/* Rijndael (AES) for GnuPG
* Copyright (C) 2000, 2001, 2002, 2003, 2007,
* 2008, 2011, 2012 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see .
*******************************************************************
* The code here is based on the optimized implementation taken from
* http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ on Oct 2, 2000,
* which carries this notice:
*------------------------------------------
* rijndael-alg-fst.c v2.3 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen
* v2.3: Paulo Barreto
*
* This code is placed in the public domain.
*------------------------------------------
*
* The SP800-38a document is available at:
* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
*
*/
#include
#include
#include
#include /* for memcmp() */
#include "types.h" /* for byte and u32 typedefs */
#include "g10lib.h"
#include "cipher.h"
#include "bufhelp.h"
#include "cipher-selftest.h"
#define MAXKC (256/32)
#define MAXROUNDS 14
#define BLOCKSIZE (128/8)
/* Helper macro to force alignment to 16 bytes. */
#ifdef HAVE_GCC_ATTRIBUTE_ALIGNED
# define ATTR_ALIGNED_16 __attribute__ ((aligned (16)))
#else
# define ATTR_ALIGNED_16
#endif
/* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */
#undef USE_AMD64_ASM
#if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS)
# define USE_AMD64_ASM 1
#endif
/* USE_ARM_ASM indicates whether to use ARM assembly code. */
#undef USE_ARM_ASM
#if defined(__ARMEL__)
# ifdef HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS
# define USE_ARM_ASM 1
# endif
#endif
/* USE_PADLOCK indicates whether to compile the padlock specific
code. */
#undef USE_PADLOCK
#ifdef ENABLE_PADLOCK_SUPPORT
# ifdef HAVE_GCC_ATTRIBUTE_ALIGNED
# if (defined (__i386__) && SIZEOF_UNSIGNED_LONG == 4) || defined(__x86_64__)
# define USE_PADLOCK 1
# endif
# endif
#endif /*ENABLE_PADLOCK_SUPPORT*/
/* USE_AESNI inidicates whether to compile with Intel AES-NI code. We
need the vector-size attribute which seems to be available since
gcc 3. However, to be on the safe side we require at least gcc 4. */
#undef USE_AESNI
#ifdef ENABLE_AESNI_SUPPORT
# if ((defined (__i386__) && SIZEOF_UNSIGNED_LONG == 4) || defined(__x86_64__))
# if __GNUC__ >= 4
# define USE_AESNI 1
# endif
# endif
#endif /* ENABLE_AESNI_SUPPORT */
#ifdef USE_AESNI
typedef struct u128_s { u32 a, b, c, d; } u128_t;
#endif /*USE_AESNI*/
/* Define an u32 variant for the sake of gcc 4.4's strict aliasing. */
#if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )
typedef u32 __attribute__ ((__may_alias__)) u32_a_t;
#else
typedef u32 u32_a_t;
#endif
#ifdef USE_AMD64_ASM
/* AMD64 assembly implementations of AES */
extern void _gcry_aes_amd64_encrypt_block(const void *keysched_enc,
unsigned char *out,
const unsigned char *in,
int rounds);
extern void _gcry_aes_amd64_decrypt_block(const void *keysched_dec,
unsigned char *out,
const unsigned char *in,
int rounds);
#endif /*USE_AMD64_ASM*/
#ifdef USE_ARM_ASM
/* ARM assembly implementations of AES */
extern void _gcry_aes_arm_encrypt_block(const void *keysched_enc,
unsigned char *out,
const unsigned char *in,
int rounds);
extern void _gcry_aes_arm_decrypt_block(const void *keysched_dec,
unsigned char *out,
const unsigned char *in,
int rounds);
#endif /*USE_ARM_ASM*/
/* Our context object. */
typedef struct
{
/* The first fields are the keyschedule arrays. This is so that
they are aligned on a 16 byte boundary if using gcc. This
alignment is required for the AES-NI code and a good idea in any
case. The alignment is guaranteed due to the way cipher.c
allocates the space for the context. The PROPERLY_ALIGNED_TYPE
hack is used to force a minimal alignment if not using gcc of if
the alignment requirement is higher that 16 bytes. */
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte keyschedule[MAXROUNDS+1][4][4];
#ifdef USE_PADLOCK
/* The key as passed to the padlock engine. It is only used if
the padlock engine is used (USE_PADLOCK, below). */
unsigned char padlock_key[16] __attribute__ ((aligned (16)));
#endif /*USE_PADLOCK*/
} u1;
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte keyschedule[MAXROUNDS+1][4][4];
} u2;
int rounds; /* Key-length-dependent number of rounds. */
unsigned int decryption_prepared:1; /* The decryption key schedule is available. */
#ifdef USE_PADLOCK
unsigned int use_padlock:1; /* Padlock shall be used. */
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
unsigned int use_aesni:1; /* AES-NI shall be used. */
#endif /*USE_AESNI*/
} RIJNDAEL_context ATTR_ALIGNED_16;
/* Macros defining alias for the keyschedules. */
