//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- // Bessel function (besj) was adapted for use in AGG library by Andy Wilk // Contact: castor.vulgaris@gmail.com //---------------------------------------------------------------------------- #ifndef AGG_MATH_INCLUDED #define AGG_MATH_INCLUDED #include #include "agg_basics.h" namespace agg { //------------------------------------------------------vertex_dist_epsilon // Coinciding points maximal distance (Epsilon) const double vertex_dist_epsilon = 1e-14; //-----------------------------------------------------intersection_epsilon // See calc_intersection const double intersection_epsilon = 1.0e-30; //------------------------------------------------------------cross_product AGG_INLINE double cross_product(double x1, double y1, double x2, double y2, double x, double y) { return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1); } //--------------------------------------------------------point_in_triangle AGG_INLINE bool point_in_triangle(double x1, double y1, double x2, double y2, double x3, double y3, double x, double y) { bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0; bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0; bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0; return cp1 == cp2 && cp2 == cp3 && cp3 == cp1; } //-----------------------------------------------------------calc_distance AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2) { double dx = x2-x1; double dy = y2-y1; return sqrt(dx * dx + dy * dy); } //--------------------------------------------------------calc_sq_distance AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2) { double dx = x2-x1; double dy = y2-y1; return dx * dx + dy * dy; } //------------------------------------------------calc_line_point_distance AGG_INLINE double calc_line_point_distance(double x1, double y1, double x2, double y2, double x, double y) { double dx = x2-x1; double dy = y2-y1; double d = sqrt(dx * dx + dy * dy); if(d < vertex_dist_epsilon) { return calc_distance(x1, y1, x, y); } return ((x - x2) * dy - (y - y2) * dx) / d; } //-------------------------------------------------------calc_line_point_u AGG_INLINE double calc_segment_point_u(double x1, double y1, double x2, double y2, double x, double y) { double dx = x2 - x1; double dy = y2 - y1; if(dx == 0 && dy == 0) { return 0; } double pdx = x - x1; double pdy = y - y1; return (pdx * dx + pdy * dy) / (dx * dx + dy * dy); } //---------------------------------------------calc_line_point_sq_distance AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, double x2, double y2, double x, double y, double u) { if(u <= 0) { return calc_sq_distance(x, y, x1, y1); } else if(u >= 1) { return calc_sq_distance(x, y, x2, y2); } return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1)); } //---------------------------------------------calc_line_point_sq_distance AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, double x2, double y2, double x, double y) { return calc_segment_point_sq_distance( x1, y1, x2, y2, x, y, calc_segment_point_u(x1, y1, x2, y2, x, y)); } //-------------------------------------------------------calc_intersection AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by, double cx, double cy, double dx, double dy, double* x, double* y) { double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy); double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx); if(fabs(den) < intersection_epsilon) return false; double r = num / den; *x = ax + r * (bx-ax); *y = ay + r * (by-ay); return true; } //-----------------------------------------------------intersection_exists AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // It's less expensive but you can't control the // boundary conditions: Less or LessEqual double dx1 = x2 - x1; double dy1 = y2 - y1; double dx2 = x4 - x3; double dy2 = y4 - y3; return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) != ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) && ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) != ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0); // It's is more expensive but more flexible // in terms of boundary conditions. //-------------------- //double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3); //if(fabs(den) < intersection_epsilon) return false; //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3); //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3); //double ua = nom1 / den; //double ub = nom2 / den; //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0; } //--------------------------------------------------------calc_orthogonal AGG_INLINE void calc_orthogonal(double thickness, double x1, double y1, double x2, double y2, double* x, double* y) { double dx = x2 - x1; double dy = y2 - y1; double d = sqrt(dx*dx + dy*dy); *x = thickness * dy / d; *y = -thickness * dx / d; } //--------------------------------------------------------dilate_triangle AGG_INLINE void dilate_triangle(double x1, double y1, double