{=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- KKKKK KKKKK OOOOOOOOO LLLLL KKKKK KKKKK OOOOOOOOOOOOO LLLLL KKKKK KKKKK OOOOO OOOOO LLLLL KKKKK KKKKK OOOOO OOOOO LLLLL KKKKKKKKKK OOOOO OOOOO LLLLL KKKKK KKKKK OOOOO OOOOO LLLLL KKKKK KKKKK OOOOO OOOOO LLLLL KKKKK KKKKK OOOOOOOOOOOOO LLLLLLLLLLLLL KKKKK KKKKK OOOOOOOOO LLLLLLLLLLLLL Key Objects Library (C) 2000 by Kladov Vladimir. mailto: vk@kolmck.net Home: http://kolmck.net =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-} { This code is grabbed from standard math.pas unit, provided by Borland Delphi. This unit is for working with engineering (mathematical) functions. The main difference is that err unit specially designed to handle exceptions for KOL is used instead of SysUtils. This allows to make size of the executable smaller for about 5K. though this value is insignificant for project made with VCL, it can be more than 15% of executable file size made with KOL. } {*******************************************************} { } { Borland Delphi Runtime Library } { Math Unit } { } { Copyright (C) 1996,99 Inprise Corporation } { } {*******************************************************} unit kolmath; { This unit contains high-performance arithmetic, trigonometric, logorithmic, statistical and financial calculation routines which supplement the math routines that are part of the Delphi language or System unit. } {$N+,S-} {$I KOLDEF.INC} interface uses {$IFNDEF MATH_NOERR} err, {$ENDIF} kol; const { Ranges of the IEEE floating point types, including denormals } MinSingle = 1.5e-45; MaxSingle = 3.4e+38; MinDouble = 5.0e-324; MaxDouble = 1.7e+308; MinExtended = 3.4e-4932; MaxExtended = 1.1e+4932; MinComp = -9.223372036854775807e+18; MaxComp = 9.223372036854775807e+18; {----------------------------------------------------------------------- References: 1) P.J. Plauger, "The Standard C Library", Prentice-Hall, 1992, Ch. 7. 2) W.J. Cody, Jr., and W. Waite, "Software Manual For the Elementary Functions", Prentice-Hall, 1980. 3) Namir Shammas, "C/C++ Mathematical Algorithms for Scientists and Engineers", McGraw-Hill, 1995, Ch 8. 4) H.T. Lau, "A Numerical Library in C for Scientists and Engineers", CRC Press, 1994, Ch. 6. 5) "Pentium(tm) Processor User's Manual, Volume 3: Architecture and Programming Manual", Intel, 1994 +6)������ �������, "�������������� ����� ��� �������������", ������������ ���., 2004 All angle parameters and results of trig functions are in radians. Most of the following trig and log routines map directly to Intel 80387 FPU floating point machine instructions. Input domains, output ranges, and error handling are determined largely by the FPU hardware. Routines coded in assembler favor the Pentium FPU pipeline architecture. -----------------------------------------------------------------------} function EAbs( D: Double ): Double; function EMax( const Values: array of Double ): Double; function EMin( const Values: array of Double ): Double; function ESign( X: Extended ): Integer; function iMax( const Values: array of Integer ): Integer; function iMin( const Values: array of Integer ): Integer; function iSign( i: Integer ): Integer; { Trigonometric functions } function ArcCos(X: Extended): Extended; { IN: |X| <= 1 OUT: [0..PI] radians } function ArcSin(X: Extended): Extended; { IN: |X| <= 1 OUT: [-PI/2..PI/2] radians } { ArcTan2 calculates ArcTan(Y/X), and returns an angle in the correct quadrant. IN: |Y| < 2^64, |X| < 2^64, X <> 0 OUT: [-PI..PI] radians } function ArcTan2(Y, X: Extended): Extended; { SinCos is 2x faster than calling Sin and Cos separately for the same angle } procedure SinCos(Theta: Extended; var Sin, Cos: Extended) register; function Tan(X: Extended): Extended; function Cotan(X: Extended): Extended; { 1 / tan(X), X <> 0 } function Hypot(X, Y: Extended): Extended; { Sqrt(X**2 + Y**2) } { Angle unit conversion routines } function DegToRad(Degrees: Extended): Extended; { Radians := Degrees * PI / 180} function RadToDeg(Radians: Extended): Extended; { Degrees := Radians * 180 / PI } function GradToRad(Grads: Extended): Extended; { Radians := Grads * PI / 200 } function RadToGrad(Radians: Extended): Extended; { Grads := Radians * 200 / PI } function CycleToRad(Cycles: Extended): Extended; { Radians := Cycles * 2PI } function RadToCycle(Radians: Extended): Extended;{ Cycles := Radians / 2PI } { Hyperbolic functions and inverses } function Cosh(X: Extended): Extended; function Sinh(X: Extended): Extended; function Tanh(X: Extended): Extended; function ArcCosh(X: Extended): Extended; { IN: X >= 1 } function ArcSinh(X: Extended): Extended; function ArcTanh(X: Extended): Extended; { IN: |X| <= 1 } { Logorithmic functions } function LnXP1(X: Extended): Extended; { Ln(X + 1), accurate for X near zero } function Log10(X: Extended): Extended; { Log base 10 of X} function Log2(X: Extended): Extended; { Log base 2 of X } function LogN(Base, X: Extended): Extended; { Log base N of X } { Exponential functions } { IntPower: Raise base to an integral power. Fast. } //function IntPower(Base: Extended; Exponent: Integer): Extended register; // -- already defined in kol.pas { Power: Raise base to any power. For fractional exponents, or |exponents| > MaxInt, base must be > 0. } function Power(Base, Exponent: Extended): Extended; {$IFNDEF _D6orHigher} function Trunc( X: Extended ): Int64; {$ENDIF} { Miscellaneous Routines } { Frexp: Separates the mantissa and exponent of X. } procedure