#define keyschenc u1.keyschedule
#define keyschdec u2.keyschedule
#define padlockkey u1.padlock_key
/* Two macros to be called prior and after the use of AESNI
instructions. There should be no external function calls between
the use of these macros. There purpose is to make sure that the
SSE regsiters are cleared and won't reveal any information about
the key or the data. */
#ifdef USE_AESNI
# define aesni_prepare() do { } while (0)
# define aesni_cleanup() \
do { asm volatile ("pxor %%xmm0, %%xmm0\n\t" \
"pxor %%xmm1, %%xmm1\n" :: ); \
} while (0)
# define aesni_cleanup_2_6() \
do { asm volatile ("pxor %%xmm2, %%xmm2\n\t" \
"pxor %%xmm3, %%xmm3\n" \
"pxor %%xmm4, %%xmm4\n" \
"pxor %%xmm5, %%xmm5\n" \
"pxor %%xmm6, %%xmm6\n":: ); \
} while (0)
#else
# define aesni_prepare() do { } while (0)
# define aesni_cleanup() do { } while (0)
#endif
/* All the numbers. */
#include "rijndael-tables.h"
/* Function prototypes. */
#if defined(__i386__) && defined(USE_AESNI)
/* We don't want to inline these functions on i386 to help gcc allocate enough
registers. */
static void do_aesni_ctr (const RIJNDAEL_context *ctx, unsigned char *ctr,
unsigned char *b, const unsigned char *a)
__attribute__ ((__noinline__));
static void do_aesni_ctr_4 (const RIJNDAEL_context *ctx, unsigned char *ctr,
unsigned char *b, const unsigned char *a)
__attribute__ ((__noinline__));
#endif /*USE_AESNI*/
static const char *selftest(void);
#ifdef USE_AESNI
static void
aesni_do_setkey (RIJNDAEL_context *ctx, const byte *key)
{
aesni_prepare();
if (ctx->rounds < 12)
{
/* 128-bit key */
#define AESKEYGENASSIST_xmm1_xmm2(imm8) \
".byte 0x66, 0x0f, 0x3a, 0xdf, 0xd1, " #imm8 " \n\t"
#define AESKEY_EXPAND128 \
"pshufd $0xff, %%xmm2, %%xmm2\n\t" \
"movdqa %%xmm1, %%xmm3\n\t" \
"pslldq $4, %%xmm3\n\t" \
"pxor %%xmm3, %%xmm1\n\t" \
"pslldq $4, %%xmm3\n\t" \
"pxor %%xmm3, %%xmm1\n\t" \
"pslldq $4, %%xmm3\n\t" \
"pxor %%xmm3, %%xmm2\n\t" \
"pxor %%xmm2, %%xmm1\n\t"
asm volatile ("movdqu (%[key]), %%xmm1\n\t" /* xmm1 := key */
"movdqa %%xmm1, (%[ksch])\n\t" /* ksch[0] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x01)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x10(%[ksch])\n\t" /* ksch[1] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x02)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x20(%[ksch])\n\t" /* ksch[2] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x04)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x30(%[ksch])\n\t" /* ksch[3] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x08)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x40(%[ksch])\n\t" /* ksch[4] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x10)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x50(%[ksch])\n\t" /* ksch[5] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x20)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x60(%[ksch])\n\t" /* ksch[6] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x40)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x70(%[ksch])\n\t" /* ksch[7] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x80)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x80(%[ksch])\n\t" /* ksch[8] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x1b)
AESKEY_EXPAND128
"movdqa %%xmm1, 0x90(%[ksch])\n\t" /* ksch[9] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x36)
AESKEY_EXPAND128
"movdqa %%xmm1, 0xa0(%[ksch])\n\t" /* ksch[10] := xmm1 */
:
: [key] "r" (key), [ksch] "r" (ctx->keyschenc)
: "cc", "memory" );
#undef AESKEYGENASSIST_xmm1_xmm2
#undef AESKEY_EXPAND128
}
else if (ctx->rounds == 12)
{
/* 192-bit key */
#define AESKEYGENASSIST_xmm3_xmm2(imm8) \
".byte 0x66, 0x0f, 0x3a, 0xdf, 0xd3, " #imm8 " \n\t"
#define AESKEY_EXPAND192 \
"pshufd $0x55, %%xmm2, %%xmm2\n\t" \
"movdqu %%xmm1, %%xmm4\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pxor %%xmm2, %%xmm1\n\t" \
"pshufd $0xff, %%xmm1, %%xmm2\n\t" \
"movdqu %%xmm3, %%xmm4\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm3\n\t" \
"pxor %%xmm2, %%xmm3\n\t"
asm volatile ("movdqu (%[key]), %%xmm1\n\t" /* xmm1 := key[0..15] */
"movq 16(%[key]), %%xmm3\n\t" /* xmm3 := key[16..23] */
"movdqa %%xmm1, (%[ksch])\n\t" /* ksch[0] := xmm1 */
"movdqa %%xmm3, %%xmm5\n\t"
AESKEYGENASSIST_xmm3_xmm2(0x01)
AESKEY_EXPAND192
"shufpd $0, %%xmm1, %%xmm5\n\t"
"movdqa %%xmm5, 0x10(%[ksch])\n\t" /* ksch[1] := xmm5 */
"movdqa %%xmm1, %%xmm6\n\t"
"shufpd $1, %%xmm3, %%xmm6\n\t"
"movdqa %%xmm6, 0x20(%[ksch])\n\t" /* ksch[2] := xmm6 */
AESKEYGENASSIST_xmm3_xmm2(0x02)
AESKEY_EXPAND192
"movdqa %%xmm1, 0x30(%[ksch])\n\t" /* ksch[3] := xmm1 */
