// rabin.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rabin.h" #include "nbtheory.h" #include "asn.h" #include "sha.h" #include "modarith.h" NAMESPACE_BEGIN(CryptoPP) void RabinFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_r.BERDecode(seq); m_s.BERDecode(seq); seq.MessageEnd(); } void RabinFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_r.DEREncode(seq); m_s.DEREncode(seq); seq.MessageEnd(); } Integer RabinFunction::ApplyFunction(const Integer &in) const { DoQuickSanityCheck(); Integer out = in.Squared()%m_n; if (in.IsOdd()) out = out*m_r%m_n; if (Jacobi(in, m_n)==-1) out = out*m_s%m_n; return out; } bool RabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n%4 == 1; pass = pass && m_r > Integer::One() && m_r < m_n; pass = pass && m_s > Integer::One() && m_s < m_n; if (level >= 1) pass = pass && Jacobi(m_r, m_n) == -1 && Jacobi(m_s, m_n) == -1; return pass; } bool RabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime1) CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime2) ; } void RabinFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime1) CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime2) ; } // ***************************************************************************** // private key operations: // generate a random private key void InvertibleRabinFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); if (modulusSize < 16) throw InvalidArgument("InvertibleRabinFunction: specified modulus size is too small"); // VC70 workaround: putting these after primeParam causes overlapped stack allocation bool rFound=false, sFound=false; Integer t=2; const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize) ("EquivalentTo", 3)("Mod", 4); m_p.GenerateRandom(rng, primeParam); m_q.GenerateRandom(rng, primeParam); while (!(rFound && sFound)) { int jp = Jacobi(t, m_p); int jq = Jacobi(t, m_q); if (!rFound && jp==1 && jq==-1) { m_r = t; rFound = true; } if (!sFound && jp==-1 && jq==1) { m_s = t; sFound = true; } ++t; } m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); } void InvertibleRabinFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_r.BERDecode(seq); m_s.BERDecode(seq); m_p.BERDecode(seq); m_q.BERDecode(seq); m_u.BERDecode(seq); seq.MessageEnd(); } void InvertibleRabinFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_r.DEREncode(seq); m_s.DEREncode(seq); m_p.DEREncode(seq); m_q.DEREncode(seq); m_u.DEREncode(seq); seq.MessageEnd(); } Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const { DoQuickSanityCheck(); ModularArithmetic modn(m_n); Integer r(rng, Integer::One(), m_n - Integer::One()); r = modn.Square(r); Integer r2 = modn.Square(r); Integer c = modn.Multiply(in, r2); // blind Integer cp=c%m_p, cq=c%m_q; int jp = Jacobi(cp, m_p); int jq = Jacobi(cq, m_q); if (jq==-1) { cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p; cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q; } if (jp==-1) { cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p; cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q; } cp = ModularSquareRoot(cp, m_p); cq = ModularSquareRoot(cq, m_q); if (jp==-1) cp = m_p-cp; Integer out = CRT(cq, m_q, cp, m_p, m_u); out = modn.Divide(out, r); // unblind if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd())) out = m_n-out; return out; } bool InvertibleRabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RabinFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p%4 == 3 && m_p < m_n; pass = pass && m_q > Integer::One() && m_q%4 == 3 && m_q < m_n; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_u * m_q % m_p == 1; pass = pass && Jacobi(m_r, m_p) == 1; pass = pass && Jacobi(m_r, m_q) == -1; pass = pass && Jacobi(m_s, m_p) == -1; pass = pass && Jacobi(m_s, m_q) == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } bool InvertibleRabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper<RabinFunction>(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } void InvertibleRabinFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper<RabinFunction>(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } NAMESPACE_END