Frexp(X: Extended; var Mantissa: Extended; var Exponent: Integer) register; { Ldexp: returns X*2**P } function Ldexp(X: Extended; P: Integer): Extended register; { Ceil: Smallest integer >= X, |X| < MaxInt } function Ceil(X: Extended):Integer; { Floor: Largest integer <= X, |X| < MaxInt } function Floor(X: Extended): Integer; { Poly: Evaluates a uniform polynomial of one variable at value X. The coefficients are ordered in increasing powers of X: Coefficients[0] + Coefficients[1]*X + ... + Coefficients[N]*(X**N) } function Poly(X: Extended; const Coefficients: array of Double): Extended; {----------------------------------------------------------------------- Statistical functions. Common commercial spreadsheet macro names for these statistical and financial functions are given in the comments preceding each function. -----------------------------------------------------------------------} { Mean: Arithmetic average of values. (AVG): SUM / N } function Mean(const Data: array of Double): Extended; { Sum: Sum of values. (SUM) } function Sum(const Data: array of Double): Extended register; function SumInt(const Data: array of Integer): Integer register; function SumOfSquares(const Data: array of Double): Extended; procedure SumsAndSquares(const Data: array of Double; var Sum, SumOfSquares: Extended) register; { MinValue: Returns the smallest signed value in the data array (MIN) } function MinValue(const Data: array of Double): Double; function MinIntValue(const Data: array of Integer): Integer; function Min(A,B: Integer): Integer; {$IFDEF _D4orHigher} overload; function Min(A,B: I64): I64; overload; function Min(A,B: Int64): Int64; overload; function Min(A,B: Single): Single; overload; function Min(A,B: Double): Double; overload; function Min(A,B: Extended): Extended; overload; {$ENDIF} { MaxValue: Returns the largest signed value in the data array (MAX) } function MaxValue(const Data: array of Double): Double; function MaxIntValue(const Data: array of Integer): Integer; function Max(A,B: Integer): Integer; {$IFDEF _D4orHigher} overload; function Max(A,B: I64): I64; overload; function Max(A,B: Single): Single; overload; function Max(A,B: Double): Double; overload; function Max(A,B: Extended): Extended; overload; {$ENDIF} { Standard Deviation (STD): Sqrt(Variance). aka Sample Standard Deviation } function StdDev(const Data: array of Double): Extended; { MeanAndStdDev calculates Mean and StdDev in one call. } procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended); { Population Standard Deviation (STDP): Sqrt(PopnVariance). Used in some business and financial calculations. } function PopnStdDev(const Data: array of Double): Extended; { Variance (VARS): TotalVariance / (N-1). aka Sample Variance } function Variance(const Data: array of Double): Extended; { Population Variance (VAR or VARP): TotalVariance/ N } function PopnVariance(const Data: array of Double): Extended; { Total Variance: SUM(i=1,N)[(X(i) - Mean)**2] } function TotalVariance(const Data: array of Double): Extended; { Norm: The Euclidean L2-norm. Sqrt(SumOfSquares) } function Norm(const Data: array of Double): Extended; { MomentSkewKurtosis: Calculates the core factors of statistical analysis: the first four moments plus the coefficients of skewness and kurtosis. M1 is the Mean. M2 is the Variance. Skew reflects symmetry of distribution: M3 / (M2**(3/2)) Kurtosis reflects flatness of distribution: M4 / Sqr(M2) } procedure MomentSkewKurtosis(const Data: array of Double; var M1, M2, M3, M4, Skew, Kurtosis: Extended); { RandG produces random numbers with Gaussian distribution about the mean. Useful for simulating data with sampling errors. } function RandG(Mean, StdDev: Extended): Extended; {----------------------------------------------------------------------- Financial functions. Standard set from Quattro Pro. Parameter conventions: From the point of view of A, amounts received by A are positive and amounts disbursed by A are negative (e.g. a borrower's loan repayments are regarded by the borrower as negative). Interest rates are per payment period. 11% annual percentage rate on a loan with 12 payments per year would be (11 / 100) / 12 = 0.00916667 -----------------------------------------------------------------------} type TPaymentTime = (ptEndOfPeriod, ptStartOfPeriod); { Double Declining Balance (DDB) } function DoubleDecliningBalance(Cost, Salvage: Extended; Life, Period: Integer): Extended; { Future Value (FVAL) } function FutureValue(Rate: Extended; NPeriods: Integer; Payment, PresentValue: Extended; PaymentTime: TPaymentTime): Extended; { Interest Payment (IPAYMT) } function InterestPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Interest Rate (IRATE) } function InterestRate(NPeriods: Integer; Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Internal Rate of Return. (IRR) Needs array of cash flows. } function InternalRateOfReturn(Guess: Extended; const CashFlows: array of Double): Extended; { Number of Periods (NPER) } function NumberOfPeriods(Rate, Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Net Present Value. (NPV) Needs array of cash flows. } function NetPresentValue(Rate: Extended; const CashFlows: array of Double; PaymentTime: TPaymentTime): Extended; { Payment (PAYMT) } function Payment(Rate: Extended; NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Period Payment (PPAYMT) } function PeriodPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Present Value (PVAL) } function PresentValue(Rate: Extended; NPeriods: Integer; Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Straight Line depreciation (SLN) } function SLNDepreciation(Cost, Salvage: Extended; Life: Integer): Extended; { Sum-of-Years-Digits depreciation (SYD) } function SYDDepreciation(Cost, Salvage: Extended; Life, Period: Integer): Extended; {type EInvalidArgument = class(EMathError) end;} {------------------------------------------------------------------------------} { Integer and logical functions } function IsPowerOf2( i: Integer ): Boolean; {* TRUE, ���� ����� �������� �������� ����� 2 } function Low1( i: Integer ): Integer; {* �������� ������� ��� 1 �� ����� i. } function Low0( i: Integer ): Integer; {* �������� ������� ������ ��� 0 �� ����� i, ��������, 1100011 -> 100 } function count_1_bits_in_byte( x: Byte ): Byte; {* ������������ ����� ��������� ����� � ����� } function count_1_bits_in_dword( x: Integer ): Integer; {* ������������ ����� ��������� ����� � 32-������ } implementation {$IFNDEF _D2orD3} uses SysConst; {$ENDIF} function EAbs( D: Double ): Double; begin Result := D; if Result < 0.0 then Result := -Result; end; function EMax( const Values: array of Double ): Double; var I: Integer; begin Result := Values[ 0 ]; for I := 1 to High( Values ) do if Result < Values[ I ] then Result := Values[ I ]; end; function EMin( const Values: array of Double ): Double; var I: Integer; begin Result := Values[ 0 ]; for I := 1 to High( Values ) do if Result > Values[ I ] then Result := Values[ I ]; end; function ESign( X: Extended ): Integer; begin if X < 0 then Result := -1 else if X > 0 then Result := 1 else Result := 1; end; function iMax( const Values: array of Integer ): Integer; var I: Integer; begin Result := Values[ 0 ]; for I := 1 to High( Values ) do if Result < Values[ I ] then Result := Values[ I ]; end; function iMin( const Values: array of Integer ): Integer; var I: Integer; begin Result := Values[ 0 ]; for I := 1 to High( Values ) do if Result > Values[ I ] then Result := Values[ I ]; end; {$IFDEF PAS_VERSION} function iSign( i: Integer ): Integer; begin if i < 0 then Result := -1 else if i > 0 then Result := 1 else Result := 0; end; {$ELSE} function iSign( i: Integer ): Integer; asm XOR EDX, EDX TEST EAX, EAX JZ @@exit MOV DL, 1 JG @@exit OR EDX, -1 @@exit: XCHG EAX, EDX end; {$ENDIF} function Annuity2(R: Extended; N: Integer; PaymentTime: TPaymentTime; var CompoundRN: Extended): Extended; Forward; function Compound(R: Extended; N: Integer): Extended; Forward; function RelSmall(X, Y: Extended): Boolean; Forward; type TPoly = record Neg, Pos, DNeg, DPos: Extended end; const MaxIterations = 15; {$IFNDEF MATH_NOERR} procedure ArgError(const Msg: string); begin raise Exception.Create(e_Math_InvalidArgument, Msg); end; {$ENDIF} function DegToRad(Degrees: Extended): Extended; { Radians := Degrees * PI / 180 } begin Result := Degrees * (PI / 180); end; function RadToDeg(Radians: Extended): Extended; { Degrees := Radians * 180 / PI } begin Result := Radians * (180 / PI); end; function GradToRad(Grads: Extended): Extended; { Radians := Grads * PI / 200 } begin Result := Grads * (PI / 200); end; function RadToGrad(Radians: Extended): Extended; { Grads := Radians * 200 / PI} begin Result := Radians * (200 / PI); end; function CycleToRad(Cycles: Extended): Extended; { Radians := Cycles * 2PI } begin Result := Cycles * (2 * PI); end; function RadToCycle(Radians: Extended): Extended;{ Cycles := Radians / 2PI } begin Result := Radians / (2 * PI); end; function LnXP1(X: Extended): Extended; { Return ln(1 + X). Accurate for X near 0. } asm FLDLN2 MOV AX,WORD PTR X+8 { exponent } FLD X CMP AX,$3FFD { .4225 } JB @@1 FLD1 FADD FYL2X JMP @@2 @@1: FYL2XP1 @@2: FWAIT end; { Invariant: Y >= 0 & Result*X**Y = X**I. Init Y = I and Result = 1. } {function IntPower(X: Extended; I: Integer): Extended; var Y: Integer; begin Y := Abs(I); Result := 1.0; while Y > 0 do begin while not Odd(Y) do begin Y := Y shr 1; X := X * X end; Dec(Y); Result := Result * X end; if I < 0 then Result := 1.0 / Result end; } (* -- already defined in kol.pas function IntPower(Base: Extended; Exponent: Integer): Extended; asm mov ecx, eax cdq fld1 { Result := 1 } xor eax, edx sub eax, edx { eax := Abs(Exponent) } jz @@3 fld Base jmp @@2 @@1: fmul ST, ST { X := Base * Base } @@2: shr eax,1 jnc @@1 fmul ST(1),ST { Result := Result * X } jnz @@1 fstp st { pop X from FPU stack } cmp ecx, 0 jge @@3 fld1 fdivrp { Result := 1 / Result } @@3: fwait end; *) function Compound(R: Extended; N: Integer): Extended; { Return (1 + R)**N. } begin Result := IntPower(1.0 + R, N) end; function Annuity2(R: Extended; N: Integer; PaymentTime: TPaymentTime; var CompoundRN: Extended): Extended; { Set CompoundRN to Compound(R, N), return (1+Rate*PaymentTime)*(Compound(R,N)-1)/R; } begin if R = 0.0 then begin CompoundRN := 1.0; Result := N; end else begin { 6.1E-5 approx= 2**-14 } if EAbs(R) < 6.1E-5 then begin CompoundRN := Exp(N * LnXP1(R)); Result := N*(1+(N-1)*R/2); end else begin CompoundRN := Compound(R, N); Result := (CompoundRN-1) / R end; if PaymentTime = ptStartOfPeriod then Result := Result * (1 + R); end; end; {Annuity2} procedure PolyX(const A: array of Double; X: Extended; var Poly: TPoly); { Compute A[0] + A[1]*X + ... + A[N]*X**N and X * its derivative. Accumulate positive and negative terms separately. } var I: Integer; Neg, Pos, DNeg, DPos: Extended; begin Neg := 0.0; Pos := 0.0; DNeg := 0.0; DPos := 0.0; for I := High(A) downto Low(A) do begin DNeg := X * DNeg + Neg; Neg := Neg * X; DPos := X * DPos + Pos; Pos := Pos * X; if A[I] >= 0.0 then Pos := Pos + A[I] else Neg := Neg + A[I] end; Poly.Neg := Neg; Poly.Pos := Pos; Poly.DNeg := DNeg * X; Poly.DPos := DPos * X; end; {PolyX} function RelSmall(X, Y: Extended): Boolean; { Returns True if X is small relative to Y } const C1: Double = 1E-15; C2: Double = 1E-12; begin Result := EAbs(X) < (C1 + C2 * EAbs(Y)) end; { Math functions. } function ArcCos(X: Extended): Extended; begin if X > 0.999999999999999 then Result := 0 {����� -NAN !