"movdqa %%xmm3, %%xmm5\n\t"
AESKEYGENASSIST_xmm3_xmm2(0x04)
AESKEY_EXPAND192
"shufpd $0, %%xmm1, %%xmm5\n\t"
"movdqa %%xmm5, 0x40(%[ksch])\n\t" /* ksch[4] := xmm5 */
"movdqa %%xmm1, %%xmm6\n\t"
"shufpd $1, %%xmm3, %%xmm6\n\t"
"movdqa %%xmm6, 0x50(%[ksch])\n\t" /* ksch[5] := xmm6 */
AESKEYGENASSIST_xmm3_xmm2(0x08)
AESKEY_EXPAND192
"movdqa %%xmm1, 0x60(%[ksch])\n\t" /* ksch[6] := xmm1 */
"movdqa %%xmm3, %%xmm5\n\t"
AESKEYGENASSIST_xmm3_xmm2(0x10)
AESKEY_EXPAND192
"shufpd $0, %%xmm1, %%xmm5\n\t"
"movdqa %%xmm5, 0x70(%[ksch])\n\t" /* ksch[7] := xmm5 */
"movdqa %%xmm1, %%xmm6\n\t"
"shufpd $1, %%xmm3, %%xmm6\n\t"
"movdqa %%xmm6, 0x80(%[ksch])\n\t" /* ksch[8] := xmm6 */
AESKEYGENASSIST_xmm3_xmm2(0x20)
AESKEY_EXPAND192
"movdqa %%xmm1, 0x90(%[ksch])\n\t" /* ksch[9] := xmm1 */
"movdqa %%xmm3, %%xmm5\n\t"
AESKEYGENASSIST_xmm3_xmm2(0x40)
AESKEY_EXPAND192
"shufpd $0, %%xmm1, %%xmm5\n\t"
"movdqa %%xmm5, 0xa0(%[ksch])\n\t" /* ksch[10] := xmm5 */
"movdqa %%xmm1, %%xmm6\n\t"
"shufpd $1, %%xmm3, %%xmm6\n\t"
"movdqa %%xmm6, 0xb0(%[ksch])\n\t" /* ksch[11] := xmm6 */
AESKEYGENASSIST_xmm3_xmm2(0x80)
AESKEY_EXPAND192
"movdqa %%xmm1, 0xc0(%[ksch])\n\t" /* ksch[12] := xmm1 */
:
: [key] "r" (key), [ksch] "r" (ctx->keyschenc)
: "cc", "memory" );
#undef AESKEYGENASSIST_xmm3_xmm2
#undef AESKEY_EXPAND192
}
else if (ctx->rounds > 12)
{
/* 256-bit key */
#define AESKEYGENASSIST_xmm1_xmm2(imm8) \
".byte 0x66, 0x0f, 0x3a, 0xdf, 0xd1, " #imm8 " \n\t"
#define AESKEYGENASSIST_xmm3_xmm2(imm8) \
".byte 0x66, 0x0f, 0x3a, 0xdf, 0xd3, " #imm8 " \n\t"
#define AESKEY_EXPAND256_A \
"pshufd $0xff, %%xmm2, %%xmm2\n\t" \
"movdqa %%xmm1, %%xmm4\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm1\n\t" \
"pxor %%xmm2, %%xmm1\n\t"
#define AESKEY_EXPAND256_B \
"pshufd $0xaa, %%xmm2, %%xmm2\n\t" \
"movdqa %%xmm3, %%xmm4\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm3\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm3\n\t" \
"pslldq $4, %%xmm4\n\t" \
"pxor %%xmm4, %%xmm3\n\t" \
"pxor %%xmm2, %%xmm3\n\t"
asm volatile ("movdqu (%[key]), %%xmm1\n\t" /* xmm1 := key[0..15] */
"movdqu 16(%[key]), %%xmm3\n\t" /* xmm3 := key[16..31] */
"movdqa %%xmm1, (%[ksch])\n\t" /* ksch[0] := xmm1 */
"movdqa %%xmm3, 0x10(%[ksch])\n\t" /* ksch[1] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x01)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0x20(%[ksch])\n\t" /* ksch[2] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0x30(%[ksch])\n\t" /* ksch[3] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x02)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0x40(%[ksch])\n\t" /* ksch[4] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0x50(%[ksch])\n\t" /* ksch[5] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x04)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0x60(%[ksch])\n\t" /* ksch[6] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0x70(%[ksch])\n\t" /* ksch[7] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x08)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0x80(%[ksch])\n\t" /* ksch[8] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0x90(%[ksch])\n\t" /* ksch[9] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x10)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0xa0(%[ksch])\n\t" /* ksch[10] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0xb0(%[ksch])\n\t" /* ksch[11] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x20)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0xc0(%[ksch])\n\t" /* ksch[12] := xmm1 */
AESKEYGENASSIST_xmm1_xmm2(0x00)
AESKEY_EXPAND256_B
"movdqa %%xmm3, 0xd0(%[ksch])\n\t" /* ksch[13] := xmm3 */
AESKEYGENASSIST_xmm3_xmm2(0x40)
AESKEY_EXPAND256_A
"movdqa %%xmm1, 0xe0(%[ksch])\n\t" /* ksch[14] := xmm1 */
:
: [key] "r" (key), [ksch] "r" (ctx->keyschenc)
: "cc", "memory" );
#undef AESKEYGENASSIST_xmm1_xmm2
#undef AESKEYGENASSIST_xmm3_xmm2
#undef AESKEY_EXPAND256_A
#undef AESKEY_EXPAND256_B
}
aesni_cleanup();
aesni_cleanup_2_6();
}
#endif /*USE_AESNI*/
/* Perform the key setup. */
static gcry_err_code_t
do_setkey (RIJNDAEL_context *ctx, const byte *key, const unsigned keylen)
{
static int initialized = 0;
static const char *selftest_failed=0;
int rounds;
int i,j, r, t, rconpointer = 0;
int KC;
#if defined(USE_AESNI) || defined(USE_PADLOCK)
unsigned int hwfeatures;
#endif
/* The on-the-fly self tests are only run in non-fips mode. In fips
mode explicit self-tests are required. Actually the on-the-fly
self-tests are not fully thread-safe and it might happen that a
failed self-test won't get noticed in another thread.
