// zdeflate.cpp - written and placed in the public domain by Wei Dai // Many of the algorithms and tables used here came from the deflate implementation // by Jean-loup Gailly, which was included in Crypto++ 4.0 and earlier. I completely // rewrote it in order to fix a bug that I could not figure out. This code // is less clever, but hopefully more understandable and maintainable. #include "pch.h" #include "zdeflate.h" #include NAMESPACE_BEGIN(CryptoPP) using namespace std; LowFirstBitWriter::LowFirstBitWriter(BufferedTransformation *attachment) : Filter(attachment), m_counting(false), m_buffer(0), m_bitsBuffered(0), m_bytesBuffered(0) { } void LowFirstBitWriter::StartCounting() { assert(!m_counting); m_counting = true; m_bitCount = 0; } unsigned long LowFirstBitWriter::FinishCounting() { assert(m_counting); m_counting = false; return m_bitCount; } void LowFirstBitWriter::PutBits(unsigned long value, unsigned int length) { if (m_counting) m_bitCount += length; else { m_buffer |= value << m_bitsBuffered; m_bitsBuffered += length; assert(m_bitsBuffered <= sizeof(unsigned long)*8); while (m_bitsBuffered >= 8) { m_outputBuffer[m_bytesBuffered++] = (byte)m_buffer; if (m_bytesBuffered == m_outputBuffer.size()) { AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered); m_bytesBuffered = 0; } m_buffer >>= 8; m_bitsBuffered -= 8; } } } void LowFirstBitWriter::FlushBitBuffer() { if (m_counting) m_bitCount += 8*(m_bitsBuffered > 0); else { if (m_bytesBuffered > 0) { AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered); m_bytesBuffered = 0; } if (m_bitsBuffered > 0) { AttachedTransformation()->Put((byte)m_buffer); m_buffer = 0; m_bitsBuffered = 0; } } } void LowFirstBitWriter::ClearBitBuffer() { m_buffer = 0; m_bytesBuffered = 0; m_bitsBuffered = 0; } HuffmanEncoder::HuffmanEncoder(const unsigned int *codeBits, unsigned int nCodes) { Initialize(codeBits, nCodes); } struct HuffmanNode { size_t symbol; union {size_t parent; unsigned depth, freq;}; }; struct FreqLessThan { inline bool operator()(unsigned int lhs, const HuffmanNode &rhs) {return lhs < rhs.freq;} inline bool operator()(const HuffmanNode &lhs, const HuffmanNode &rhs) const {return lhs.freq < rhs.freq;} // needed for MSVC .NET 2005 inline bool operator()(const HuffmanNode &lhs, unsigned int rhs) {return lhs.freq < rhs;} }; void HuffmanEncoder::GenerateCodeLengths(unsigned int *codeBits, unsigned int maxCodeBits, const unsigned int *codeCounts, size_t nCodes) { assert(nCodes > 0); assert(nCodes <= ((size_t)1 << maxCodeBits)); size_t i; SecBlockWithHint tree(nCodes); for (i=0; i= 2) for (i=tree.size()-2; i>=nCodes; i--) tree[i].depth = tree[tree[i].parent].depth + 1; unsigned int sum = 0; SecBlockWithHint blCount(maxCodeBits+1); fill(blCount.begin(), blCount.end(), 0); for (i=treeBegin; i (unsigned int)(1 << maxCodeBits) ? sum - (1 << maxCodeBits) : 0; while (overflow--) { unsigned int bits = maxCodeBits-1; while (blCount[bits] == 0) bits--; blCount[bits]--; blCount[bits+1] += 2; assert(blCount[maxCodeBits] > 0); blCount[maxCodeBits]--; } for (i=0; i 0); unsigned int maxCodeBits = *max_element(codeBits, codeBits+nCodes); if (maxCodeBits == 0) return; // assume this object won't be used SecBlockWithHint blCount(maxCodeBits+1); fill(blCount.begin(), blCount.end(), 0); unsigned int i; for (i=0; i nextCode(maxCodeBits+1); nextCode[1] = 0; for (i=2; i<=maxCodeBits; i++) { code = (code + blCount[i-1]) << 1; nextCode[i] = code; } assert(maxCodeBits == 1 || code == (1 << maxCodeBits) - blCount[maxCodeBits]); m_valueToCode.resize(nCodes); for (i=0; i> (8*sizeof(code_t)-len); } } inline void HuffmanEncoder::Encode(LowFirstBitWriter &writer, value_t value) const { assert(m_valueToCode[value].len > 0); writer.PutBits(m_valueToCode[value].code, m_valueToCode[value].len); } Deflator::Deflator(BufferedTransformation *attachment, int deflateLevel, int log2WindowSize, bool detectUncompressible) : LowFirstBitWriter(attachment) { InitializeStaticEncoders(); IsolatedInitialize(MakeParameters("DeflateLevel", deflateLevel)("Log2WindowSize", log2WindowSize)("DetectUncompressible", detectUncompressible)); } Deflator::Deflator(const NameValuePairs ¶meters, BufferedTransformation *attachment) : LowFirstBitWriter(attachment) , m_deflateLevel(-1) { InitializeStaticEncoders(); IsolatedInitialize(parameters); } void Deflator::InitializeStaticEncoders() { unsigned int codeLengths[288]; fill(codeLengths + 0, codeLengths + 144, 8); fill(codeLengths + 144, codeLengths + 256, 9); fill(codeLengths + 256, codeLengths + 280, 7); fill(codeLengths + 280, codeLengths + 288, 8); m_staticLiteralEncoder.Initialize(codeLengths, 288); fill(codeLengths + 0, codeLengths + 32, 5); m_staticDistanceEncoder.Initialize(codeLengths, 32); } void Deflator::IsolatedInitialize(const NameValuePairs ¶meters) { int log2WindowSize = parameters.GetIntValueWithDefault("Log2WindowSize", DEFAULT_LOG2_WINDOW_SIZE); if (!(MIN_LOG2_WINDOW_SIZE <= log2WindowSize && log2WindowSize <= MAX_LOG2_WINDOW_SIZE)) throw InvalidArgument("Deflator: " + IntToString(log2WindowSize) + " is an invalid window size"); m_log2WindowSize = log2WindowSize; DSIZE = 1 << m_log2WindowSize; DMASK = DSIZE - 1; HSIZE = 1 << m_log2WindowSize; HMASK = HSIZE - 1; m_byteBuffer.New(2*DSIZE); m_head.New(HSIZE); m_prev.New(DSIZE); m_matchBuffer.New(DSIZE/2); Reset(true); SetDeflateLevel(parameters.GetIntValueWithDefault("DeflateLevel", DEFAULT_DEFLATE_LEVEL)); bool detectUncompressible = parameters.GetValueWithDefault("DetectUncompressible", true); m_compressibleDeflateLevel = detectUncompressible ? m_deflateLevel : 0; } void Deflator::Reset(bool forceReset) { if (forceReset) ClearBitBuffer(); else assert(m_bitsBuffered == 0); m_headerWritten = false; m_matchAvailable = false; m_dictionaryEnd = 0; m_stringStart = 0; m_lookahead = 0; m_minLookahead = MAX_MATCH; m_matchBufferEnd = 0; m_blockStart = 0; m_blockLength = 0; m_detectCount = 1; m_detectSkip = 0; // m_prev will be initialized automaticly in InsertString fill(m_head.begin(), m_head.end(), 0); fill(m_literalCounts.begin(), m_literalCounts.end(), 0); fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0); } void Deflator::SetDeflateLevel(int deflateLevel) { if (!(MIN_DEFLATE_LEVEL <= deflateLevel && deflateLevel <= MAX_DEFLATE_LEVEL)) throw InvalidArgument("Deflator: " + IntToString(deflateLevel) + " is an invalid deflate level"); if (deflateLevel == m_deflateLevel) return; EndBlock(false); static const unsigned int configurationTable[10][4] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0}, /* store only */ /* 1 */ {4, 3, 8, 4}, /* maximum speed, no lazy matches */ /* 2 */ {4, 3, 16, 8}, /* 3 */ {4, 3, 32, 32}, /* 4 */ {4, 4, 16, 16}, /* lazy matches */ /* 5 */ {8, 16, 32, 32}, /* 6 */ {8, 16, 128, 128}, /* 7 */ {8, 32, 128, 256}, /* 8 */ {32, 128, 258, 1024}, /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */ GOOD_MATCH = configurationTable[deflateLevel][0]; MAX_LAZYLENGTH = configurationTable[deflateLevel][1]; MAX_CHAIN_LENGTH = configurationTable[deflateLevel][3]; m_deflateLevel = deflateLevel; } unsigned int Deflator::FillWindow(const byte *str, size_t length) { unsigned int maxBlockSize = (unsigned int)STDMIN(2UL*DSIZE, 0xffffUL); if (m_stringStart >= maxBlockSize - MAX_MATCH) { if (m_blockStart < DSIZE) EndBlock(false); memcpy(m_byteBuffer, m_byteBuffer + DSIZE, DSIZE); m_dictionaryEnd = m_dictionaryEnd < DSIZE ? 