} else if X < -0.999999999999999 then Result := PI else Result := ArcTan2(Sqrt(1 - X*X), X); end; function ArcSin(X: Extended): Extended; begin Result := ArcTan2(X, Sqrt(1 - X*X)) end; function ArcTan2(Y, X: Extended): Extended; asm FLD Y FLD X FPATAN FWAIT end; function Tan(X: Extended): Extended; { Tan := Sin(X) / Cos(X) } asm FLD X FPTAN FSTP ST(0) { FPTAN pushes 1.0 after result } FWAIT end; function CoTan(X: Extended): Extended; { CoTan := Cos(X) / Sin(X) = 1 / Tan(X) } asm FLD X FPTAN FDIVRP FWAIT end; function Hypot(X, Y: Extended): Extended; { formula: Sqrt(X*X + Y*Y) implemented as: |Y|*Sqrt(1+Sqr(X/Y)), |X| < |Y| for greater precision var Temp: Extended; begin X := Abs(X); Y := Abs(Y); if X > Y then begin Temp := X; X := Y; Y := Temp; end; if X = 0 then Result := Y else // Y > X, X <> 0, so Y > 0 Result := Y * Sqrt(1 + Sqr(X/Y)); end; } asm FLD Y FABS FLD X FABS FCOM FNSTSW AX TEST AH,$45 JNZ @@1 // if ST > ST(1) then swap FXCH ST(1) // put larger number in ST(1) @@1: FLDZ FCOMP FNSTSW AX TEST AH,$40 // if ST = 0, return ST(1) JZ @@2 FSTP ST // eat ST(0) JMP @@3 @@2: FDIV ST,ST(1) // ST := ST / ST(1) FMUL ST,ST // ST := ST * ST FLD1 FADD // ST := ST + 1 FSQRT // ST := Sqrt(ST) FMUL // ST(1) := ST * ST(1); Pop ST @@3: FWAIT end; procedure SinCos(Theta: Extended; var Sin, Cos: Extended); asm FLD Theta FSINCOS FSTP tbyte ptr [edx] // Cos FSTP tbyte ptr [eax] // Sin FWAIT end; { Extract exponent and mantissa from X } procedure Frexp(X: Extended; var Mantissa: Extended; var Exponent: Integer); { Mantissa ptr in EAX, Exponent ptr in EDX } asm FLD X PUSH EAX MOV dword ptr [edx], 0 { if X = 0, return 0 } FTST FSTSW AX FWAIT SAHF JZ @@Done FXTRACT // ST(1) = exponent, (pushed) ST = fraction FXCH // The FXTRACT instruction normalizes the fraction 1 bit higher than // wanted for the definition of frexp() so we need to tweak the result // by scaling the fraction down and incrementing the exponent. FISTP dword ptr [edx] FLD1 FCHS FXCH FSCALE // scale fraction INC dword ptr [edx] // exponent biased to match FSTP ST(1) // discard -1, leave fraction as TOS @@Done: POP EAX FSTP tbyte ptr [eax] FWAIT end; function Ldexp(X: Extended; P: Integer): Extended; { Result := X * (2^P) } asm PUSH EAX FILD dword ptr [ESP] FLD X FSCALE POP EAX FSTP ST(1) FWAIT end; function Ceil(X: Extended): Integer; begin Result := Integer(Trunc(X)); if Frac(X) > 0 then Inc(Result); end; function Floor(X: Extended): Integer; begin Result := Integer(Trunc(X)); if Frac(X) < 0 then Dec(Result); end; { Conversion of bases: Log.b(X) = Log.a(X) / Log.a(b) } function Log10(X: Extended): Extended; { Log.10(X) := Log.2(X) * Log.10(2) } asm FLDLG2 { Log base ten of 2 } FLD X FYL2X FWAIT end; function Log2(X: Extended): Extended; asm FLD1 FLD X FYL2X FWAIT end; function LogN(Base, X: Extended): Extended; { Log.N(X) := Log.2(X) / Log.2(N) } asm FLD1 FLD X FYL2X FLD1 FLD Base FYL2X FDIV FWAIT end; function Poly(X: Extended; const Coefficients: array of Double): Extended; { Horner's method } var I: Integer; begin Result := Coefficients[High(Coefficients)]; for I := High(Coefficients)-1 downto Low(Coefficients) do Result := Result * X + Coefficients[I]; end; function Power(Base, Exponent: Extended): Extended; begin if Exponent = 0.0 then Result := 1.0 { n**0 = 1 } else if (Base = 0.0) and (Exponent > 0.0) then Result := 0.0 { 0**n = 0, n > 0 } else if (Frac(Exponent) = 0.0) and (EAbs(Exponent) <= MaxInt) then Result := IntPower(Base, Integer(Trunc(Exponent))) else Result := Exp(Exponent * Ln(Base)) end; {$IFNDEF _D6orHigher} (*function Trunc1( X: Extended ): Int64; begin Result := System.Trunc( X ); end; asm FLD qword ptr [ESP+4] { -> FST(0) Extended argument } { <- EDX:EAX Result } SUB ESP,12 FNSTCW [ESP].Word // save FNSTCW [ESP+2].Word // scratch FWAIT OR [ESP+2].Word, $0F00 // trunc toward zero, full precision FLDCW [ESP+2].Word FISTP qword ptr [ESP+4] FWAIT FLDCW [ESP].Word POP ECX POP EAX POP EDX end;*) function Trunc( X: Extended ): Int64; begin if Abs( X ) < 1 then Result := 0 else if X < 0 then Result := -System.Trunc( -X ) else Result := System.Trunc( X ); end; {$ENDIF} { Hyperbolic functions } function CoshSinh(X: Extended; Factor: Double): Extended; begin Result := Exp(X) / 2; Result := Result + Factor / Result; end; function Cosh(X: Extended): Extended; begin Result := CoshSinh(X, 0.25) end; function Sinh(X: Extended): Extended; begin Result := CoshSinh(X, -0.25) end; const MaxTanhDomain = 5678.22249441322; // Ln(MaxExtended)/2 function Tanh(X: Extended): Extended; begin if X > MaxTanhDomain then Result := 1.0 else if X < -MaxTanhDomain then Result := -1.0 else begin Result := Exp(X); Result := Result * Result; Result := (Result - 1.0) / (Result + 1.0) end; end; function ArcCosh(X: Extended): Extended; begin if X <= 1.0 then Result := 0.0 else if X > 1.0e10 then Result := Ln(2) + Ln(X) else Result := Ln(X + Sqrt((X - 1.0) * (X + 1.0))); end; function ArcSinh(X: Extended): Extended; var Neg: Boolean; begin if X = 0 then Result := 0 else begin Neg := (X < 0); X := EAbs(X); if X > 1.0e10 then Result := Ln(2) + Ln(X) else begin Result := X*X; Result := LnXP1(X + Result / (1 + Sqrt(1 + Result))); end; if Neg then Result := -Result; end; end; function ArcTanh(X: Extended): Extended; var Neg: Boolean; begin if X = 0 then Result := 0 else begin Neg := (X < 0); X := EAbs(X); if X >= 1 then Result := MaxExtended else Result := 0.5 * LnXP1((2.0 * X) / (1.0 - X)); if Neg then Result := -Result; end; end; { Statistical functions } function Mean(const Data: array of Double): Extended; begin Result := SUM(Data) / (High(Data) - Low(Data) + 1) end; function MinValue(const Data: array of Double): Double; var I: Integer; begin Result := Data[Low(Data)]; for I := Low(Data) + 1 to High(Data) do if Result > Data[I] then Result := Data[I]; end; function MinIntValue(const Data: array of Integer): Integer; var I: Integer; begin Result := Data[Low(Data)]; for I := Low(Data) + 1 to High(Data) do if Result > Data[I] then Result := Data[I]; end; {$IFDEF ASM_VERSION} function Min(A,B: Integer): Integer; asm CMP EAX, EDX JL @@1 XCHG EAX, EDX @@1: end; {$ELSE} function Min(A,B: Integer): Integer; begin if A < B then Result := A else Result := B; end; {$ENDIF} {$IFDEF _D4orHigher} function Min(A,B: I64): I64; begin if Cmp64( A, B ) < 0 then Result := A else Result := B; end; function Min(A,B: Int64): Int64; begin if A < B then Result := A else Result := B; end; function Min(A,B: Single): Single; begin if A < B then Result := A else Result := B; end; function Min(A,B: Double): Double; begin if A < B then Result := A else Result := B; end; function Min(A,B: Extended): Extended; begin if A < B then Result := A else Result := B; end; {$ENDIF} function MaxValue(const Data: array of Double): Double; var I: Integer; begin Result := Data[Low(Data)]; for I := Low(Data) + 1 to High(Data) do if Result < Data[I] then Result := Data[I]; end; function MaxIntValue(const Data: array of Integer): Integer; var I: Integer; begin Result := Data[Low(Data)]; for I := Low(Data) + 1 to High(Data) do if Result < Data[I] then Result := Data[I]; end; {$IFDEF ASM_VERSION} function Max(A,B: Integer): Integer; asm CMP EAX, EDX JG @@1 XCHG EAX, EDX @@1: end; {$ELSE} function Max(A,B: Integer): Integer; begin if A > B then Result := A else Result := B; end; {$ENDIF} {$IFDEF _D4orHigher} function Max(A,B: I64): I64; begin if Cmp64( A, B ) > 0 then Result := A else Result := B; end; function Max(A,B: Single): Single; begin if A > B then Result := A else Result := B; end; function Max(A,B: Double): Double; begin if A > B then Result := A else Result := B; end; function Max(A,B: Extended): Extended; begin if A > B then Result := A else Result := B; end; {$ENDIF} procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended); var S: Extended; N,I: Integer; begin N := High(Data)- Low(Data) + 1; if N = 1 then begin Mean := Data[0]; StdDev := Data[0]; Exit; end; Mean := Sum(Data) / N; S := 0; // sum differences from the mean, for greater accuracy for I := Low(Data) to High(Data) do S := S + Sqr(Mean - Data[I]); StdDev := Sqrt(S / (N - 1)); end; procedure MomentSkewKurtosis(const Data: array of Double; var M1, M2, M3, M4, Skew, Kurtosis: Extended); var Sum, SumSquares, SumCubes, SumQuads, OverN, Accum, M1Sqr, S2N, S3N: Extended; I: Integer; begin OverN := 1 / (High(Data) - Low(Data) + 1); Sum := 0; SumSquares := 0; SumCubes := 0; SumQuads := 0; for I := Low(Data) to High(Data) do begin Sum := Sum + Data[I]; Accum := Sqr(Data[I]); SumSquares := SumSquares + Accum; Accum := Accum*Data[I]; SumCubes := SumCubes + Accum; SumQuads := SumQuads + Accum*Data[I]; end; M1 := Sum * OverN; M1Sqr := Sqr(M1); S2N := SumSquares * OverN; S3N := SumCubes * OverN; M2 := S2N - M1Sqr; M3 := S3N - (M1 * 3 * S2N) + 2*M1Sqr*M1; M4 := (SumQuads * OverN) - (M1 * 4 * S3N) + (M1Sqr*6*S2N - 3*Sqr(M1Sqr)); Skew := M3 * Power(M2, -3/2); // = M3 / Power(M2, 3/2) Kurtosis := M4 / Sqr(M2); end; function Norm(const Data: array of Double): Extended; begin Result := Sqrt(SumOfSquares(Data)); end; function PopnStdDev(const Data: array of Double): Extended; begin Result := Sqrt(PopnVariance(Data)) end; function PopnVariance(const Data: array of Double): Extended; begin Result := TotalVariance(Data) / (High(Data) - Low(Data) + 1) end; function RandG(Mean, StdDev: Extended): Extended; { Marsaglia-Bray algorithm } var U1, S2: Extended; begin repeat U1 := 2*Random - 1; S2 := Sqr(U1) + Sqr(2*Random-1); until S2 < 1; Result := Sqrt(-2*Ln(S2)/S2) * U1 * StdDev + Mean; end; function StdDev(const Data: array of Double): Extended; begin Result := Sqrt(Variance(Data)) end; procedure RaiseOverflowError; forward; function SumInt(const Data: array of Integer): Integer; {var I: Integer; begin Result := 0; for I := Low(Data) to High(Data) do Result := Result + Data[I] end; } asm // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1 // loop unrolled 4 times, 5 clocks per loop, 1.2 clocks per datum PUSH EBX MOV ECX, EAX // ecx = ptr to data MOV EBX, EDX XOR EAX, EAX AND EDX, not 3 AND EBX, 3 SHL EDX, 2 JMP @Vector.Pointer[EBX*4] @Vector: DD @@1 DD @@2 DD @@3 DD @@4 @@4: ADD EAX, [ECX+12+EDX] JO @@RaiseOverflowError @@3: ADD EAX, [ECX+8+EDX] JO @@RaiseOverflowError @@2: ADD EAX, [ECX+4+EDX] JO @@RaiseOverflowError @@1: ADD EAX, [ECX+EDX] JO @@RaiseOverflowError SUB EDX,16 JNS @@4 POP EBX RET @@RaiseOverflowError: POP EBX POP ECX JMP RaiseOverflowError end; procedure RaiseOverflowError; begin {$IFNDEF MATH_NOERR} raise Exception.Create(e_IntOverflow, SIntOverflow); {$ENDIF} end; function SUM(const Data: array of Double): Extended; {var I: Integer; begin Result := 0.0; for I := Low(Data) to High(Data) do Result := Result + Data[I] end; } asm // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1 // Uses 4 accumulators to minimize read-after-write delays and loop overhead // 5 clocks per loop, 4 items per loop = 1.2 clocks per item FLDZ MOV ECX, EDX FLD ST(0) AND EDX, not 3 FLD ST(0) AND ECX, 3 FLD ST(0) SHL EDX, 3 // count * sizeof(Double) = count * 8 JMP @Vector.Pointer[ECX*4] @Vector: DD @@1 DD @@2 DD @@3 DD @@4 @@4: FADD qword ptr [EAX+EDX+24] // 1 FXCH ST(3) // 0 @@3: FADD qword ptr [EAX+EDX+16] // 1 FXCH ST(2) // 0 @@2: FADD qword ptr [EAX+EDX+8] // 1 FXCH ST(1) // 0 @@1: FADD qword ptr [EAX+EDX] // 1 FXCH ST(2) // 0 SUB EDX, 32 JNS @@4 FADDP ST(3),ST // ST(3) := ST + ST(3); Pop ST FADD // ST(1) := ST + ST(1); Pop ST FADD // ST(1) := ST + ST(1); Pop ST FWAIT end; function SumOfSquares(const Data: array of Double): Extended; var I: Integer; begin Result := 0.0; for I := Low(Data) to High(Data) do Result := Result + Sqr(Data[I]); end; procedure SumsAndSquares(const Data: array of Double; var Sum, SumOfSquares: Extended); {var I: Integer; begin Sum := 0; SumOfSquares := 0; for I := Low(Data) to High(Data) do begin Sum := Sum + Data[I]; SumOfSquares := SumOfSquares + Data[I]*Data[I]; end; end; } asm // IN: EAX = ptr to Data // EDX = High(Data) = Count - 1 // ECX = ptr to Sum // Est. 17 clocks per loop, 4 items per loop = 4.5 clocks per data item FLDZ // init Sum accumulator PUSH ECX MOV ECX, EDX FLD ST(0) // init Sqr1 accum. AND EDX, not 3 FLD ST(0) // init Sqr2 accum. AND ECX, 3 FLD ST(0) // init/simulate last data item left in ST SHL EDX, 3 // count * sizeof(Double) = count * 8 JMP @Vector.Pointer[ECX*4] @Vector: DD @@1 DD @@2 DD @@3 DD @@4 @@4: FADD // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4 FLD qword ptr [EAX+EDX+24] // Load Data1 FADD ST(3),ST // Sum := Sum + Data1 FMUL ST,ST // Data1 := Sqr(Data1) @@3: FLD qword ptr [EAX+EDX+16] // Load Data2 FADD ST(4),ST // Sum := Sum + Data2 FMUL ST,ST // Data2 := Sqr(Data2) FXCH // Move Sqr(Data1) into ST(0) FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data1); Pop Data1 @@2: FLD qword ptr [EAX+EDX+8] // Load Data3 FADD ST(4),ST // Sum := Sum + Data3 FMUL ST,ST // Data3 := Sqr(Data3) FXCH // Move Sqr(Data2) into ST(0) FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data2); Pop Data2 @@1: FLD qword ptr [EAX+EDX] // Load Data4 FADD ST(4),ST // Sum := Sum + Data4 FMUL ST,ST // Sqr(Data4) FXCH // Move Sqr(Data3) into ST(0) FADDP ST(3),ST // Sqr1 := Sqr1 + Sqr(Data3); Pop Data3 SUB EDX,32 JNS @@4 FADD // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4 POP ECX FADD // Sqr1 := Sqr2 + Sqr1; Pop Sqr2 FXCH // Move Sum1 into ST(0) MOV EAX, SumOfSquares FSTP tbyte ptr [ECX] // Sum := Sum1; Pop Sum1 FSTP tbyte ptr [EAX] // SumOfSquares := Sum1; Pop Sum1 FWAIT end; function TotalVariance(const Data: array of Double): Extended; var Sum, SumSquares: Extended; begin SumsAndSquares(Data, Sum, SumSquares); Result := SumSquares - Sqr(Sum)/(High(Data) - Low(Data) + 1); end; function Variance(const Data: array of Double): Extended; begin Result := TotalVariance(Data) / (High(Data) - Low(Data)) end; { Depreciation functions. } function DoubleDecliningBalance(Cost, Salvage: Extended; Life, Period: Integer): Extended; { dv := cost * (1 - 2/life)**(period - 1) DDB = (2/life) * dv if DDB > dv - salvage then DDB := dv - salvage if DDB < 0 then DDB := 0 } var DepreciatedVal, Factor: Extended; begin Result := 0; if (Period < 1) or (Life < Period) or (Life < 1) or (Cost <= Salvage) then Exit; {depreciate everything in period 1 if life is only one or two periods} if ( Life <= 2 ) then begin if ( Period = 1 ) then DoubleDecliningBalance:=Cost-Salvage else DoubleDecliningBalance:=0; {all depreciation occurred in first period} exit; end; Factor := 2.0 / Life; DepreciatedVal := Cost * IntPower((1.0 - Factor), Period - 1); {DepreciatedVal is Cost-(sum of previous depreciation results)} Result := Factor * DepreciatedVal; {Nominal computed depreciation for this period. The rest of the function applies limits to this nominal value. } {Only depreciate until total depreciation equals cost-salvage.} if Result > DepreciatedVal - Salvage then Result := DepreciatedVal - Salvage; {No more depreciation after salvage value is reached. This is mostly a nit. If Result is negative at this point, it's very close to zero.} if Result < 0.0 then Result := 0.0; end; function SLNDepreciation(Cost, Salvage: Extended; Life: Integer): Extended; { Spreads depreciation linearly over life. } begin {$IFNDEF MATH_NOERR} if Life < 1 then ArgError('SLNDepreciation'); {$ENDIF} Result := (Cost - Salvage) / Life end; function SYDDepreciation(Cost, Salvage: Extended; Life, Period: Integer): Extended; { SYD = (cost - salvage) * (life - period + 1) / (life*(life + 1)/2) } { Note: life*(life+1)/2 = 1+2+3+...+life "sum of years" The depreciation factor varies from life/sum_of_years in first period = 1 downto 1/sum_of_years in last period = life. Total depreciation over life is cost-salvage.