// iterhash.cpp - written and placed in the public domain by Wei Dai #include "pch.h" // prevent Sun's CC compiler from including this file automatically #if !defined(__SUNPRO_CC) || defined(CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES) #include "iterhash.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) template void IteratedHashBase::Update(const byte *input, size_t len) { HashWordType oldCountLo = m_countLo, oldCountHi = m_countHi; if ((m_countLo = oldCountLo + HashWordType(len)) < oldCountLo) m_countHi++; // carry from low to high m_countHi += (HashWordType)SafeRightShift<8*sizeof(HashWordType)>(len); if (m_countHi < oldCountHi || SafeRightShift<2*8*sizeof(HashWordType)>(len) != 0) throw HashInputTooLong(this->AlgorithmName()); unsigned int blockSize = this->BlockSize(); unsigned int num = ModPowerOf2(oldCountLo, blockSize); T* dataBuf = this->DataBuf(); byte* data = (byte *)dataBuf; if (num != 0) // process left over data { if ((num+len) >= blockSize) { memcpy(data+num, input, blockSize-num); HashBlock(dataBuf); input += (blockSize-num); len-=(blockSize - num); num=0; // drop through and do the rest } else { memcpy(data+num, input, len); return; } } // now process the input data in blocks of blockSize bytes and save the leftovers to m_data if (len >= blockSize) { if (input == data) { assert(len == blockSize); HashBlock(dataBuf); return; } else if (IsAligned(input)) { size_t leftOver = HashMultipleBlocks((T *)input, len); input += (len - leftOver); len = leftOver; } else do { // copy input first if it's not aligned correctly memcpy(data, input, blockSize); HashBlock(dataBuf); input+=blockSize; len-=blockSize; } while (len >= blockSize); } memcpy(data, input, len); } template byte * IteratedHashBase::CreateUpdateSpace(size_t &size) { unsigned int blockSize = this->BlockSize(); unsigned int num = ModPowerOf2(m_countLo, blockSize); size = blockSize - num; return (byte *)DataBuf() + num; } template size_t IteratedHashBase::HashMultipleBlocks(const T *input, size_t length) { unsigned int blockSize = this->BlockSize(); bool noReverse = NativeByteOrderIs(this->GetByteOrder()); T* dataBuf = this->DataBuf(); do { if (noReverse) this->HashEndianCorrectedBlock(input); else { ByteReverse(dataBuf, input, this->BlockSize()); this->HashEndianCorrectedBlock(dataBuf); } input += blockSize/sizeof(T); length -= blockSize; } while (length >= blockSize); return length; } template void IteratedHashBase::PadLastBlock(unsigned int lastBlockSize, byte padFirst) { unsigned int blockSize = this->BlockSize(); unsigned int num = ModPowerOf2(m_countLo, blockSize); T* dataBuf = this->DataBuf(); byte* data = (byte *)dataBuf; data[num++] = padFirst; if (num <= lastBlockSize) memset(data+num, 0, lastBlockSize-num); else { memset(data+num, 0, blockSize-num); HashBlock(dataBuf); memset(data, 0, lastBlockSize); } } template void IteratedHashBase::Restart() { m_countLo = m_countHi = 0; Init(); } template void IteratedHashBase::TruncatedFinal(byte *digest, size_t size) { this->ThrowIfInvalidTruncatedSize(size); T* dataBuf = this->DataBuf(); T* stateBuf = this->StateBuf(); unsigned int blockSize = this->BlockSize(); ByteOrder order = this->GetByteOrder(); PadLastBlock(blockSize - 2*sizeof(HashWordType)); ConditionalByteReverse(order, dataBuf, dataBuf, blockSize - 2*sizeof(HashWordType)); dataBuf[blockSize/sizeof(T)-2] = order ? this->GetBitCountHi() : this->GetBitCountLo(); dataBuf[blockSize/sizeof(T)-1] = order ? this->GetBitCountLo() : this->GetBitCountHi(); HashEndianCorrectedBlock(dataBuf); ConditionalByteReverse(order, stateBuf, stateBuf, this->DigestSize()); memcpy(digest, stateBuf, size); this->Restart(); // reinit for next use } NAMESPACE_END #endif