0 : m_dictionaryEnd-DSIZE; assert(m_stringStart >= DSIZE); m_stringStart -= DSIZE; assert(!m_matchAvailable || m_previousMatch >= DSIZE); m_previousMatch -= DSIZE; assert(m_blockStart >= DSIZE); m_blockStart -= DSIZE; unsigned int i; for (i=0; i m_stringStart+m_lookahead); unsigned int accepted = UnsignedMin(maxBlockSize-(m_stringStart+m_lookahead), length); assert(accepted > 0); memcpy(m_byteBuffer + m_stringStart + m_lookahead, str, accepted); m_lookahead += accepted; return accepted; } inline unsigned int Deflator::ComputeHash(const byte *str) const { assert(str+3 <= m_byteBuffer + m_stringStart + m_lookahead); return ((str[0] << 10) ^ (str[1] << 5) ^ str[2]) & HMASK; } unsigned int Deflator::LongestMatch(unsigned int &bestMatch) const { assert(m_previousLength < MAX_MATCH); bestMatch = 0; unsigned int bestLength = STDMAX(m_previousLength, (unsigned int)MIN_MATCH-1); if (m_lookahead <= bestLength) return 0; const byte *scan = m_byteBuffer + m_stringStart, *scanEnd = scan + STDMIN((unsigned int)MAX_MATCH, m_lookahead); unsigned int limit = m_stringStart > (DSIZE-MAX_MATCH) ? m_stringStart - (DSIZE-MAX_MATCH) : 0; unsigned int current = m_head[ComputeHash(scan)]; unsigned int chainLength = MAX_CHAIN_LENGTH; if (m_previousLength >= GOOD_MATCH) chainLength >>= 2; while (current > limit && --chainLength > 0) { const byte *match = m_byteBuffer + current; assert(scan + bestLength < m_byteBuffer + m_stringStart + m_lookahead); if (scan[bestLength-1] == match[bestLength-1] && scan[bestLength] == match[bestLength] && scan[0] == match[0] && scan[1] == match[1]) { assert(scan[2] == match[2]); unsigned int len = (unsigned int)( #if defined(_STDEXT_BEGIN) && !(defined(_MSC_VER) && _MSC_VER < 1400) && !defined(_STLPORT_VERSION) stdext::unchecked_mismatch #else std::mismatch #endif (scan+3, scanEnd, match+3).first - scan); assert(len != bestLength); if (len > bestLength) { bestLength = len; bestMatch = current; if (len == (scanEnd - scan)) break; } } current = m_prev[current & DMASK]; } return (bestMatch > 0) ? bestLength : 0; } inline void Deflator::InsertString(unsigned int start) { unsigned int hash = ComputeHash(m_byteBuffer + start); m_prev[start & DMASK] = m_head[hash]; m_head[hash] = start; } void Deflator::ProcessBuffer() { if (!m_headerWritten) { WritePrestreamHeader(); m_headerWritten = true; } if (m_deflateLevel == 0) { m_stringStart += m_lookahead; m_lookahead = 0; m_blockLength = m_stringStart - m_blockStart; m_matchAvailable = false; return; } while (m_lookahead > m_minLookahead) { while (m_dictionaryEnd < m_stringStart && m_dictionaryEnd+3 <= m_stringStart+m_lookahead) InsertString(m_dictionaryEnd++); if (m_matchAvailable) { unsigned int matchPosition, matchLength; bool usePreviousMatch; if (m_previousLength >= MAX_LAZYLENGTH) usePreviousMatch = true; else { matchLength = LongestMatch(matchPosition); usePreviousMatch = (matchLength == 0); } if (usePreviousMatch) { MatchFound(m_stringStart-1-m_previousMatch, m_previousLength); m_stringStart += m_previousLength-1; m_lookahead -= m_previousLength-1; m_matchAvailable = false; } else { m_previousLength = matchLength; m_previousMatch = matchPosition; LiteralByte(m_byteBuffer[m_stringStart-1]); m_stringStart++; m_lookahead--; } } else { m_previousLength = 0; m_previousLength = LongestMatch(m_previousMatch); if (m_previousLength) m_matchAvailable = true; else LiteralByte(m_byteBuffer[m_stringStart]); m_stringStart++; m_lookahead--; } assert(m_stringStart - (m_blockStart+m_blockLength) == (unsigned