x2, double y2, double x3, double y3, double *x, double* y, double d) { double dx1=0.0; double dy1=0.0; double dx2=0.0; double dy2=0.0; double dx3=0.0; double dy3=0.0; double loc = cross_product(x1, y1, x2, y2, x3, y3); if(fabs(loc) > intersection_epsilon) { if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0) { d = -d; } calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1); calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2); calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3); } *x++ = x1 + dx1; *y++ = y1 + dy1; *x++ = x2 + dx1; *y++ = y2 + dy1; *x++ = x2 + dx2; *y++ = y2 + dy2; *x++ = x3 + dx2; *y++ = y3 + dy2; *x++ = x3 + dx3; *y++ = y3 + dy3; *x++ = x1 + dx3; *y++ = y1 + dy3; } //------------------------------------------------------calc_triangle_area AGG_INLINE double calc_triangle_area(double x1, double y1, double x2, double y2, double x3, double y3) { return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5; } //-------------------------------------------------------calc_polygon_area template double calc_polygon_area(const Storage& st) { unsigned i; double sum = 0.0; double x = st[0].x; double y = st[0].y; double xs = x; double ys = y; for(i = 1; i < st.size(); i++) { const typename Storage::value_type& v = st[i]; sum += x * v.y - y * v.x; x = v.x; y = v.y; } return (sum + x * ys - y * xs) * 0.5; } //------------------------------------------------------------------------ // Tables for fast sqrt extern int16u g_sqrt_table[1024]; extern int8 g_elder_bit_table[256]; //---------------------------------------------------------------fast_sqrt //Fast integer Sqrt - really fast: no cycles, divisions or multiplications #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable : 4035) //Disable warning "no return value" #endif AGG_INLINE unsigned fast_sqrt(unsigned val) { #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM) //For Ix86 family processors this assembler code is used. //The key command here is bsr - determination the number of the most //significant bit of the value. For other processors //(and maybe compilers) the pure C "#else" section is used. __asm { mov ebx, val mov edx, 11 bsr ecx, ebx sub ecx, 9 jle less_than_9_bits shr ecx, 1 adc ecx, 0 sub edx, ecx shl ecx, 1 shr ebx, cl less_than_9_bits: xor eax, eax mov ax, g_sqrt_table[ebx*2] mov ecx, edx shr eax, cl } #else //This code is actually pure C and portable to most //arcitectures including 64bit ones. unsigned t = val; int bit=0; unsigned shift = 11; //The following piece of code is just an emulation of the //Ix86 assembler command "bsr" (see above). However on old //Intels (like Intel MMX 233MHz) this code is about twice //faster (sic!) then just one "bsr". On PIII and PIV the //bsr is optimized quite well. bit = t >> 24; if(bit) { bit = g_elder_bit_table[bit] + 24; } else { bit = (t >> 16) & 0xFF; if(bit) { bit = g_elder_bit_table[bit] + 16; } else { bit = (t >> 8) & 0xFF; if(bit) { bit = g_elder_bit_table[bit] + 8; } else { bit = g_elder_bit_table[t]; } } } //This code calculates the sqrt. bit -= 9; if(bit > 0) { bit = (bit >> 1) + (bit & 1); shift -= bit; val >>= (bit << 1); } return g_sqrt_table[val] >> shift; #endif } #if defined(_MSC_VER) #pragma warning(pop) #endif //--------------------------------------------------------------------besj // Function BESJ calculates Bessel function of first kind of order n // Arguments: // n - an integer (>=0), the order // x - value at which the Bessel function is required //-------------------- // C++ Mathematical Library // Convereted from equivalent FORTRAN library // Converetd by Gareth Walker for use by course 392 computational project // All functions tested and yield the same results as the corresponding // FORTRAN versions. // // If you have any problems using these functions please report them to // M.Muldoon@UMIST.ac.uk // // Documentation available on the web // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html // Version 1.0 8/98 // 29 October, 1999 //-------------------- // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com) //------------------------------------------------------------------------ inline double besj(double x, int n) { if(n < 0) { return 0; } double d = 1E-6; double b = 0; if(fabs(x) <= d) { if(n != 0) return 0; return 1; } double b1 = 0; // b1 is the value from the previous iteration // Set up a starting order for recurrence int m1 = (int)fabs(x) + 6; if(fabs(x) > 5) { m1 = (int)(fabs(1.4 * x + 60 / x)); } int m2 = (int)(n + 2 + fabs(x) / 4); if (m1 > m2) { m2 = m1; } // Apply recurrence down from curent max order for(;;) { double c3 = 0; double c2 = 1E-30; double c4 = 0; int m8 = 1; if (m2 / 2 * 2 == m2) { m8 = -1; } int imax = m2 - 2; for (int i = 1; i <= imax; i++) { double c6 = 2 * (m2 - i) * c2 / x - c3; c3 = c2; c2 = c6; if(m2 - i - 1 == n) { b = c6; } m8 = -1 * m8; if (m8 > 0) { c4 = c4 + 2 * c6; } } double c6 = 2 * c2 / x - c3; if(n == 0) { b = c6; } c4 += c6; b /= c4; if(fabs(b - b1) < d) { return b; } b1 = b; m2 += 3; } } } #endif