/************************************************************************************************* * Threading devices * Copyright (C) 2009-2012 FAL Labs * This file is part of Kyoto Cabinet. * This program is free software: you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation, either version * 3 of the License, or any later version. * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * You should have received a copy of the GNU General Public License along with this program. * If not, see . *************************************************************************************************/ #include "kcthread.h" #include "myconf.h" namespace kyotocabinet { // common namespace /** * Constants for implementation. */ namespace { const uint32_t LOCKBUSYLOOP = 8192; ///< threshold of busy loop and sleep for locking const size_t LOCKSEMNUM = 256; ///< number of semaphores for locking } /** * Thread internal. */ struct ThreadCore { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) ::HANDLE th; ///< handle #else ::pthread_t th; ///< identifier bool alive; ///< alive flag #endif }; /** * CondVar internal. */ struct CondVarCore { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) ::CRITICAL_SECTION mutex; ///< mutex uint32_t wait; ///< wait count uint32_t wake; ///< wake count ::HANDLE sev; ///< signal event handle ::HANDLE fev; ///< finish event handle #else ::pthread_cond_t cond; ///< condition #endif }; /** * Call the running thread. * @param arg the thread. * @return always NULL. */ #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) static ::DWORD threadrun(::LPVOID arg); #else static void* threadrun(void* arg); #endif /** * Default constructor. */ Thread::Thread() : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ThreadCore* core = new ThreadCore; core->th = NULL; opq_ = (void*)core; #else _assert_(true); ThreadCore* core = new ThreadCore; core->alive = false; opq_ = (void*)core; #endif } /** * Destructor. */ Thread::~Thread() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (core->th) join(); delete core; #else _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (core->alive) join(); delete core; #endif } /** * Start the thread. */ void Thread::start() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (core->th) throw std::invalid_argument("already started"); ::DWORD id; core->th = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)threadrun, this, 0, &id); if (!core->th) throw std::runtime_error("CreateThread"); #else _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (core->alive) throw std::invalid_argument("already started"); if (::pthread_create(&core->th, NULL, threadrun, this) != 0) throw std::runtime_error("pthread_create"); core->alive = true; #endif } /** * Wait for the thread to finish. */ void Thread::join() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (!core->th) throw std::invalid_argument("not alive"); if (::WaitForSingleObject(core->th, INFINITE) == WAIT_FAILED) throw std::runtime_error("WaitForSingleObject"); ::CloseHandle(core->th); core->th = NULL; #else _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (!core->alive) throw std::invalid_argument("not alive"); core->alive = false; if (::pthread_join(core->th, NULL) != 0) throw std::runtime_error("pthread_join"); #endif } /** * Put the thread in the detached state. */ void Thread::detach() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); #else _assert_(true); ThreadCore* core = (ThreadCore*)opq_; if (!core->alive) throw std::invalid_argument("not alive"); core->alive = false; if (::pthread_detach(core->th) != 0) throw std::runtime_error("pthread_detach"); #endif } /** * Terminate the running thread. */ void Thread::exit() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::ExitThread(0); #else _assert_(true); ::pthread_exit(NULL); #endif } /** * Yield the processor from the current thread. */ void Thread::yield() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::Sleep(0); #else _assert_(true); ::sched_yield(); #endif } /** * Chill the processor by suspending execution for a quick moment. */ void Thread::chill() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::Sleep(21); #else _assert_(true); struct ::timespec req; req.tv_sec = 0; req.tv_nsec = 21 * 1000 * 1000; ::nanosleep(&req, NULL); #endif } /** * Suspend execution of the current thread. */ bool Thread::sleep(double sec) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(sec >= 0.0); if (sec <= 0.0) { yield(); return true; } if (sec > INT32MAX) sec = INT32MAX; ::Sleep(sec * 1000); return true; #else _assert_(sec >= 0.0); if (sec <= 0.0) { yield(); return true; } if (sec > INT32MAX) sec = INT32MAX; double integ, fract; fract = std::modf(sec, &integ); struct ::timespec req, rem; req.tv_sec = (time_t)integ; req.tv_nsec = (long)(fract * 999999000); while (::nanosleep(&req, &rem) != 0) { if (errno != EINTR) return false; req = rem; } return true; #endif } /** * Get the hash value of the current thread. */ int64_t Thread::hash() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); return ::GetCurrentThreadId(); #else _assert_(true); pthread_t tid = pthread_self(); int64_t num; if (sizeof(tid) == sizeof(num)) { std::memcpy(&num, &tid, sizeof(num)); } else if (sizeof(tid) == sizeof(int32_t)) { uint32_t inum; std::memcpy(&inum, &tid, sizeof(inum)); num = inum; } else { num = hashmurmur(&tid, sizeof(tid)); } return num & INT64MAX; #endif } /** * Call the running thread. */ #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) static ::DWORD threadrun(::LPVOID arg) { _assert_(true); Thread* thread = (Thread*)arg; thread->run(); return NULL; } #else static void* threadrun(void* arg) { _assert_(true); Thread* thread = (Thread*)arg; thread->run(); return NULL; } #endif /** * Default constructor. */ Mutex::Mutex() : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = new ::CRITICAL_SECTION; ::InitializeCriticalSection(mutex); opq_ = (void*)mutex; #else _assert_(true); ::pthread_mutex_t* mutex = new ::pthread_mutex_t; if (::pthread_mutex_init(mutex, NULL) != 0) throw std::runtime_error("pthread_mutex_init"); opq_ = (void*)mutex; #endif } /** * Constructor with the specifications. */ Mutex::Mutex(Type type) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = new ::CRITICAL_SECTION; ::InitializeCriticalSection(mutex); opq_ = (void*)mutex; #else _assert_(true); ::pthread_mutexattr_t attr; if (::pthread_mutexattr_init(&attr) != 0) throw std::runtime_error("pthread_mutexattr_init"); switch (type) { case FAST: { break; } case ERRORCHECK: { if (::pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK) != 0) throw std::runtime_error("pthread_mutexattr_settype"); break; } case RECURSIVE: { if (::pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) != 0) throw std::runtime_error("pthread_mutexattr_settype"); break; } } ::pthread_mutex_t* mutex = new ::pthread_mutex_t; if (::pthread_mutex_init(mutex, &attr) != 0) throw std::runtime_error("pthread_mutex_init"); ::pthread_mutexattr_destroy(&attr); opq_ = (void*)mutex; #endif } /** * Destructor. */ Mutex::~Mutex() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = (::CRITICAL_SECTION*)opq_; ::DeleteCriticalSection(mutex); delete mutex; #else _assert_(true); ::pthread_mutex_t* mutex = (::pthread_mutex_t*)opq_; ::pthread_mutex_destroy(mutex); delete mutex; #endif } /** * Get the lock. */ void Mutex::lock() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = (::CRITICAL_SECTION*)opq_; ::EnterCriticalSection(mutex); #else _assert_(true); ::pthread_mutex_t* mutex = (::pthread_mutex_t*)opq_; if (::pthread_mutex_lock(mutex) != 0) throw std::runtime_error("pthread_mutex_lock"); #endif } /** * Try to get the lock. */ bool Mutex::lock_try() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = (::CRITICAL_SECTION*)opq_; if (!::TryEnterCriticalSection(mutex)) return false; return true; #else _assert_(true); ::pthread_mutex_t* mutex = (::pthread_mutex_t*)opq_; int32_t ecode = ::pthread_mutex_trylock(mutex); if (ecode == 0) return true; if (ecode != EBUSY) throw std::runtime_error("pthread_mutex_trylock"); return false; #endif } /** * Try to get the lock. */ bool Mutex::lock_try(double sec) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) || defined(_SYS_CYGWIN_) || defined(_SYS_MACOSX_) _assert_(sec >= 0.0); if (lock_try()) return true; double end = time() + sec; Thread::yield(); uint32_t wcnt = 0; while (!lock_try()) { if (time() > end) return false; if (wcnt >= LOCKBUSYLOOP) { Thread::chill(); } else { Thread::yield(); wcnt++; } } return true; #else _assert_(sec >= 0.0); ::pthread_mutex_t* mutex = (::pthread_mutex_t*)opq_; struct ::timeval tv; struct ::timespec ts; if (::gettimeofday(&tv, NULL) == 0) { double integ; double fract = std::modf(sec, &integ); ts.tv_sec = tv.tv_sec + (time_t)integ; ts.tv_nsec = (long)(tv.tv_usec * 1000.0 + fract * 999999000); if (ts.tv_nsec >= 1000000000) { ts.tv_nsec -= 1000000000; ts.tv_sec++; } } else { ts.tv_sec = std::time(NULL) + 1; ts.tv_nsec = 0; } int32_t ecode = ::pthread_mutex_timedlock(mutex, &ts); if (ecode == 0) return true; if (ecode != ETIMEDOUT) throw std::runtime_error("pthread_mutex_timedlock"); return false; #endif } /** * Release the lock. */ void Mutex::unlock() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::CRITICAL_SECTION* mutex = (::CRITICAL_SECTION*)opq_; ::LeaveCriticalSection(mutex); #else _assert_(true); ::pthread_mutex_t* mutex = (::pthread_mutex_t*)opq_; if (::pthread_mutex_unlock(mutex) != 0) throw std::runtime_error("pthread_mutex_unlock"); #endif } /** * SlottedMutex internal. */ struct SlottedMutexCore { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) ::CRITICAL_SECTION* mutexes; ///< primitives size_t slotnum; ///< number of slots #else ::pthread_mutex_t* mutexes; ///< primitives size_t slotnum; ///< number of slots #endif }; /** * Constructor. */ SlottedMutex::SlottedMutex(size_t slotnum) : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = new SlottedMutexCore; ::CRITICAL_SECTION* mutexes = new ::CRITICAL_SECTION[slotnum]; for (size_t i = 0; i < slotnum; i++) { ::InitializeCriticalSection(mutexes + i); } core->mutexes = mutexes; core->slotnum = slotnum; opq_ = (void*)core; #else _assert_(true); SlottedMutexCore* core = new SlottedMutexCore; ::pthread_mutex_t* mutexes = new ::pthread_mutex_t[slotnum]; for (size_t i = 0; i < slotnum; i++) { if (::pthread_mutex_init(mutexes + i, NULL) != 0) throw std::runtime_error("pthread_mutex_init"); } core->mutexes = mutexes; core->slotnum = slotnum; opq_ = (void*)core; #endif } /** * Destructor. */ SlottedMutex::~SlottedMutex() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::CRITICAL_SECTION* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { ::DeleteCriticalSection(mutexes + i); } delete[] mutexes; delete core; #else _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::pthread_mutex_t* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { ::pthread_mutex_destroy(mutexes + i); } delete[] mutexes; delete core; #endif } /** * Get the lock of a slot. */ void SlottedMutex::lock(size_t idx) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::EnterCriticalSection(core->mutexes + idx); #else _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; if (::pthread_mutex_lock(core->mutexes + idx) != 0) throw std::runtime_error("pthread_mutex_lock"); #endif } /** * Release the lock of a slot. */ void SlottedMutex::unlock(size_t idx) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::LeaveCriticalSection(core->mutexes + idx); #else _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; if (::pthread_mutex_unlock(core->mutexes + idx) != 0) throw std::runtime_error("pthread_mutex_unlock"); #endif } /** * Get the locks of all slots. */ void SlottedMutex::lock_all() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::CRITICAL_SECTION* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { ::EnterCriticalSection(mutexes + i); } #else _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::pthread_mutex_t* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { if (::pthread_mutex_lock(mutexes + i) != 0) throw std::runtime_error("pthread_mutex_lock"); } #endif } /** * Release the locks of all slots. */ void SlottedMutex::unlock_all() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::CRITICAL_SECTION* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { ::LeaveCriticalSection(mutexes + i); } #else _assert_(true); SlottedMutexCore* core = (SlottedMutexCore*)opq_; ::pthread_mutex_t* mutexes = core->mutexes; size_t slotnum = core->slotnum; for (size_t i = 0; i < slotnum; i++) { if (::pthread_mutex_unlock(mutexes + i) != 