FIXME: We might want to have a central registry of succeeded
self-tests. */
if (!fips_mode () && !initialized)
{
initialized = 1;
selftest_failed = selftest ();
if (selftest_failed)
log_error ("%s\n", selftest_failed );
}
if (selftest_failed)
return GPG_ERR_SELFTEST_FAILED;
#if defined(USE_AESNI) || defined(USE_PADLOCK)
hwfeatures = _gcry_get_hw_features ();
#endif
ctx->decryption_prepared = 0;
#ifdef USE_PADLOCK
ctx->use_padlock = 0;
#endif
#ifdef USE_AESNI
ctx->use_aesni = 0;
#endif
if( keylen == 128/8 )
{
rounds = 10;
KC = 4;
if (0)
{
;
}
#ifdef USE_PADLOCK
else if (hwfeatures & HWF_PADLOCK_AES)
{
ctx->use_padlock = 1;
memcpy (ctx->padlockkey, key, keylen);
}
#endif
#ifdef USE_AESNI
else if (hwfeatures & HWF_INTEL_AESNI)
{
ctx->use_aesni = 1;
}
#endif
}
else if ( keylen == 192/8 )
{
rounds = 12;
KC = 6;
if (0)
{
;
}
#ifdef USE_AESNI
else if (hwfeatures & HWF_INTEL_AESNI)
{
ctx->use_aesni = 1;
}
#endif
}
else if ( keylen == 256/8 )
{
rounds = 14;
KC = 8;
if (0)
{
;
}
#ifdef USE_AESNI
else if (hwfeatures & HWF_INTEL_AESNI)
{
ctx->use_aesni = 1;
}
#endif
}
else
return GPG_ERR_INV_KEYLEN;
ctx->rounds = rounds;
/* NB: We don't yet support Padlock hardware key generation. */
if (0)
{
;
}
#ifdef USE_AESNI
else if (ctx->use_aesni)
aesni_do_setkey(ctx, key);
#endif
else
{
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte data[MAXKC][4];
} k, tk;
#define k k.data
#define tk tk.data
#define W (ctx->keyschenc)
for (i = 0; i < keylen; i++)
{
k[i >> 2][i & 3] = key[i];
}
for (j = KC-1; j >= 0; j--)
{
*((u32_a_t*)tk[j]) = *((u32_a_t*)k[j]);
}
r = 0;
t = 0;
/* Copy values into round key array. */
for (j = 0; (j < KC) && (r < rounds + 1); )
{
for (; (j < KC) && (t < 4); j++, t++)
{
*((u32_a_t*)W[r][t]) = *((u32_a_t*)tk[j]);
}
if (t == 4)
{
r++;
t = 0;
}
}
while (r < rounds + 1)
{
/* While not enough round key material calculated calculate
new values. */
tk[0][0] ^= S[tk[KC-1][1]];
tk[0][1] ^= S[tk[KC-1][2]];
tk[0][2] ^= S[tk[KC-1][3]];
tk[0][3] ^= S[tk[KC-1][0]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8)
{
for (j = 1; j < KC; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
}
else
{
for (j = 1; j < KC/2; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
for (j = KC/2 + 1; j < KC; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
}
/* Copy values into round key array. */
for (j = 0; (j < KC) && (r < rounds + 1); )
{
for (; (j < KC) && (t < 4); j++, t++)
{
*((u32_a_t*)W[r][t]) = *((u32_a_t*)tk[j]);
}
if (t == 4)
{
r++;
t = 0;
}
}
}
#undef W
#undef tk
#undef k
wipememory(&tk, sizeof(tk));
wipememory(&t, sizeof(t));
}
return 0;
}
static gcry_err_code_t
rijndael_setkey (void *context, const byte *key, const unsigned keylen)
{
RIJNDAEL_context *ctx = context;
return do_setkey (ctx, key, keylen);
}
/* Make a decryption key from an encryption key. */
static void
prepare_decryption( RIJNDAEL_context *ctx )
{
int r;
#ifdef USE_AESNI
if (ctx->use_aesni)
{
/* The AES-NI decrypt instructions use the Equivalent Inverse
Cipher, thus we can't use the the standard decrypt key
preparation. */
u128_t *ekey = (u128_t *)ctx->keyschenc;
u128_t *dkey = (u128_t *)ctx->keyschdec;
int rr;
aesni_prepare();
#define DO_AESNI_AESIMC() \
asm volatile ("movdqa %[ekey], %%xmm1\n\t" \
/*"aesimc %%xmm1, %%xmm1\n\t"*/ \
".byte 0x66, 0x0f, 0x38, 0xdb, 0xc9\n\t" \
"movdqa %%xmm1, %[dkey]" \
: [dkey] "=m" (dkey[r]) \
: [ekey] "m" (ekey[rr]) \
: "memory")
dkey[0] = ekey[ctx->rounds];
r=1;
rr=ctx->rounds-1;
DO_AESNI_AESIMC(); r++; rr--; /* round 1 */
DO_AESNI_AESIMC(); r++; rr--; /* round 2 */
DO_AESNI_AESIMC(); r++; rr--; /* round 3 */
DO_AESNI_AESIMC(); r++; rr--; /* round 4 */
DO_AESNI_AESIMC(); r++; rr--; /* round 5 */
DO_AESNI_AESIMC(); r++; rr--; /* round 6 */
DO_AESNI_AESIMC(); r++; rr--; /* round 7 */
DO_AESNI_AESIMC(); r++; rr--; /* round 8 */
DO_AESNI_AESIMC(); r++; rr--; /* round 9 */
if (ctx->rounds > 10)
{
DO_AESNI_AESIMC(); r++; rr--; /* round 10 */
DO_AESNI_AESIMC(); r++; rr--; /* round 11 */
if (ctx->rounds > 12)
{
DO_AESNI_AESIMC(); r++; rr--; /* round 12 */
DO_AESNI_AESIMC(); r++; rr--; /* round 13 */
}
}
dkey[r] = ekey[0];
#undef DO_AESNI_AESIMC
aesni_cleanup();
}
else
#endif /*USE_AESNI*/
{
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte *w;
} w;
#define w w.w
for (r=0; r < MAXROUNDS+1; r++ )
{
*((u32_a_t*)ctx->keyschdec[r][0]) = *((u32_a_t*)ctx->keyschenc[r][0]);
*((u32_a_t*)ctx->keyschdec[r][1]) = *((u32_a_t*)ctx->keyschenc[r][1]);
*((u32_a_t*)ctx->keyschdec[r][2]) = *((u32_a_t*)ctx->keyschenc[r][2]);
*((u32_a_t*)ctx->keyschdec[r][3]) = *((u32_a_t*)ctx->keyschenc[r][3]);
}
#define W (ctx->keyschdec)
for (r = 1; r < ctx->rounds; r++)
{
w = W[r][0];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][1];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][2];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][3];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