int)m_matchAvailable); } if (m_minLookahead == 0 && m_matchAvailable) { LiteralByte(m_byteBuffer[m_stringStart-1]); m_matchAvailable = false; } } size_t Deflator::Put2(const byte *str, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("Deflator"); size_t accepted = 0; while (accepted < length) { unsigned int newAccepted = FillWindow(str+accepted, length-accepted); ProcessBuffer(); // call ProcessUncompressedData() after WritePrestreamHeader() ProcessUncompressedData(str+accepted, newAccepted); accepted += newAccepted; } assert(accepted == length); if (messageEnd) { m_minLookahead = 0; ProcessBuffer(); EndBlock(true); FlushBitBuffer(); WritePoststreamTail(); Reset(); } Output(0, NULL, 0, messageEnd, blocking); return 0; } bool Deflator::IsolatedFlush(bool hardFlush, bool blocking) { if (!blocking) throw BlockingInputOnly("Deflator"); m_minLookahead = 0; ProcessBuffer(); m_minLookahead = MAX_MATCH; EndBlock(false); if (hardFlush) EncodeBlock(false, STORED); return false; } void Deflator::LiteralByte(byte b) { if (m_matchBufferEnd == m_matchBuffer.size()) EndBlock(false); m_matchBuffer[m_matchBufferEnd++].literalCode = b; m_literalCounts[b]++; m_blockLength++; } void Deflator::MatchFound(unsigned int distance, unsigned int length) { if (m_matchBufferEnd == m_matchBuffer.size()) EndBlock(false); static const unsigned int lengthCodes[] = { 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 285}; static const unsigned int lengthBases[] = {3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258}; static const unsigned int distanceBases[30] = {1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577}; EncodedMatch &m = m_matchBuffer[m_matchBufferEnd++]; assert(length >= 3); unsigned int lengthCode = lengthCodes[length-3]; m.literalCode = lengthCode; m.literalExtra = length - lengthBases[lengthCode-257]; unsigned int distanceCode = (unsigned int)(upper_bound(distanceBases, distanceBases+30, distance) - distanceBases - 1); m.distanceCode = distanceCode; m.distanceExtra = distance - distanceBases[distanceCode]; m_literalCounts[lengthCode]++; m_distanceCounts[distanceCode]++; m_blockLength += length; } inline unsigned int CodeLengthEncode(const unsigned int *begin, const unsigned int *end, const unsigned int *& p, unsigned int &extraBits, unsigned int &extraBitsLength) { unsigned int v = *p; if ((end-p) >= 3) { const unsigned int *oldp = p; if (v==0 && p[1]==0 && p[2]==0) { for (p=p+3; p!=end && *p==0 && p!=oldp+138; p++) {} unsigned int repeat = (unsigned int)(p - oldp); if (repeat <= 10) { extraBits = repeat-3; extraBitsLength = 3; return 17; } else { extraBits = repeat-11; extraBitsLength = 7; return 18; } } else if (p!=begin && v==p[-1] && v==p[1] && v==p[2]) { for (p=p+3; p!=end && *p==v && p!=oldp+6; p++) {} unsigned int repeat = (unsigned int)(p - oldp); extraBits = repeat-3; extraBitsLength = 2; return 16; } } p++; extraBits = 0; extraBitsLength = 0; return v; } void Deflator::EncodeBlock(bool eof, unsigned int blockType) { PutBits(eof, 1); PutBits(blockType, 2); if (blockType == STORED) { assert(m_blockStart + m_blockLength <= m_byteBuffer.size()); assert(m_blockLength <= 0xffff); FlushBitBuffer(); AttachedTransformation()->PutWord16(m_blockLength, LITTLE_ENDIAN_ORDER); AttachedTransformation()->PutWord16(~m_blockLength, LITTLE_ENDIAN_ORDER); AttachedTransformation()->Put(m_byteBuffer + m_blockStart, m_blockLength); } else { if (blockType == DYNAMIC) { #if defined(_MSC_VER) && !defined(__MWERKS__) && (_MSC_VER <= 1300) // VC60 and VC7 workaround: built-in reverse_iterator has two template parameters, Dinkumware only has one typedef