0) throw std::runtime_error("pthread_mutex_unlock"); } #endif } /** * Default constructor. */ CondVar::CondVar() : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); CondVarCore* core = new CondVarCore; ::InitializeCriticalSection(&core->mutex); core->wait = 0; core->wake = 0; core->sev = ::CreateEvent(NULL, true, false, NULL); if (!core->sev) throw std::runtime_error("CreateEvent"); core->fev = ::CreateEvent(NULL, false, false, NULL); if (!core->fev) throw std::runtime_error("CreateEvent"); opq_ = (void*)core; #else _assert_(true); CondVarCore* core = new CondVarCore; if (::pthread_cond_init(&core->cond, NULL) != 0) throw std::runtime_error("pthread_cond_init"); opq_ = (void*)core; #endif } /** * Destructor. */ CondVar::~CondVar() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); CondVarCore* core = (CondVarCore*)opq_; ::CloseHandle(core->fev); ::CloseHandle(core->sev); ::DeleteCriticalSection(&core->mutex); #else _assert_(true); CondVarCore* core = (CondVarCore*)opq_; ::pthread_cond_destroy(&core->cond); delete core; #endif } /** * Wait for the signal. */ void CondVar::wait(Mutex* mutex) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(mutex); CondVarCore* core = (CondVarCore*)opq_; ::CRITICAL_SECTION* mymutex = (::CRITICAL_SECTION*)mutex->opq_; ::EnterCriticalSection(&core->mutex); core->wait++; ::LeaveCriticalSection(&core->mutex); ::LeaveCriticalSection(mymutex); while (true) { ::WaitForSingleObject(core->sev, INFINITE); ::EnterCriticalSection(&core->mutex); if (core->wake > 0) { core->wait--; core->wake--; if (core->wake < 1) { ::ResetEvent(core->sev); ::SetEvent(core->fev); } ::LeaveCriticalSection(&core->mutex); break; } ::LeaveCriticalSection(&core->mutex); } ::EnterCriticalSection(mymutex); #else _assert_(mutex); CondVarCore* core = (CondVarCore*)opq_; ::pthread_mutex_t* mymutex = (::pthread_mutex_t*)mutex->opq_; if (::pthread_cond_wait(&core->cond, mymutex) != 0) throw std::runtime_error("pthread_cond_wait"); #endif } /** * Wait for the signal. */ bool CondVar::wait(Mutex* mutex, double sec) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(mutex && sec >= 0); if (sec <= 0) return false; CondVarCore* core = (CondVarCore*)opq_; ::CRITICAL_SECTION* mymutex = (::CRITICAL_SECTION*)mutex->opq_; ::EnterCriticalSection(&core->mutex); core->wait++; ::LeaveCriticalSection(&core->mutex); ::LeaveCriticalSection(mymutex); while (true) { if (::WaitForSingleObject(core->sev, sec * 1000) == WAIT_TIMEOUT) { ::EnterCriticalSection(&core->mutex); if (::WaitForSingleObject(core->sev, 0) == WAIT_TIMEOUT) { core->wait--; ::SetEvent(core->fev); ::LeaveCriticalSection(&core->mutex); ::EnterCriticalSection(mymutex); return false; } ::LeaveCriticalSection(&core->mutex); } ::EnterCriticalSection(&core->mutex); if (core->wake > 0) { core->wait--; core->wake--; if (core->wake < 1) { ::ResetEvent(core->sev); ::SetEvent(core->fev); } ::LeaveCriticalSection(&core->mutex); break; } ::LeaveCriticalSection(&core->mutex); } ::EnterCriticalSection(mymutex); return true; #else _assert_(mutex && sec >= 0); if (sec <= 0) return false; CondVarCore* core = (CondVarCore*)opq_; ::pthread_mutex_t* mymutex = (::pthread_mutex_t*)mutex->opq_; struct ::timeval tv; struct ::timespec ts; if (::gettimeofday(&tv, NULL) == 0) { double integ; double fract = std::modf(sec, &integ); ts.tv_sec = tv.tv_sec + (time_t)integ; ts.tv_nsec = (long)(tv.tv_usec * 1000.0 + fract * 999999000); if (ts.tv_nsec >= 1000000000) { ts.tv_nsec -= 1000000000; ts.tv_sec++; } } else { ts.tv_sec = std::time(NULL) + 1; ts.tv_nsec = 0; } int32_t ecode = ::pthread_cond_timedwait(&core->cond, mymutex, &ts); if (ecode == 0) return true; if (ecode != ETIMEDOUT && ecode != EINTR) throw std::runtime_error("pthread_cond_timedwait"); return false; #endif } /** * Send the wake-up signal to another waiting thread. */ void CondVar::signal() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); CondVarCore* core = (CondVarCore*)opq_; ::EnterCriticalSection(&core->mutex); if (core->wait > 0) { core->wake = 1; ::SetEvent(core->sev); ::LeaveCriticalSection(&core->mutex); ::WaitForSingleObject(core->fev, INFINITE); } else { ::LeaveCriticalSection(&core->mutex); } #else _assert_(true); CondVarCore* core = (CondVarCore*)opq_; if (::pthread_cond_signal(&core->cond) != 0) throw std::runtime_error("pthread_cond_signal"); #endif } /** * Send the wake-up signals to all waiting threads. */ void CondVar::broadcast() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); CondVarCore* core = (CondVarCore*)opq_; ::EnterCriticalSection(&core->mutex); if (core->wait > 0) { core->wake = core->wait; ::SetEvent(core->sev); ::LeaveCriticalSection(&core->mutex); ::WaitForSingleObject(core->fev, INFINITE); } else { ::LeaveCriticalSection(&core->mutex); } #else _assert_(true); CondVarCore* core = (CondVarCore*)opq_; if (::pthread_cond_broadcast(&core->cond) != 0) throw std::runtime_error("pthread_cond_broadcast"); #endif } /** * Default constructor. */ TSDKey::TSDKey() : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::DWORD key = ::TlsAlloc(); if (key == 0xFFFFFFFF) throw std::runtime_error("TlsAlloc"); opq_ = (void*)key; #else _assert_(true); ::pthread_key_t* key = new ::pthread_key_t; if (::pthread_key_create(key, NULL) != 0) throw std::runtime_error("pthread_key_create"); opq_ = (void*)key; #endif } /** * Constructor with the specifications. */ TSDKey::TSDKey(void (*dstr)(void*)) : opq_(NULL) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::DWORD key = ::TlsAlloc(); if (key == 0xFFFFFFFF) throw std::runtime_error("TlsAlloc"); opq_ = (void*)key; #else _assert_(true); ::pthread_key_t* key = new ::pthread_key_t; if (::pthread_key_create(key, dstr) != 0) throw std::runtime_error("pthread_key_create"); opq_ = (void*)key; #endif } /** * Destructor. */ TSDKey::~TSDKey() { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::DWORD key = (::DWORD)opq_; ::TlsFree(key); #else _assert_(true); ::pthread_key_t* key = (::pthread_key_t*)opq_; ::pthread_key_delete(*key); delete key; #endif } /** * Set the value. */ void TSDKey::set(void* ptr) { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::DWORD key = (::DWORD)opq_; if (!::TlsSetValue(key, ptr)) std::runtime_error("TlsSetValue"); #else _assert_(true); ::pthread_key_t* key = (::pthread_key_t*)opq_; if (::pthread_setspecific(*key, ptr) != 0) throw std::runtime_error("pthread_setspecific"); #endif } /** * Get the value. */ void* TSDKey::get() const { #if defined(_SYS_MSVC_) || defined(_SYS_MINGW_) _assert_(true); ::DWORD key = (::DWORD)opq_; return ::TlsGetValue(key); #else _assert_(true); ::pthread_key_t* key = (::pthread_key_t*)opq_; return ::pthread_getspecific(*key); #endif } /** * Set the new value. */ int64_t AtomicInt64::set(int64_t val) { #if (defined(_SYS_MSVC_) || defined(_SYS_MINGW_)) && defined(_SYS_WIN64_) _assert_(true); return ::InterlockedExchange((uint64_t*)&value_, val); #elif _KC_GCCATOMIC _assert_(true); int64_t oval = __sync_lock_test_and_set(&value_, val); __sync_synchronize(); return oval; #else _assert_(true); int64_t oval = value_; value_ = val; return oval; #endif } /** * Add a value. */ int64_t AtomicInt64::add(int64_t val) { #if (defined(_SYS_MSVC_) || defined(_SYS_MINGW_)) && defined(_SYS_WIN64_) _assert_(true); return ::InterlockedExchangeAdd((uint64_t*)&value_, val); #elif _KC_GCCATOMIC _assert_(true); int64_t oval = __sync_fetch_and_add(&value_, val); __sync_synchronize(); return oval; #else _assert_(true); int64_t oval = value_; value_ += val; return oval; #endif } /** * Perform compare-and-swap. */ bool AtomicInt64::cas(int64_t oval, int64_t nval) { #if (defined(_SYS_MSVC_) || defined(_SYS_MINGW_)) && defined(_SYS_WIN64_) _assert_(true); return ::InterlockedCompareExchange((uint64_t*)&value_, nval, oval) == oval; #elif _KC_GCCATOMIC _assert_(true); bool rv = __sync_bool_compare_and_swap(&value_, oval, nval); __sync_synchronize(); return rv; #else _assert_(true); bool rv = false; if (value_ == oval) { value_ = nval; rv = true; } return rv; #endif } /** * Get the current value. */ int64_t AtomicInt64::get() const { #if (defined(_SYS_MSVC_) || defined(_SYS_MINGW_)) && defined(_SYS_WIN64_) _assert_(true); return ::InterlockedExchangeAdd((uint64_t*)&value_, 0); #elif _KC_GCCATOMIC _assert_(true); return __sync_fetch_and_add((int64_t*)&value_, 0); #else _assert_(true); int64_t oval = value_; return oval; #endif } } // common namespace // END OF FILE