/* dbx_tree: tree database driver for Miranda IM Copyright 2007-2008 Michael "Protogenes" Kunz, This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "HC256.h" #include #include #ifndef _MSC_VER #define rotr(x,n) (((x)>>(n))|((x)<<(32-(n)))) #else #define rotr(x,n) _lrotr(x,n) #endif #define h1(x,y) { \ uint8_t a,b,c,d; \ a = (uint8_t) (x); \ b = (uint8_t) ((x) >> 8); \ c = (uint8_t) ((x) >> 16); \ d = (uint8_t) ((x) >> 24); \ (y) = Q[a]+Q[256+b]+Q[512+c]+Q[768+d]; \ } #define h2(x,y) { \ uint8_t a,b,c,d; \ a = (uint8_t) (x); \ b = (uint8_t) ((x) >> 8); \ c = (uint8_t) ((x) >> 16); \ d = (uint8_t) ((x) >> 24); \ (y) = P[a]+P[256+b]+P[512+c]+P[768+d]; \ } #define step_A(u,v,a,b,c,d,m){ \ uint32_t tem0,tem1,tem2,tem3; \ tem0 = rotr((v),23); \ tem1 = rotr((c),10); \ tem2 = ((v) ^ (c)) & 0x3ff; \ (u) += (b)+(tem0^tem1)+Q[tem2]; \ (a) = (u); \ h1((d),tem3); \ (m) ^= tem3 ^ (u) ; \ } #define step_B(u,v,a,b,c,d,m){ \ uint32_t tem0,tem1,tem2,tem3; \ tem0 = rotr((v),23); \ tem1 = rotr((c),10); \ tem2 = ((v) ^ (c)) & 0x3ff; \ (u) += (b)+(tem0^tem1)+P[tem2]; \ (a) = (u); \ h2((d),tem3); \ (m) ^= tem3 ^ (u) ; \ } #define f1(x) (rotr((x),7) ^ rotr((x),18) ^ ((x) >> 3)) #define f2(x) (rotr((x),17) ^ rotr((x),19) ^ ((x) >> 10)) #define f(a,b,c,d) (f2((a)) + (b) + f1((c)) + (d)) #define feedback_1(u,v,b,c) { \ uint32_t tem0,tem1,tem2; \ tem0 = rotr((v),23); \ tem1 = rotr((c),10); \ tem2 = ((v) ^ (c)) & 0x3ff; \ (u) += (b)+(tem0^tem1)+Q[tem2]; \ } #define feedback_2(u,v,b,c) { \ uint32_t tem0,tem1,tem2; \ tem0 = rotr((v),23); \ tem1 = rotr((c),10); \ tem2 = ((v) ^ (c)) & 0x3ff; \ (u) += (b)+(tem0^tem1)+P[tem2]; \ } const wchar_t * HC256::Name() { return cName; } const wchar_t * HC256::Description() { return cDescription; } const uint32_t HC256::BlockSizeBytes() { return cBlockSizeBytes; } const bool HC256::IsStreamCipher() { return cIsStreamCipher; } HC256::HC256() { } HC256::~HC256() { } CCipher::TCipherInterface* HC256::Create() { return (new HC256())->m_Interface; } void HC256::SetKey(void* Key, uint32_t KeyLength) { uint8_t k[32] = {0}; for (uint32_t i = 0; i < KeyLength; ++i) { k[i & 0x1f] ^= ((uint8_t *)Key)[i]; } CreateTables(k); } void HC256::Encrypt(void* Data, uint32_t Size, uint32_t Nonce, uint32_t StartByte) { memcpy(X, BackX, sizeof(X)); memcpy(Y, BackY, sizeof(Y)); memcpy(P, BackP, sizeof(P)); memcpy(Q, BackQ, sizeof(Q)); counter2048 = (Nonce + (Nonce >> 11) + (Nonce >> 22)) & 0x7ff; for (uint32_t i = 0; i <= Size - BlockSizeBytes(); i += BlockSizeBytes()) { EncryptBlock((uint32_t*)((uint8_t*)Data + i)); StartByte += BlockSizeBytes(); } } void HC256::Decrypt(void* Data, uint32_t Size, uint32_t Nonce, uint32_t StartByte) { Encrypt(Data, Size, Nonce, StartByte); } inline void HC256::EncryptBlock(uint32_t *Data) { uint32_t cc,dd; cc = counter2048 & 0x3ff; dd = (cc + 16) & 0x3ff; if (counter2048 < 1024) { counter2048 = (counter2048 + 16) & 