}
#undef W
#undef w
wipememory(&w, sizeof(w));
}
}
/* Encrypt one block. A and B need to be aligned on a 4 byte
boundary. A and B may be the same. */
static void
do_encrypt_aligned (const RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#ifdef USE_AMD64_ASM
_gcry_aes_amd64_encrypt_block(ctx->keyschenc, b, a, ctx->rounds);
#elif defined(USE_ARM_ASM)
_gcry_aes_arm_encrypt_block(ctx->keyschenc, b, a, ctx->rounds);
#else
#define rk (ctx->keyschenc)
int rounds = ctx->rounds;
int r;
union
{
u32 tempu32[4]; /* Force correct alignment. */
byte temp[4][4];
} u;
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(a )) ^ *((u32_a_t*)rk[0][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(a+ 4)) ^ *((u32_a_t*)rk[0][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(a+ 8)) ^ *((u32_a_t*)rk[0][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(a+12)) ^ *((u32_a_t*)rk[0][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T1[u.temp[0][0]])
^ *((u32_a_t*)T2[u.temp[1][1]])
^ *((u32_a_t*)T3[u.temp[2][2]])
^ *((u32_a_t*)T4[u.temp[3][3]]));
*((u32_a_t*)(b + 4)) = (*((u32_a_t*)T1[u.temp[1][0]])
^ *((u32_a_t*)T2[u.temp[2][1]])
^ *((u32_a_t*)T3[u.temp[3][2]])
^ *((u32_a_t*)T4[u.temp[0][3]]));
*((u32_a_t*)(b + 8)) = (*((u32_a_t*)T1[u.temp[2][0]])
^ *((u32_a_t*)T2[u.temp[3][1]])
^ *((u32_a_t*)T3[u.temp[0][2]])
^ *((u32_a_t*)T4[u.temp[1][3]]));
*((u32_a_t*)(b +12)) = (*((u32_a_t*)T1[u.temp[3][0]])
^ *((u32_a_t*)T2[u.temp[0][1]])
^ *((u32_a_t*)T3[u.temp[1][2]])
^ *((u32_a_t*)T4[u.temp[2][3]]));
for (r = 1; r < rounds-1; r++)
{
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[r][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[r][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[r][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[r][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T1[u.temp[0][0]])
^ *((u32_a_t*)T2[u.temp[1][1]])
^ *((u32_a_t*)T3[u.temp[2][2]])
^ *((u32_a_t*)T4[u.temp[3][3]]));
*((u32_a_t*)(b + 4)) = (*((u32_a_t*)T1[u.temp[1][0]])
^ *((u32_a_t*)T2[u.temp[2][1]])
^ *((u32_a_t*)T3[u.temp[3][2]])
^ *((u32_a_t*)T4[u.temp[0][3]]));
*((u32_a_t*)(b + 8)) = (*((u32_a_t*)T1[u.temp[2][0]])
^ *((u32_a_t*)T2[u.temp[3][1]])
^ *((u32_a_t*)T3[u.temp[0][2]])
^ *((u32_a_t*)T4[u.temp[1][3]]));
*((u32_a_t*)(b +12)) = (*((u32_a_t*)T1[u.temp[3][0]])
^ *((u32_a_t*)T2[u.temp[0][1]])
^ *((u32_a_t*)T3[u.temp[1][2]])
^ *((u32_a_t*)T4[u.temp[2][3]]));
}
/* Last round is special. */
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[rounds-1][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[rounds-1][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[rounds-1][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[rounds-1][3]);
b[ 0] = T1[u.temp[0][0]][1];
b[ 1] = T1[u.temp[1][1]][1];
b[ 2] = T1[u.temp[2][2]][1];
b[ 3] = T1[u.temp[3][3]][1];
b[ 4] = T1[u.temp[1][0]][1];
b[ 5] = T1[u.temp[2][1]][1];
b[ 6] = T1[u.temp[3][2]][1];
b[ 7] = T1[u.temp[0][3]][1];
b[ 8] = T1[u.temp[2][0]][1];
b[ 9] = T1[u.temp[3][1]][1];
b[10] = T1[u.temp[0][2]][1];
b[11] = T1[u.temp[1][3]][1];
b[12] = T1[u.temp[3][0]][1];
b[13] = T1[u.temp[0][1]][1];
b[14] = T1[u.temp[1][2]][1];
b[15] = T1[u.temp[2][3]][1];
*((u32_a_t*)(b )) ^= *((u32_a_t*)rk[rounds][0]);
*((u32_a_t*)(b+ 4)) ^= *((u32_a_t*)rk[rounds][1]);
*((u32_a_t*)(b+ 8)) ^= *((u32_a_t*)rk[rounds][2]);
*((u32_a_t*)(b+12)) ^= *((u32_a_t*)rk[rounds][3]);
#undef rk
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
}
static void
do_encrypt (const RIJNDAEL_context *ctx,
unsigned char *bx, const unsigned char *ax)
{
#if !defined(USE_AMD64_ASM) && !defined(USE_ARM_ASM)
/* BX and AX are not necessary correctly aligned. Thus we might
need to copy them here. We try to align to a 16 bytes. */
if (((size_t)ax & 0x0f) || ((size_t)bx & 0x0f))
{
union
{
u32 dummy[4];
byte a[16] ATTR_ALIGNED_16;
} a;
union
{
u32 dummy[4];
byte b[16] ATTR_ALIGNED_16;
} b;
buf_cpy (a.a, ax, 16);
do_encrypt_aligned (ctx, b.b, a.a);
buf_cpy (bx, b.b, 16);
}
else
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
{
do_encrypt_aligned (ctx, bx, ax);
}
}
/* Encrypt or decrypt one block using the padlock engine. A and B may
be the same. */
#ifdef USE_PADLOCK
static void
do_padlock (const RIJNDAEL_context *ctx, int decrypt_flag,
unsigned char *bx, const unsigned char *ax)
{
/* BX and AX are not necessary correctly aligned. Thus we need to
copy them here. */
unsigned char a[16] __attribute__ ((aligned (16)));
unsigned char b[16] __attribute__ ((aligned (16)));
unsigned int cword[4] __attribute__ ((aligned (16)));
int blocks;
/* The control word fields are:
127:12 11:10 9 8 7 6 5 4 3:0
RESERVED KSIZE CRYPT INTER KEYGN CIPHR ALIGN DGEST ROUND */
cword[0] = (ctx->rounds & 15); /* (The mask is just a safeguard.) */
cword[1] = 0;
cword[2] = 0;
cword[3] = 0;
if (decrypt_flag)
cword[0] |= 0x00000200;
memcpy (a, ax, 16);
blocks = 1; /* Init counter for just one block. */