} var X1, X2: Extended; begin Result := 0; if (Period < 1) or (Life < Period) or (Cost <= Salvage) then Exit; X1 := 2 * (Life - Period + 1); X2 := Life * (Life + 1); Result := (Cost - Salvage) * X1 / X2 end; { Discounted cash flow functions. } function InternalRateOfReturn(Guess: Extended; const CashFlows: array of Double): Extended; { Use Newton's method to solve NPV = 0, where NPV is a polynomial in x = 1/(1+rate). Split the coefficients into negative and postive sets: neg + pos = 0, so pos = -neg, so -neg/pos = 1 Then solve: log(-neg/pos) = 0 Let t = log(1/(1+r) = -LnXP1(r) then r = exp(-t) - 1 Iterate on t, then use the last equation to compute r. } var T, Y: Extended; Poly: TPoly; K, Count: Integer; function ConditionP(const CashFlows: array of Double): Integer; { Guarantees existence and uniqueness of root. The sign of payments must change exactly once, the net payout must be always > 0 for first portion, then each payment must be >= 0. Returns: 0 if condition not satisfied, > 0 if condition satisfied and this is the index of the first value considered a payback. } var X: Double; I, K: Integer; begin K := High(CashFlows); while (K >= 0) and (CashFlows[K] >= 0.0) do Dec(K); Inc(K); if K > 0 then begin X := 0.0; I := 0; while I < K do begin X := X + CashFlows[I]; if X >= 0.0 then begin K := 0; Break end; Inc(I) end end; ConditionP := K end; begin InternalRateOfReturn := 0; K := ConditionP(CashFlows); {$IFNDEF MATH_NOERR} if K < 0 then ArgError('InternalRateOfReturn'); {$ENDIF} if K = 0 then begin {$IFNDEF MATH_NOERR} if Guess <= -1.0 then ArgError('InternalRateOfReturn'); {$ENDIF} T := -LnXP1(Guess) end else T := 0.0; for Count := 1 to MaxIterations do begin PolyX(CashFlows, Exp(T), Poly); {$IFNDEF MATH_NOERR} if Poly.Pos <= Poly.Neg then ArgError('InternalRateOfReturn'); {$ENDIF} if (Poly.Neg >= 0.0) or (Poly.Pos <= 0.0) then begin InternalRateOfReturn := -1.0; Exit; end; with Poly do Y := Ln(-Neg / Pos) / (DNeg / Neg - DPos / Pos); T := T - Y; if RelSmall(Y, T) then begin InternalRateOfReturn := Exp(-T) - 1.0; Exit; end end; {$IFNDEF MATH_NOERR} ArgError('InternalRateOfReturn'); {$ENDIF} end; function NetPresentValue(Rate: Extended; const CashFlows: array of Double; PaymentTime: TPaymentTime): Extended; { Caution: The sign of NPV is reversed from what would be expected for standard cash flows!} var rr: Extended; I: Integer; begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('NetPresentValue'); {$ENDIF} rr := 1/(1+Rate); result := 0; for I := High(CashFlows) downto Low(CashFlows) do result := rr * result + CashFlows[I]; if PaymentTime = ptEndOfPeriod then result := rr * result; end; { Annuity functions. } {--------------- From the point of view of A, amounts received by A are positive and amounts disbursed by A are negative (e.g. a borrower's loan repayments are regarded by the borrower as negative). Given interest rate r, number of periods n: compound(r, n) = (1 + r)**n "Compounding growth factor" annuity(r, n) = (compound(r, n)-1) / r "Annuity growth factor" Given future value fv, periodic payment pmt, present value pv and type of payment (start, 1 , or end of period, 0) pmtTime, financial variables satisfy: fv = -pmt*(1 + r*pmtTime)*annuity(r, n) - pv*compound(r, n) For fv, pv, pmt: C := compound(r, n) A := (1 + r*pmtTime)*annuity(r, n) Compute both at once in Annuity2. if C > 1E16 then A = C/r, so: fv := meaningless pv := -pmt*(pmtTime+1/r) pmt := -pv*r/(1 + r*pmtTime) else fv := -pmt(1+r*pmtTime)*A - pv*C pv := (-pmt(1+r*pmtTime)*A - fv)/C pmt := (-pv*C-fv)/((1+r*pmtTime)*A) ---------------} function PaymentParts(Period, NPeriods: Integer; Rate, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime; var IntPmt: Extended): Extended; var Crn:extended; { =Compound(Rate,NPeriods) } Crp:extended; { =Compound(Rate,Period-1) } Arn:extended; { =AnnuityF(Rate,NPeriods) } begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('PaymentParts'); {$ENDIF} Crp:=Compound(Rate,Period-1); Arn:=Annuity2(Rate,NPeriods,PaymentTime,Crn); IntPmt:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn; PaymentParts:=(-FutureValue-PresentValue)*Crp/Arn; end; function FutureValue(Rate: Extended; NPeriods: Integer; Payment, PresentValue: Extended; PaymentTime: TPaymentTime): Extended; var Annuity, CompoundRN: Extended; begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('FutureValue'); {$ENDIF} Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN); {$IFNDEF MATH_NOERR} if CompoundRN > 1.0E16 then ArgError('FutureValue'); {$ENDIF} FutureValue := -Payment * Annuity - PresentValue * CompoundRN end; function InterestPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; var Crp:extended; { compound(rate,period-1)} Crn:extended; { compound(rate,nperiods)} Arn:extended; { annuityf(rate,nperiods)} begin {$IFNDEF MATH_NOERR} if (Rate <= -1.0) or (Period < 1) or (Period > NPeriods) then ArgError('InterestPayment'); {$ENDIF} Crp:=Compound(Rate,Period-1); Arn:=Annuity2(Rate,Nperiods,PaymentTime,Crn); InterestPayment:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn; end; function InterestRate(NPeriods: Integer; Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { Given: First and last payments are non-zero and of opposite signs. Number of periods N >= 2. Convert data into cash flow of first, N-1 payments, last with first < 0, payment > 0, last > 0. Compute the IRR of this cash flow: 0 = first + pmt*x + pmt*x**2 + ... + pmt*x**(N-1) + last*x**N where x = 1/(1 + rate). Substitute x = exp(t) and apply Newton's method to f(t) = log(pmt*x + ... + last*x**N) / -first which has a unique root given the