0x7ff; step_A(P[cc+0], P[cc+1], X[0], X[6], X[13],X[4], Data[0]); step_A(P[cc+1], P[cc+2], X[1], X[7], X[14],X[5], Data[1]); step_A(P[cc+2], P[cc+3], X[2], X[8], X[15],X[6], Data[2]); step_A(P[cc+3], P[cc+4], X[3], X[9], X[0], X[7], Data[3]); step_A(P[cc+4], P[cc+5], X[4], X[10],X[1], X[8], Data[4]); step_A(P[cc+5], P[cc+6], X[5], X[11],X[2], X[9], Data[5]); step_A(P[cc+6], P[cc+7], X[6], X[12],X[3], X[10],Data[6]); step_A(P[cc+7], P[cc+8], X[7], X[13],X[4], X[11],Data[7]); step_A(P[cc+8], P[cc+9], X[8], X[14],X[5], X[12],Data[8]); step_A(P[cc+9], P[cc+10],X[9], X[15],X[6], X[13],Data[9]); step_A(P[cc+10],P[cc+11],X[10],X[0], X[7], X[14],Data[10]); step_A(P[cc+11],P[cc+12],X[11],X[1], X[8], X[15],Data[11]); step_A(P[cc+12],P[cc+13],X[12],X[2], X[9], X[0], Data[12]); step_A(P[cc+13],P[cc+14],X[13],X[3], X[10],X[1], Data[13]); step_A(P[cc+14],P[cc+15],X[14],X[4], X[11],X[2], Data[14]); step_A(P[cc+15],P[dd+0], X[15],X[5], X[12],X[3], Data[15]); } else { counter2048 = (counter2048 + 16) & 0x7ff; step_B(Q[cc+0], Q[cc+1], Y[0], Y[6], Y[13],Y[4], Data[0]); step_B(Q[cc+1], Q[cc+2], Y[1], Y[7], Y[14],Y[5], Data[1]); step_B(Q[cc+2], Q[cc+3], Y[2], Y[8], Y[15],Y[6], Data[2]); step_B(Q[cc+3], Q[cc+4], Y[3], Y[9], Y[0], Y[7], Data[3]); step_B(Q[cc+4], Q[cc+5], Y[4], Y[10],Y[1], Y[8], Data[4]); step_B(Q[cc+5], Q[cc+6], Y[5], Y[11],Y[2], Y[9], Data[5]); step_B(Q[cc+6], Q[cc+7], Y[6], Y[12],Y[3], Y[10],Data[6]); step_B(Q[cc+7], Q[cc+8], Y[7], Y[13],Y[4], Y[11],Data[7]); step_B(Q[cc+8], Q[cc+9], Y[8], Y[14],Y[5], Y[12],Data[8]); step_B(Q[cc+9], Q[cc+10],Y[9], Y[15],Y[6], Y[13],Data[9]); step_B(Q[cc+10],Q[cc+11],Y[10],Y[0], Y[7], Y[14],Data[10]); step_B(Q[cc+11],Q[cc+12],Y[11],Y[1], Y[8], Y[15],Data[11]); step_B(Q[cc+12],Q[cc+13],Y[12],Y[2], Y[9], Y[0], Data[12]); step_B(Q[cc+13],Q[cc+14],Y[13],Y[3], Y[10],Y[1], Data[13]); step_B(Q[cc+14],Q[cc+15],Y[14],Y[4], Y[11],Y[2], Data[14]); step_B(Q[cc+15],Q[dd+0], Y[15],Y[5], Y[12],Y[3], Data[15]); } } inline void HC256::CreateTables(uint8_t* Key) { uint32_t i, j; uint8_t iv[32] = "Miranda NG dbx_tree Protogenes!"; //expand the key and iv into P and Q for (i = 0; i < 8; i++) P[i] = Key[i]; for (i = 8; i < 16; i++) P[i] = iv[i - 8]; for (i = 16; i < 528; i++) P[i] = f(P[i - 2], P[i - 7], P[i - 15], P[i - 16]) + i; for (i = 0; i < 16; i++) P[i] = P[i + 512]; for (i = 16; i < 1024; i++) P[i] = f(P[i - 2], P[i - 7], P[i - 15], P[i - 16]) + 512 + i; for (i = 0; i < 16; i++) Q[i] = P[1024 - 16 + i]; for (i = 16; i < 32; i++) Q[i] = f(Q[i - 2], Q[i - 7], Q[i - 15], Q[i - 16]) + 1520 + i; for (i = 0; i < 16; i++) Q[i] = Q[i + 16]; for (i = 16; i < 1024;i++) Q[i] = f(Q[i - 2], Q[i - 7], Q[i - 15], Q[i - 16]) + 1536 + i; //run the cipher 4096 steps without generating output for (i = 0; i < 2; i++) { for (j = 0; j < 10; j++) feedback_1(P[j], P[j + 1], P[(j - 10) & 0x3ff], P[(j - 3) & 0x3ff]); for (j = 10; j < 1023; j++) feedback_1(P[j], P[j + 1], P[j - 10], P[j - 3]); feedback_1(P[1023], P[0], P[1013], P[1020]); for (j = 0; j < 10; j++) feedback_2(Q[j], Q[j+1], Q[(j-10) & 0x3ff], Q[(j - 3) & 0x3ff]); for (j = 10; j < 1023; j++) feedback_2(Q[j], Q[j + 1], Q[j - 10], Q[j - 3]); feedback_2(Q[1023], Q[0], Q[1013], Q[1020]); } //initialize counter2048, and tables X and Y counter2048 = 0; for (i = 0; i < 16; i++) X[i] = P[1008 + i]; for (i = 0; i < 16; i++) Y[i] = Q[1008 + i]; } extern "C" __declspec(dllexport) const TCipherInfo* CipherInfo(void * Reserved) { return &HC256::cCipherInfo; }