#ifdef __x86_64__
asm volatile
("pushfq\n\t" /* Force key reload. */
"popfq\n\t"
".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t" /* REP XCRYPT ECB. */
: /* No output */
: "S" (a), "D" (b), "d" (cword), "b" (ctx->padlockkey), "c" (blocks)
: "cc", "memory"
);
#else
asm volatile
("pushfl\n\t" /* Force key reload. */
"popfl\n\t"
"xchg %3, %%ebx\n\t" /* Load key. */
".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t" /* REP XCRYPT ECB. */
"xchg %3, %%ebx\n" /* Restore GOT register. */
: /* No output */
: "S" (a), "D" (b), "d" (cword), "r" (ctx->padlockkey), "c" (blocks)
: "cc", "memory"
);
#endif
memcpy (bx, b, 16);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
/* Encrypt one block using the Intel AES-NI instructions. A and B may
be the same.
Our problem here is that gcc does not allow the "x" constraint for
SSE registers in asm unless you compile with -msse. The common
wisdom is to use a separate file for SSE instructions and build it
separately. This would require a lot of extra build system stuff,
similar to what we do in mpi/ for the asm stuff. What we do
instead is to use standard registers and a bit more of plain asm
which copies the data and key stuff to the SSE registers and later
back. If we decide to implement some block modes with parallelized
AES instructions, it might indeed be better to use plain asm ala
mpi/. */
static inline void
do_aesni_enc (const RIJNDAEL_context *ctx, unsigned char *b,
const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
/* Note: For now we relax the alignment requirement for A and B: It
does not make much difference because in many case we would need
to memcpy them to an extra buffer; using the movdqu is much faster
that memcpy and movdqa. For CFB we know that the IV is properly
aligned but that is a special case. We should better implement
CFB direct in asm. */
asm volatile ("movdqu %[src], %%xmm0\n\t" /* xmm0 := *a */
"movdqa (%[key]), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%[key]), %%xmm1\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%[key]), %%xmm1\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%[key]), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %%xmm0, %[dst]\n"
: [dst] "=m" (*b)
: [src] "m" (*a),
[key] "r" (ctx->keyschenc),
[rounds] "r" (ctx->rounds)
: "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
static inline void
do_aesni_dec (const RIJNDAEL_context *ctx, unsigned char *b,
const unsigned char *a)
{
#define aesdec_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xde, 0xc1\n\t"
#define aesdeclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xc1\n\t"
asm volatile ("movdqu %[src], %%xmm0\n\t" /* xmm0 := *a */
"movdqa (%[key]), %%xmm1\n\t"
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x20(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x30(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x40(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x50(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x60(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x70(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x80(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x90(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xa0(%[key]), %%xmm1\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm1_xmm0
"movdqa 0xb0(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xc0(%[key]), %%xmm1\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm1_xmm0
"movdqa 0xd0(%[key]), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xe0(%[key]), %%xmm1\n"
".Ldeclast%=:\n\t"
aesdeclast_xmm1_xmm0
"movdqu %%xmm0, %[dst]\n"
: [dst] "=m" (*b)
: [src] "m" (*a),
[key] "r" (ctx->keyschdec),
[rounds] "r" (ctx->rounds)
: "cc", "memory");
#undef aesdec_xmm1_xmm0
#undef aesdeclast_xmm1_xmm0
}
/* Encrypt four blocks using the Intel AES-NI instructions. Blocks are input
* and output through SSE registers xmm1 to xmm4. */
static void
do_aesni_enc_vec4 (const RIJNDAEL_context *ctx)
{
#define aesenc_xmm0_xmm1 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc8\n\t"
#define aesenc_xmm0_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd0\n\t"
#define aesenc_xmm0_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd8\n\t"
#define aesenc_xmm0_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xe0\n\t"
#define aesenclast_xmm0_xmm1 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc8\n\t"
#define aesenclast_xmm0_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd0\n\t"
#define aesenclast_xmm0_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd8\n\t"
#define aesenclast_xmm0_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xe0\n\t"
asm volatile ("movdqa (%[key]), %%xmm0\n\t"
"pxor %%xmm0, %%xmm1\n\t" /* xmm1 ^= key[0] */
"pxor %%xmm0, %%xmm2\n\t" /* xmm2 ^= key[0] */
"pxor %%xmm0, %%xmm3\n\t" /* xmm3 ^= key[0] */