above hypotheses. } var X, Y, Z, First, Pmt, Last, T, ET, EnT, ET1: Extended; Count: Integer; Reverse: Boolean; function LostPrecision(X: Extended): Boolean; asm XOR EAX, EAX MOV BX,WORD PTR X+8 INC EAX AND EBX, $7FF0 JZ @@1 CMP EBX, $7FF0 JE @@1 XOR EAX,EAX @@1: end; begin Result := 0; {$IFNDEF MATH_NOERR} if NPeriods <= 0 then ArgError('InterestRate'); {$ENDIF} Pmt := Payment; if PaymentTime = ptEndOfPeriod then begin X := PresentValue; Y := FutureValue + Payment end else begin X := PresentValue + Payment; Y := FutureValue end; First := X; Last := Y; Reverse := False; if First * Payment > 0.0 then begin Reverse := True; T := First; First := Last; Last := T end; if first > 0.0 then begin First := -First; Pmt := -Pmt; Last := -Last end; {$IFNDEF MATH_NOERR} if (First = 0.0) or (Last < 0.0) then ArgError('InterestRate'); {$ENDIF} T := 0.0; { Guess at solution } for Count := 1 to MaxIterations do begin EnT := Exp(NPeriods * T); if {LostPrecision(EnT)} ent=(ent+1) then begin Result := -Pmt / First; if Reverse then Result := Exp(-LnXP1(Result)) - 1.0; Exit; end; ET := Exp(T); ET1 := ET - 1.0; if ET1 = 0.0 then begin X := NPeriods; Y := X * (X - 1.0) / 2.0 end else begin X := ET * (Exp((NPeriods - 1) * T)-1.0) / ET1; Y := (NPeriods * EnT - ET - X * ET) / ET1 end; Z := Pmt * X + Last * EnT; Y := Ln(Z / -First) / ((Pmt * Y + Last * NPeriods *EnT) / Z); T := T - Y; if RelSmall(Y, T) then begin if not Reverse then T := -T; InterestRate := Exp(T)-1.0; Exit; end end; {$IFNDEF MATH_NOERR} ArgError('InterestRate'); {$ENDIF} end; function NumberOfPeriods(Rate, Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; { If Rate = 0 then nper := -(pv + fv) / pmt else cf := pv + pmt * (1 + rate*pmtTime) / rate nper := LnXP1(-(pv + fv) / cf) / LnXP1(rate) } var PVRPP: Extended; { =PV*Rate+Payment } {"initial cash flow"} T: Extended; begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('NumberOfPeriods'); {$ENDIF} {whenever both Payment and PaymentTime are given together, the PaymentTime has the effect of modifying the effective Payment by the interest accrued on the Payment} if ( PaymentTime=ptStartOfPeriod ) then Payment:=Payment*(1+Rate); {if the payment exactly matches the interest accrued periodically on the presentvalue, then an infinite number of payments are going to be required to effect a change from presentvalue to futurevalue. The following catches that specific error where payment is exactly equal, but opposite in sign to the interest on the present value. If PVRPP ("initial cash flow") is simply close to zero, the computation will be numerically unstable, but not as likely to cause an error.} PVRPP:=PresentValue*Rate+Payment; {$IFNDEF MATH_NOERR} if PVRPP=0 then ArgError('NumberOfPeriods'); {$ENDIF} { 6.1E-5 approx= 2**-14 } if ( EAbs(Rate)<6.1E-5 ) then Result:=-(PresentValue+FutureValue)/PVRPP else begin {starting with the initial cash flow, each compounding period cash flow should result in the current value approaching the final value. The following test combines a number of simultaneous conditions to ensure reasonableness of the cashflow before computing the NPER.} T:= -(PresentValue+FutureValue)*Rate/PVRPP; {$IFNDEF MATH_NOERR} if T<=-1.0 then ArgError('NumberOfPeriods'); {$ENDIF} Result := LnXP1(T) / LnXP1(Rate) end; NumberOfPeriods:=Result; end; function Payment(Rate: Extended; NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; var Annuity, CompoundRN: Extended; begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('Payment'); {$ENDIF} Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN); if CompoundRN > 1.0E16 then Payment := -PresentValue * Rate / (1 + Integer(PaymentTime) * Rate) else Payment := (-PresentValue * CompoundRN - FutureValue) / Annuity end; function PeriodPayment(Rate: Extended; Period, NPeriods: Integer; PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; var Junk: Extended; begin {$IFNDEF MATH_NOERR} if (Rate <= -1.0) or (Period < 1) or (Period > NPeriods) then ArgError('PeriodPayment'); {$ENDIF} PeriodPayment := PaymentParts(Period, NPeriods, Rate, PresentValue, FutureValue, PaymentTime, Junk); end; function PresentValue(Rate: Extended; NPeriods: Integer; Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended; var Annuity, CompoundRN: Extended; begin {$IFNDEF MATH_NOERR} if Rate <= -1.0 then ArgError('PresentValue'); {$ENDIF} Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN); if CompoundRN > 1.0E16 then PresentValue := -(Payment / Rate * Integer(PaymentTime) * Payment) else PresentValue := (-Payment * Annuity - FutureValue) / CompoundRN end; {------------------------------------------------------------------------------} function IsPowerOf2( i: Integer ): Boolean; { Result = (i <> 0) and (i and (i-1) = 0); } asm OR EAX,EAX JZ @@exit // 0 �� �������� �������� ����� 2 LEA EDX, [EAX-1] OR EAX,EDX SETZ AL // ����� �������� �������� 2, ���� (i & (i-1)) = 0, �.�. ���� ����� // ��������� ������� 1 � ����� ������ �� �������� ����� 1. @@exit: end; function Low1( i: Integer ): Integer; { Result := i and (-i); } asm MOV EDX, EAX NEG EAX AND EAX, EDX end; function Low0( i: Integer ): Integer; { Result := -i and (i+1); } asm LEA EDX, [EAX+1] NEG EAX AND EAX, EDX end; function count_1_bits_in_byte( x: Byte ): Byte; asm MOV CL, AL @@loop: SHR CL, 1 JZ @@exit SUB AL, CL JMP @@loop @@exit: end; function count_1_bits_in_dword( x: Integer ): Integer; asm MOV ECX, EAX JMP @@go @@loop: SUB EAX, ECX @@go: SHR ECX, 1 JNZ @@loop end; end.