/* dbx_tree: tree database driver for Miranda IM Copyright 2007-2010 Michael "Protogenes" Kunz, This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "SHA256.h" #include <stdlib.h> #include <string.h> #if !defined(_MSC_VER) || !defined(_M_IX86) #define NO_ASM #endif #define SHA_LOOPUNROLL #ifndef _MSC_VER #define rotr(x,n) (((x)>>(n))|((x)<<(32-(n)))) #else #define rotr(x,n) _lrotr(x,n) #endif // table of round constants // (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): static const uint32_t cKey[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; // initialisation vector // (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): static const SHA256::THash cHashInit = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; SHA256::SHA256() { SHAInit(); } SHA256::~SHA256() { } void SHA256::SHAInit() { memcpy(m_Hash, cHashInit, sizeof(m_Hash)); m_Length = 0; } void SHA256::SHAUpdate(void * Data, uint32_t Length) { uint8_t * dat = (uint8_t *)Data; uint32_t len = Length; if (m_Length & 63) { uint32_t p = (m_Length & 63); uint32_t pl = 64 - p; if (pl > len) pl = len; memcpy(&(m_Block[p]), dat, pl); len -= pl; dat += pl; if (p + pl == 64) SHABlock(); } while (len >= 64) { memcpy(m_Block, dat, sizeof(m_Block)); SHABlock(); len -= 64; dat += 64; } if (len > 0) { memcpy(m_Block, dat, len); } m_Length += Length; } void SHA256::SHAFinal(SHA256::THash & Hash) { uint8_t pad[128] = { 0x80, 0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0 }; uint32_t padlen = 0; if ((m_Length & 63) < 55) // 64 - 9 -> short padding { padlen = 64 - (m_Length & 63); } else { padlen = 128 - (m_Length & 63); } uint64_t l = m_Length << 3; { uint8_t * p = (uint8_t *) &l; #ifdef NO_ASM pad[padlen - 1] = (uint8_t)(p[0]); pad[padlen - 2] = (uint8_t)(p[1]); pad[padlen - 3] = (uint8_t)(p[2]); pad[padlen - 4] = (uint8_t)(p[3]); pad[padlen - 5] = (uint8_t)(p[4]); pad[padlen - 6] = (uint8_t)(p[5]); pad[padlen - 7] = (uint8_t)(p[6]); pad[padlen - 8] = (uint8_t)(p[7]); #else uint8_t * p2 = (uint8_t *) &(pad[padlen - 8]); __asm { MOV ebx, p MOV eax, [ebx] BSWAP eax MOV edx, [ebx + 4] MOV ebx, p2 BSWAP edx MOV [ebx + 4], eax MOV [ebx], edx } #endif } SHAUpdate((uint32_t *)pad, padlen); { uint8_t * h = (uint8_t *)Hash; uint8_t * m = (uint8_t *)m_Hash; #ifdef NO_ASM for (int i = 0; i < 32; i += 4) { h[i] = m[i + 3]; h[i + 1] = m[i + 2]; h[i + 2] = m[i + 1]; h[i + 3] = m[i]; } #else __asm { MOV esi, m MOV edi, h MOV ecx, 8 loop_label: LODSD BSWAP eax STOSD dec ecx jnz loop_label } #endif } SHAInit(); } #define SHA256_ROUND(a,b,c,d,e,f,g,h, i) { \ t1 = (h) + (rotr((e), 6) ^ rotr((e), 11) ^ rotr((e), 25)) + \ (((e) & (f)) ^ ((~(e)) & (g))) + cKey[i] + w[i]; \ t2 = (rotr((a), 2) ^ rotr((a), 13) ^ rotr((a), 22)) + \ (((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); \ d += t1; \ h = t1 + t2; \ } void SHA256::SHABlock() { uint32_t w[64]; // make Big Endian { uint8_t * d = (uint8_t *)w; uint8_t * s = (uint8_t *)m_Block; #ifdef NO_ASM for (int i = 0; i < 64; i += 4) { d[i] = s[i + 3]; d[i + 1] = s[i + 2]; d[i + 2] = s[i + 1]; d[i + 3] = s[i]; } #else __asm { MOV esi, s MOV edi, d MOV ecx, 16 loop_label: LODSD BSWAP eax STOSD dec ecx jnz loop_label } #endif } uint32_t t1, t2, a,b,c,d,e,f,g,h; for (uint32_t i = 16; i < 64; ++i) { t1 = w[i-15]; t2 = w[i-2]; w[i] = w[i-16] + (rotr(t1, 7) ^ rotr(t1, 18) ^ (t1 >> 3)) + w[i-7] + (rotr(t2, 17) ^ rotr(t2, 19) ^ (t2 >> 10)); } a = m_Hash[0]; b = m_Hash[1]; c = m_Hash[2]; d = m_Hash[3]; e = m_Hash[4]; f = m_Hash[5]; g = m_Hash[6]; h = m_Hash[7]; #ifdef SHA_LOOPUNROLL for (uint32_t i = 0; i < 64; ++i) { SHA256_ROUND(a,b,c,d,e,f,g,h,i); ++i; SHA256_ROUND(h,a,b,c,d,e,f,g,i); ++i; SHA256_ROUND(g,h,a,b,c,d,e,f,i); ++i; SHA256_ROUND(f,g,h,a,b,c,d,e,i); ++i; SHA256_ROUND(e,f,g,h,a,b,c,d,i); ++i; SHA256_ROUND(d,e,f,g,h,a,b,c,i); ++i; SHA256_ROUND(c,d,e,f,g,h,a,b,i); ++i; SHA256_ROUND(b,c,d,e,f,g,h,a,i); } #else for (uint32_t i = 0; i < 64; ++i) { t1 = h + (rotr(e, 6) ^ rotr(e, 11) ^ rotr(e, 25)) + //s1 ((e & f) ^ ((~e) & g)) + cKey[i] + w[i]; //ch t2 = (rotr(a, 2) ^ rotr(a, 13) ^ rotr(a, 22)) + //s0 ((a & b) ^ (a & c) ^ (b & c)); //maj h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } #endif m_Hash[0] += a; m_Hash[1] += b; m_Hash[2] += c; m_Hash[3] += d; m_Hash[4] += e; m_Hash[5] += f; m_Hash[6] += g; m_Hash[7] += h; }