGBA_BLUE] >> 3) + 1; ind = INDEX(inr, ing, inb); Qadd[y*width + x] = (WORD)ind; // [inr][ing][inb] vwt[ind]++; vmr[ind] += bits[FI_RGBA_RED]; vmg[ind] += bits[FI_RGBA_GREEN]; vmb[ind] += bits[FI_RGBA_BLUE]; m2[ind] += (float)(table[bits[FI_RGBA_RED]] + table[bits[FI_RGBA_GREEN]] + table[bits[FI_RGBA_BLUE]]); bits += 3; } } if ( ReserveSize > 0 ) { int max = 0; for(i = 0; i < SIZE_3D; i++) { if ( vwt[i] > max ) max = vwt[i]; } max++; for(i = 0; i < ReserveSize; i++) { inr = (ReservePalette[i].rgbRed >> 3) + 1; ing = (ReservePalette[i].rgbGreen >> 3) + 1; inb = (ReservePalette[i].rgbBlue >> 3) + 1; ind = INDEX(inr, ing, inb); wt[ind] = max; mr[ind] = max * ReservePalette[i].rgbRed; mg[ind] = max * ReservePalette[i].rgbGreen; mb[ind] = max * ReservePalette[i].rgbBlue; gm2[ind] = (float)max * (float)(table[ReservePalette[i].rgbRed] + table[ReservePalette[i].rgbGreen] + table[ReservePalette[i].rgbBlue]); } } } // At conclusion of the histogram step, we can interpret // wt[r][g][b] = sum over voxel of P(c) // mr[r][g][b] = sum over voxel of r*P(c) , similarly for mg, mb // m2[r][g][b] = sum over voxel of c^2*P(c) // Actually each of these should be divided by 'ImageSize' to give the usual // interpretation of P() as ranging from 0 to 1, but we needn't do that here. // We now convert histogram into moments so that we can rapidly calculate // the sums of the above quantities over any desired box. // Compute cumulative moments void WuQuantizer::M3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2) { unsigned ind1, ind2; BYTE i, r, g, b; LONG line, line_r, line_g, line_b; LONG area[33], area_r[33], area_g[33], area_b[33]; float line2, area2[33]; for(r = 1; r <= 32; r++) { for(i = 0; i <= 32; i++) { area2[i] = 0; area[i] = area_r[i] = area_g[i] = area_b[i] = 0; } for(g = 1; g <= 32; g++) { line2 = 0; line = line_r = line_g = line_b = 0; for(b = 1; b <= 32; b++) { ind1 = INDEX(r, g, b); // [r][g][b] line += vwt[ind1]; line_r += vmr[ind1]; line_g += vmg[ind1]; line_b += vmb[ind1]; line2 += m2[ind1]; area[b] += line; area_r[b] += line_r; area_g[b] += line_g; area_b[b] += line_b; area2[b] += line2; ind2 = ind1 - 1089; // [r-1][g][b] vwt[ind1] = vwt[ind2] + area[b]; vmr[ind1] = vmr[ind2] + area_r[b]; vmg[ind1] = vmg[ind2] + area_g[b]; vmb[ind1] = vmb[ind2] + area_b[b]; m2[ind1] = m2[ind2] + area2[b]; } } } } // Compute sum over a box of any given statistic LONG WuQuantizer::Vol( Box *cube, LONG *mmt ) { return( mmt[INDEX(cube->r1, cube->g1, cube->b1)] - mmt[INDEX(cube->r1, cube->g1, cube->b0)] - mmt[INDEX(cube->r1, cube->g0, cube->b1)] + mmt[INDEX(cube->r1, cube->g0, cube->b0)] - mmt[INDEX(cube->r0, cube->g1, cube->b1)] + mmt[INDEX(cube->r0, cube->g1, cube->b0)] + mmt[INDEX(cube->r0, cube->g0, cube->b1)] - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); } // The next two routines allow a slightly more efficient calculation // of Vol() for a proposed subbox of a given box. The sum of Top() // and Bottom() is the Vol() of a subbox split in the given direction // and with the specified new upper bound. // Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1 // (depending on dir) LONG WuQuantizer::Bottom(Box *cube, BYTE dir, LONG *mmt) { switch(dir) { case FI_RGBA_RED: return( - mmt[INDEX(cube->r0, cube->g1, cube->b1)] + mmt[INDEX(cube->r0, cube->g1, cube->b0)] + mmt[INDEX(cube->r0, cube->g0, cube->b1)] - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); break; case FI_RGBA_GREEN: