// algebra.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #ifndef CRYPTOPP_ALGEBRA_CPP // SunCC workaround: compiler could cause this file to be included twice #define CRYPTOPP_ALGEBRA_CPP #include "algebra.h" #include "integer.h" #include <vector> NAMESPACE_BEGIN(CryptoPP) template <class T> const T& AbstractGroup<T>::Double(const Element &a) const { return Add(a, a); } template <class T> const T& AbstractGroup<T>::Subtract(const Element &a, const Element &b) const { // make copy of a in case Inverse() overwrites it Element a1(a); return Add(a1, Inverse(b)); } template <class T> T& AbstractGroup<T>::Accumulate(Element &a, const Element &b) const { return a = Add(a, b); } template <class T> T& AbstractGroup<T>::Reduce(Element &a, const Element &b) const { return a = Subtract(a, b); } template <class T> const T& AbstractRing<T>::Square(const Element &a) const { return Multiply(a, a); } template <class T> const T& AbstractRing<T>::Divide(const Element &a, const Element &b) const { // make copy of a in case MultiplicativeInverse() overwrites it Element a1(a); return Multiply(a1, MultiplicativeInverse(b)); } template <class T> const T& AbstractEuclideanDomain<T>::Mod(const Element &a, const Element &b) const { Element q; DivisionAlgorithm(result, q, a, b); return result; } template <class T> const T& AbstractEuclideanDomain<T>::Gcd(const Element &a, const Element &b) const { Element g[3]={b, a}; unsigned int i0=0, i1=1, i2=2; while (!Equal(g[i1], this->Identity())) { g[i2] = Mod(g[i0], g[i1]); unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; } return result = g[i0]; } template <class T> const typename QuotientRing<T>::Element& QuotientRing<T>::MultiplicativeInverse(const Element &a) const { Element g[3]={m_modulus, a}; Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()}; Element y; unsigned int i0=0, i1=1, i2=2; while (!Equal(g[i1], Identity())) { // y = g[i0] / g[i1]; // g[i2] = g[i0] % g[i1]; m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]); // v[i2] = v[i0] - (v[i1] * y); v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y)); unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; } return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity(); } template <class T> T AbstractGroup<T>::ScalarMultiply(const Element &base, const Integer &exponent) const { Element result; SimultaneousMultiply(&result, base, &exponent, 1); return result; } template <class T> T AbstractGroup<T>::CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const { const unsigned expLen = STDMAX(e1.BitCount(), e2.BitCount()); if (expLen==0) return Identity(); const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3)); const unsigned tableSize = 1<<w; std::vector<Element> powerTable(tableSize << w); powerTable[1] = x; powerTable[tableSize] = y; if (w==1) powerTable[3] = Add(x,y); else { powerTable[2] = Double(x); powerTable[2*tableSize] = Double(y); unsigned i, j; for (i=3; i<tableSize; i+=2) powerTable[i] = Add(powerTable[i-2], powerTable[2]); for (i=1; i<tableSize; i+=2) for (j=i+tableSize; j<(tableSize<<w); j+=tableSize) powerTable[j] = Add(powerTable[j-tableSize], y); for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize) powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]); for (i=tableSize; i<(tableSize<<w); i+=2*tableSize) for (j=i+2; j<i+tableSize; j+=2) powerTable[j] = Add(powerTable[j-1], x); } Element result; unsigned power1 = 0, power2 = 0, prevPosition = expLen-1; bool firstTime = true; for (int i = expLen-1; i>=0; i--) { power1 = 2*power1 + e1.GetBit(i); power2 = 2*power2 + e2.GetBit(i); if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize) { unsigned squaresBefore = prevPosition-i; unsigned squaresAfter = 0; prevPosition = i; while ((power1 || power2) && power1%2 == 0 && power2%2==0) { power1 /= 2; power2 /= 2; squaresBefore--; squaresAfter++; } if (firstTime) { result = powerTable[(power2<<w) + power1]; firstTime = false; } else { while (squaresBefore--) result = Double(result); if (power1 || power2) Accumulate(result, powerTable[(power2<<w) + power1]); } while (squaresAfter--) result = Double(result); power1 = power2 = 0; } } return result; } template <class Element, class Iterator> Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end) { if (end-begin == 1) return group.ScalarMultiply(begin->base, begin->exponent); else if (end-begin == 2) return group.CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent); else { Integer q, t; Iterator last = end; --last; std::make_heap(begin, end); std::pop_heap(begin, end); while (!!begin->exponent) { // last->exponent is largest exponent, begin->exponent is next largest t = last->exponent; Integer::Divide(last->exponent, q, t, begin->exponent); if (q == Integer::One()) group.Accumulate(begin->base, last->base); // avoid overhead of ScalarMultiply() else group.Accumulate(begin->base, group.ScalarMultiply(last->base, q)); std::push_heap(begin, end); std::pop_heap(begin, end); } return group.ScalarMultiply(last->base, last->exponent); } } struct WindowSlider { WindowSlider(const Integer &expIn, bool fastNegate, unsigned int windowSizeIn=0) : exp(expIn), windowModulus(Integer::One()), windowSize(windowSizeIn), windowBegin(0), fastNegate(fastNegate), firstTime(true), finished(false) { if (windowSize == 0) { unsigned int expLen = exp.BitCount(); windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7))))); } windowModulus <<= windowSize; } void FindNextWindow() { unsigned int expLen = exp.WordCount() * WORD_BITS; unsigned int skipCount = firstTime ? 0 : windowSize; firstTime = false; while (!exp.GetBit(skipCount)) { if (skipCount >= expLen) { finished = true; return; } skipCount++; } exp >>= skipCount; windowBegin += skipCount; expWindow = word32(exp % (word(1) << windowSize)); if (fastNegate && exp.GetBit(windowSize)) { negateNext = true; expWindow = (word32(1) << windowSize) - expWindow; exp += windowModulus; } else negateNext = false; } Integer exp, windowModulus; unsigned int windowSize, windowBegin; word32 expWindow; bool fastNegate, negateNext, firstTime, finished; }; template <class T> void AbstractGroup<T>::SimultaneousMultiply(T *results, const T &base, const Integer *expBegin, unsigned int expCount) const { std::vector<std::vector<Element> > buckets(expCount); std::vector<WindowSlider> exponents; exponents.reserve(expCount); unsigned int i; for (i=0; i<expCount; i++) { assert(expBegin->NotNegative()); exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 0)); exponents[i].FindNextWindow(); buckets[i].resize(1<<(exponents[i].windowSize-1), Identity()); } unsigned int expBitPosition = 0; Element g = base; bool notDone = true; while (notDone) { notDone = false; for (i=0; i<expCount; i++) { if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin) { Element &bucket = buckets[i][exponents[i].expWindow/2]; if (exponents[i].negateNext) Accumulate(bucket, Inverse(g)); else Accumulate(bucket, g); exponents[i].FindNextWindow(); } notDone = notDone || !exponents[i].finished; } if (notDone) { g = Double(g); expBitPosition++; } } for (i=0; i<expCount; i++) { Element &r = *results++; r = buckets[i][buckets[i].size()-1]; if (buckets[i].size() > 1) { for (int j = (int)buckets[i].size()-2; j >= 1; j--) { Accumulate(buckets[i][j], buckets[i][j+1]); Accumulate(r, buckets[i][j]); } Accumulate(buckets[i][0], buckets[i][1]); r = Add(Double(r), buckets[i][0]); } } } template <class T> T AbstractRing<T>::Exponentiate(const Element &base, const Integer &exponent) const { Element result; SimultaneousExponentiate(&result, base, &exponent, 1); return result; } template <class T> T AbstractRing<T>::CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const { return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2); } template <class Element, class Iterator> Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end) { return GeneralCascadeMultiplication<Element>(ring.MultiplicativeGroup(), begin, end); } template <class T> void AbstractRing<T>::SimultaneousExponentiate(T *results, const T &base, const Integer *exponents, unsigned int expCount) const { MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount); } NAMESPACE_END #endif