reverse_bidirectional_iterator RevIt; #elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC) typedef reverse_iterator RevIt; #else typedef reverse_iterator RevIt; #endif FixedSizeSecBlock literalCodeLengths; FixedSizeSecBlock distanceCodeLengths; m_literalCounts[256] = 1; HuffmanEncoder::GenerateCodeLengths(literalCodeLengths, 15, m_literalCounts, 286); m_dynamicLiteralEncoder.Initialize(literalCodeLengths, 286); unsigned int hlit = (unsigned int)(find_if(RevIt(literalCodeLengths.end()), RevIt(literalCodeLengths.begin()+257), bind2nd(not_equal_to(), 0)).base() - (literalCodeLengths.begin()+257)); HuffmanEncoder::GenerateCodeLengths(distanceCodeLengths, 15, m_distanceCounts, 30); m_dynamicDistanceEncoder.Initialize(distanceCodeLengths, 30); unsigned int hdist = (unsigned int)(find_if(RevIt(distanceCodeLengths.end()), RevIt(distanceCodeLengths.begin()+1), bind2nd(not_equal_to(), 0)).base() - (distanceCodeLengths.begin()+1)); SecBlockWithHint combinedLengths(hlit+257+hdist+1); memcpy(combinedLengths, literalCodeLengths, (hlit+257)*sizeof(unsigned int)); memcpy(combinedLengths+hlit+257, distanceCodeLengths, (hdist+1)*sizeof(unsigned int)); FixedSizeSecBlock codeLengthCodeCounts, codeLengthCodeLengths; fill(codeLengthCodeCounts.begin(), codeLengthCodeCounts.end(), 0); const unsigned int *p = combinedLengths.begin(), *begin = combinedLengths.begin(), *end = combinedLengths.end(); while (p != end) { unsigned int code, extraBits, extraBitsLength; code = CodeLengthEncode(begin, end, p, extraBits, extraBitsLength); codeLengthCodeCounts[code]++; } HuffmanEncoder::GenerateCodeLengths(codeLengthCodeLengths, 7, codeLengthCodeCounts, 19); HuffmanEncoder codeLengthEncoder(codeLengthCodeLengths, 19); static const unsigned int border[] = { // Order of the bit length code lengths 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; unsigned int hclen = 19; while (hclen > 4 && codeLengthCodeLengths[border[hclen-1]] == 0) hclen--; hclen -= 4; PutBits(hlit, 5); PutBits(hdist, 5); PutBits(hclen, 4); for (unsigned int i=0; i= 257) { assert(literalCode <= 285); PutBits(m_matchBuffer[i].literalExtra, lengthExtraBits[literalCode-257]); unsigned int distanceCode = m_matchBuffer[i].distanceCode; distanceEncoder.Encode(*this, distanceCode); PutBits(m_matchBuffer[i].distanceExtra, distanceExtraBits[distanceCode]); } } literalEncoder.Encode(*this, 256); // end of block } } void Deflator::EndBlock(bool eof) { if (m_blockLength == 0 && !eof) return; if (m_deflateLevel == 0) { EncodeBlock(eof, STORED); if (m_compressibleDeflateLevel > 0 && ++m_detectCount == m_detectSkip) { m_deflateLevel = m_compressibleDeflateLevel; m_detectCount = 1; } } else { unsigned long storedLen = 8*((unsigned long)m_blockLength+4) + RoundUpToMultipleOf(m_bitsBuffered+3, 8U)-m_bitsBuffered; StartCounting(); EncodeBlock(eof, STATIC); unsigned long staticLen = FinishCounting(); unsigned long dynamicLen; if (m_blockLength < 128 && m_deflateLevel < 8) dynamicLen = ULONG_MAX; else { StartCounting(); EncodeBlock(eof, DYNAMIC); dynamicLen = FinishCounting(); } if (storedLen <= staticLen && storedLen <= dynamicLen) { EncodeBlock(eof, STORED); if (m_compressibleDeflateLevel > 0) { if (m_detectSkip) m_deflateLevel = 0; m_detectSkip = m_detectSkip ? STDMIN(2*m_detectSkip, 128U) : 1; } } else { if (staticLen <= dynamicLen) EncodeBlock(eof, STATIC); else EncodeBlock(eof, DYNAMIC); if (m_compressibleDeflateLevel > 0) m_detectSkip = 0; } } m_matchBufferEnd = 0; m_blockStart += m_blockLength; m_blockLength = 0; fill(m_literalCounts.begin(), m_literalCounts.end(), 0); fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0); } NAMESPACE_END