"pxor %%xmm0, %%xmm4\n\t" /* xmm4 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x20(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x30(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x40(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x50(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x60(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x70(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x80(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0x90(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0xa0(%[key]), %%xmm0\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0xb0(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0xc0(%[key]), %%xmm0\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0xd0(%[key]), %%xmm0\n\t"
aesenc_xmm0_xmm1
aesenc_xmm0_xmm2
aesenc_xmm0_xmm3
aesenc_xmm0_xmm4
"movdqa 0xe0(%[key]), %%xmm0\n"
".Ldeclast%=:\n\t"
aesenclast_xmm0_xmm1
aesenclast_xmm0_xmm2
aesenclast_xmm0_xmm3
aesenclast_xmm0_xmm4
: /* no output */
: [key] "r" (ctx->keyschenc),
[rounds] "r" (ctx->rounds)
: "cc", "memory");
#undef aesenc_xmm0_xmm1
#undef aesenc_xmm0_xmm2
#undef aesenc_xmm0_xmm3
#undef aesenc_xmm0_xmm4
#undef aesenclast_xmm0_xmm1
#undef aesenclast_xmm0_xmm2
#undef aesenclast_xmm0_xmm3
#undef aesenclast_xmm0_xmm4
}
/* Decrypt four blocks using the Intel AES-NI instructions. Blocks are input
* and output through SSE registers xmm1 to xmm4. */
static void
do_aesni_dec_vec4 (const RIJNDAEL_context *ctx)
{
#define aesdec_xmm0_xmm1 ".byte 0x66, 0x0f, 0x38, 0xde, 0xc8\n\t"
#define aesdec_xmm0_xmm2 ".byte 0x66, 0x0f, 0x38, 0xde, 0xd0\n\t"
#define aesdec_xmm0_xmm3 ".byte 0x66, 0x0f, 0x38, 0xde, 0xd8\n\t"
#define aesdec_xmm0_xmm4 ".byte 0x66, 0x0f, 0x38, 0xde, 0xe0\n\t"
#define aesdeclast_xmm0_xmm1 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xc8\n\t"
#define aesdeclast_xmm0_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xd0\n\t"
#define aesdeclast_xmm0_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xd8\n\t"
#define aesdeclast_xmm0_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xe0\n\t"
asm volatile ("movdqa (%[key]), %%xmm0\n\t"
"pxor %%xmm0, %%xmm1\n\t" /* xmm1 ^= key[0] */
"pxor %%xmm0, %%xmm2\n\t" /* xmm2 ^= key[0] */
"pxor %%xmm0, %%xmm3\n\t" /* xmm3 ^= key[0] */
"pxor %%xmm0, %%xmm4\n\t" /* xmm4 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x20(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x30(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x40(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x50(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x60(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x70(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x80(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0x90(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0xa0(%[key]), %%xmm0\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0xb0(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0xc0(%[key]), %%xmm0\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0xd0(%[key]), %%xmm0\n\t"
aesdec_xmm0_xmm1
aesdec_xmm0_xmm2
aesdec_xmm0_xmm3
aesdec_xmm0_xmm4
"movdqa 0xe0(%[key]), %%xmm0\n"
".Ldeclast%=:\n\t"
aesdeclast_xmm0_xmm1
aesdeclast_xmm0_xmm2
aesdeclast_xmm0_xmm3
aesdeclast_xmm0_xmm4
: /* no output */
: [key] "r" (ctx->keyschdec),
[rounds] "r" (ctx->rounds)
: "cc", "memory");
#undef aesdec_xmm0_xmm1
#undef aesdec_xmm0_xmm2
#undef aesdec_xmm0_xmm3
#undef aesdec_xmm0_xmm4
#undef aesdeclast_xmm0_xmm1
#undef aesdeclast_xmm0_xmm2
#undef aesdeclast_xmm0_xmm3
#undef aesdeclast_xmm0_xmm4
}
/* Perform a CFB encryption or decryption round using the
initialization vector IV and the input block A. Write the result
to the output block B and update IV. IV needs to be 16 byte
aligned. */
static void
do_aesni_cfb (const RIJNDAEL_context *ctx, int decrypt_flag,
unsigned char *iv, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
asm volatile ("movdqa %[iv], %%xmm0\n\t" /* xmm0 := IV */
"movdqa (%[key]), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%[key]), %%xmm1\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%[key]), %%xmm1\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%[key]), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %[src], %%xmm1\n\t" /* Save input. */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 = input ^ IV */
"cmpl $1, %[decrypt]\n\t"
"jz .Ldecrypt_%=\n\t"
"movdqa %%xmm0, %[iv]\n\t" /* [encrypt] Store IV. */
"jmp .Lleave_%=\n"
".Ldecrypt_%=:\n\t"
"movdqa %%xmm1, %[iv]\n" /* [decrypt] Store IV. */
".Lleave_%=:\n\t"
"movdqu %%xmm0, %[dst]\n" /* Store output. */
: [iv] "+m" (*iv), [dst] "=m" (*b)
: [src] "m" (*a),
[key] "r" (ctx->keyschenc),
[rounds] "g" (ctx->rounds),
[decrypt] "m" (decrypt_flag)
: "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
/* Perform a CTR encryption round using the counter CTR and the input
block A. Write the result to the output block B and update CTR.
