#ifndef CRYPTOPP_DMAC_H #define CRYPTOPP_DMAC_H #include "cbcmac.h" NAMESPACE_BEGIN(CryptoPP) //! _ template class CRYPTOPP_NO_VTABLE DMAC_Base : public SameKeyLengthAs, public MessageAuthenticationCode { public: static std::string StaticAlgorithmName() {return std::string("DMAC(") + T::StaticAlgorithmName() + ")";} CRYPTOPP_CONSTANT(DIGESTSIZE=T::BLOCKSIZE) DMAC_Base() {} void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms); void Update(const byte *input, size_t length); void TruncatedFinal(byte *mac, size_t size); unsigned int DigestSize() const {return DIGESTSIZE;} private: byte *GenerateSubKeys(const byte *key, size_t keylength); size_t m_subkeylength; SecByteBlock m_subkeys; CBC_MAC m_mac1; typename T::Encryption m_f2; unsigned int m_counter; }; //! DMAC /*! Based on "CBC MAC for Real-Time Data Sources" by Erez Petrank and Charles Rackoff. T should be a class derived from BlockCipherDocumentation. */ template class DMAC : public MessageAuthenticationCodeFinal > { public: DMAC() {} DMAC(const byte *key, size_t length=DMAC_Base::DEFAULT_KEYLENGTH) {this->SetKey(key, length);} }; template void DMAC_Base::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms) { m_subkeylength = T::StaticGetValidKeyLength(T::BLOCKSIZE); m_subkeys.resize(2*UnsignedMin((unsigned int)T::BLOCKSIZE, m_subkeylength)); m_mac1.SetKey(GenerateSubKeys(key, length), m_subkeylength, params); m_f2.SetKey(m_subkeys+m_subkeys.size()/2, m_subkeylength, params); m_counter = 0; m_subkeys.resize(0); } template void DMAC_Base::Update(const byte *input, size_t length) { m_mac1.Update(input, length); m_counter = (unsigned int)((m_counter + length) % T::BLOCKSIZE); } template void DMAC_Base::TruncatedFinal(byte *mac, size_t size) { ThrowIfInvalidTruncatedSize(size); byte pad[T::BLOCKSIZE]; byte padByte = byte(T::BLOCKSIZE-m_counter); memset(pad, padByte, padByte); m_mac1.Update(pad, padByte); m_mac1.TruncatedFinal(mac, size); m_f2.ProcessBlock(mac); } template byte *DMAC_Base::GenerateSubKeys(const byte *key, size_t keylength) { typename T::Encryption cipher(key, keylength); memset(m_subkeys, 0, m_subkeys.size()); cipher.ProcessBlock(m_subkeys); m_subkeys[m_subkeys.size()/2 + T::BLOCKSIZE - 1] = 1; cipher.ProcessBlock(m_subkeys+m_subkeys.size()/2); return m_subkeys; } NAMESPACE_END #endif