return( - mmt[INDEX(cube->r1, cube->g0, cube->b1)] + mmt[INDEX(cube->r1, cube->g0, cube->b0)] + mmt[INDEX(cube->r0, cube->g0, cube->b1)] - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); break; case FI_RGBA_BLUE: return( - mmt[INDEX(cube->r1, cube->g1, cube->b0)] + mmt[INDEX(cube->r1, cube->g0, cube->b0)] + mmt[INDEX(cube->r0, cube->g1, cube->b0)] - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); break; } return 0; } // Compute remainder of Vol(cube, mmt), substituting pos for // r1, g1, or b1 (depending on dir) LONG WuQuantizer::Top(Box *cube, BYTE dir, int pos, LONG *mmt) { switch(dir) { case FI_RGBA_RED: return( mmt[INDEX(pos, cube->g1, cube->b1)] -mmt[INDEX(pos, cube->g1, cube->b0)] -mmt[INDEX(pos, cube->g0, cube->b1)] +mmt[INDEX(pos, cube->g0, cube->b0)] ); break; case FI_RGBA_GREEN: return( mmt[INDEX(cube->r1, pos, cube->b1)] -mmt[INDEX(cube->r1, pos, cube->b0)] -mmt[INDEX(cube->r0, pos, cube->b1)] +mmt[INDEX(cube->r0, pos, cube->b0)] ); break; case FI_RGBA_BLUE: return( mmt[INDEX(cube->r1, cube->g1, pos)] -mmt[INDEX(cube->r1, cube->g0, pos)] -mmt[INDEX(cube->r0, cube->g1, pos)] +mmt[INDEX(cube->r0, cube->g0, pos)] ); break; } return 0; } // Compute the weighted variance of a box // NB: as with the raw statistics, this is really the variance * ImageSize float WuQuantizer::Var(Box *cube) { float dr = (float) Vol(cube, mr); float dg = (float) Vol(cube, mg); float db = (float) Vol(cube, mb); float xx = gm2[INDEX(cube->r1, cube->g1, cube->b1)] -gm2[INDEX(cube->r1, cube->g1, cube->b0)] -gm2[INDEX(cube->r1, cube->g0, cube->b1)] +gm2[INDEX(cube->r1, cube->g0, cube->b0)] -gm2[INDEX(cube->r0, cube->g1, cube->b1)] +gm2[INDEX(cube->r0, cube->g1, cube->b0)] +gm2[INDEX(cube->r0, cube->g0, cube->b1)] -gm2[INDEX(cube->r0, cube->g0, cube->b0)]; return (xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,wt)); } // We want to minimize the sum of the variances of two subboxes. // The sum(c^2) terms can be ignored since their sum over both subboxes // is the same (the sum for the whole box) no matter where we split. // The remaining terms have a minus sign in the variance formula, // so we drop the minus sign and MAXIMIZE the sum of the two terms. float WuQuantizer::Maximize(Box *cube, BYTE dir, int first, int last , int *cut, LONG whole_r, LONG whole_g, LONG whole_b, LONG whole_w) { LONG half_r, half_g, half_b, half_w; int i; float temp; LONG base_r = Bottom(cube, dir, mr); LONG base_g = Bottom(cube, dir, mg); LONG base_b = Bottom(cube, dir, mb); LONG base_w = Bottom(cube, dir, wt); float max = 0.0; *cut = -1; for (i = first; i < last; i++) { half_r = base_r + Top(cube, dir, i, mr); half_g = base_g + Top(cube, dir, i, mg); half_b = base_b + Top(cube, dir, i, mb); half_w = base_w + Top(cube, dir, i, wt); // now half_x is sum over lower half of box, if split at i if (half_w == 0) { // subbox could be empty of pixels! continue; // never split into an empty box } else { temp = ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w; } half_r = whole_r - half_r; half_g = whole_g - half_g; half_b = whole_b - half_b; half_w = whole_w - half_w; if (half_w == 0) { // subbox could be empty of pixels! continue; // never split into an empty box } else { temp += ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w; } if (temp > max) { max=temp; *cut=i; } } return max; } bool WuQuantizer::Cut(Box *set1, Box *set2) { BYTE dir; int cutr, cutg, cutb; LONG whole_r = Vol(set1, mr); LONG whole_g = Vol(set1, mg); LONG whole_b = Vol(set1, mb); LONG whole_w = Vol(set1, wt); float maxr = Maximize(set1, FI_RGBA_RED, set1->r0+1, set1->r1, &cutr, whole_r, whole_g, whole_b, whole_w); float maxg = Maximize(set1, FI_RGBA_GREEN, set1->g0+1, set1->g1, &cutg, whole_r, whole_g, whole_b, whole_w); float maxb = Maximize(set1, FI_RGBA_BLUE, set1->b0+1, set1->b1, &cutb, whole_r, whole_g, whole_b, whole_w); if ((maxr >= maxg) && (maxr >= maxb)) { dir = FI_RGBA_RED; if (cutr < 0) { return false; // can't split the box } } else if ((maxg >= maxr) && (maxg>=maxb)) { dir = FI_RGBA_GREEN; } else { dir = FI_RGBA_BLUE; } set2->r1 = set1->r1; set2->g1 = set1->g1; set2->b1 = set1->b1; switch (dir) { case FI_RGBA_RED: set2->r0 = set1->r1 = cutr; set2->g0 = set1->g0; set2->b0 = set1->b0; break; case FI_RGBA_GREEN: set2->g0 = set1->g1 = cutg; set2->r0 = set1->r0; set2->b0 = set1->b0; break; case FI_RGBA_BLUE: set2->b0 = set1->b1 = cutb; set2->r0 = set1->r0; set2->g0 = set1->g0; break; } set1->vol = (set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0); set2->vol = (set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0); return true; } void WuQuantizer::Mark(Box *cube, int label, BYTE *tag) { for (int r = cube->r0 + 1; r <= cube->r1; r++) { for (int g = cube->g0 + 1; g <= cube->g1; g++) { for (int b = cube->b0 + 1; b <= cube->b1; b++) { tag[INDEX(r, g, b)] = (BYTE)label; } } } } // Wu Quantization algorithm FIBITMAP * WuQuantizer::Quantize(int PaletteSize, int ReserveSize, RGBQUAD *ReservePalette) { BYTE *tag = NULL; try { Box cube[MAXCOLOR]; int next; LONG i, weight; int k; float vv[MAXCOLOR], temp; // Compute 3D histogram Hist3D(wt, mr, mg, mb, gm2, ReserveSize, ReservePalette); // Compute moments M3D(wt, mr, mg, mb, gm2); cube[0].r0 = cube[0].g0 = cube[0].b0 = 0; cube[0].r1 = cube[0].g1 = cube[0].b1 = 32; next = 0; for (i = 1; i < PaletteSize; i++) { if(Cut(&cube[next], &cube[i])) { // volume test ensures we won't try to cut one-cell box vv[next] = (cube[next].vol > 1) ? Var(&cube[next]) : 0; vv[i] = (cube[i].vol > 1) ? Var(&cube[i]) : 0; } else { vv[next] = 0.0; // don't try to split this box again i--; // didn't create box i } next = 0; temp = vv[0]; for (k = 1; k <= i; k++) { if (vv[k] > temp) { temp = vv[k]; next = k; } } if (temp <= 0.0) { PaletteSize = i + 1; // Error: "Only got 'PaletteSize' boxes" break; } } // Partition done // the space for array gm2 can be freed now free(gm2); gm2 = NULL; // Allocate a new dib FIBITMAP *new_dib = FreeImage_Allocate(width, height, 8); if (new_dib == NULL) { throw FI_MSG_ERROR_MEMORY; } // create an optimized palette RGBQUAD *new_pal = FreeImage_GetPalette(new_dib); tag = (BYTE*) malloc(SIZE_3D * sizeof(BYTE)); if (tag == NULL) { throw FI_MSG_ERROR_MEMORY; } memset(tag, 0, SIZE_3D * sizeof(BYTE)); for (k = 0; k < PaletteSize ; k++) { Mark(&cube[k], k, tag); weight = Vol(&cube[k], wt); if (weight) { new_pal[k].rgbRed = (BYTE)(((float)Vol(&cube[k], mr) / (float)weight) + 0.5f); new_pal[k].rgbGreen = (BYTE)(((float)Vol(&cube[k], mg) / (float)weight) + 0.5f); new_pal[k].rgbBlue = (BYTE)(((float)Vol(&cube[k], mb) / (float)weight) + 0.5f); } else { // Error: bogus box 'k' new_pal[k].rgbRed = new_pal[k].rgbGreen = new_pal[k].rgbBlue = 0; } } int npitch = FreeImage_GetPitch(new_dib); for (unsigned y = 0; y < height; y++) { BYTE *new_bits = FreeImage_GetBits(new_dib) + (y * npitch); for (unsigned x = 0; x < width; x++) { new_bits[x] = tag[Qadd[y*width + x]]; } } // output 'new_pal' as color look-up table contents, // 'new_bits' as the quantized image (array of table addresses). free(tag); return (FIBITMAP*) new_dib; } catch(...) { free(tag); } return NULL; }