CTR needs to be a 16 byte aligned little-endian value. */
static void
do_aesni_ctr (const RIJNDAEL_context *ctx,
unsigned char *ctr, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
asm volatile ("movdqa %%xmm5, %%xmm0\n\t" /* xmm0 := CTR (xmm5) */
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psrldq $8, %%xmm1\n\t" /* xmm1 = -1 */
"pshufb %%xmm6, %%xmm5\n\t"
"psubq %%xmm1, %%xmm5\n\t" /* xmm5++ (big endian) */
/* detect if 64-bit carry handling is needed */
"cmpl $0xffffffff, 8(%[ctr])\n\t"
"jne .Lno_carry%=\n\t"
"cmpl $0xffffffff, 12(%[ctr])\n\t"
"jne .Lno_carry%=\n\t"
"pslldq $8, %%xmm1\n\t" /* move lower 64-bit to high */
"psubq %%xmm1, %%xmm5\n\t" /* add carry to upper 64bits */
".Lno_carry%=:\n\t"
"pshufb %%xmm6, %%xmm5\n\t"
"movdqa %%xmm5, (%[ctr])\n\t" /* Update CTR (mem). */
"pxor (%[key]), %%xmm0\n\t" /* xmm1 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%[key]), %%xmm1\n\t"
"cmpl $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%[key]), %%xmm1\n\t"
"cmpl $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%[key]), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %[src], %%xmm1\n\t" /* xmm1 := input */
"pxor %%xmm1, %%xmm0\n\t" /* EncCTR ^= input */
"movdqu %%xmm0, %[dst]" /* Store EncCTR. */
: [dst] "=m" (*b)
: [src] "m" (*a),
[ctr] "r" (ctr),
[key] "r" (ctx->keyschenc),
[rounds] "g" (ctx->rounds)
: "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
/* Four blocks at a time variant of do_aesni_ctr. */
static void
do_aesni_ctr_4 (const RIJNDAEL_context *ctx,
unsigned char *ctr, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenc_xmm1_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd1\n\t"
#define aesenc_xmm1_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd9\n\t"
#define aesenc_xmm1_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xe1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
#define aesenclast_xmm1_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd1\n\t"
#define aesenclast_xmm1_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd9\n\t"
#define aesenclast_xmm1_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xe1\n\t"
/* Register usage:
esi keyschedule
xmm0 CTR-0
xmm1 temp / round key
xmm2 CTR-1
xmm3 CTR-2
xmm4 CTR-3
xmm5 copy of *ctr
xmm6 endian swapping mask
*/
asm volatile ("movdqa %%xmm5, %%xmm0\n\t" /* xmm0, xmm2 := CTR (xmm5) */
"movdqa %%xmm0, %%xmm2\n\t"
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psrldq $8, %%xmm1\n\t" /* xmm1 = -1 */
"pshufb %%xmm6, %%xmm2\n\t" /* xmm2 := le(xmm2) */
"psubq %%xmm1, %%xmm2\n\t" /* xmm2++ */
"movdqa %%xmm2, %%xmm3\n\t" /* xmm3 := xmm2 */
"psubq %%xmm1, %%xmm3\n\t" /* xmm3++ */
"movdqa %%xmm3, %%xmm4\n\t" /* xmm4 := xmm3 */
"psubq %%xmm1, %%xmm4\n\t" /* xmm4++ */
"movdqa %%xmm4, %%xmm5\n\t" /* xmm5 := xmm4 */
"psubq %%xmm1, %%xmm5\n\t" /* xmm5++ */
/* detect if 64-bit carry handling is needed */
"cmpl $0xffffffff, 8(%[ctr])\n\t"
"jne .Lno_carry%=\n\t"
"movl 12(%[ctr]), %%esi\n\t"
"bswapl %%esi\n\t"
"cmpl $0xfffffffc, %%esi\n\t"
"jb .Lno_carry%=\n\t" /* no carry */
"pslldq $8, %%xmm1\n\t" /* move lower 64-bit to high */
"je .Lcarry_xmm5%=\n\t" /* esi == 0xfffffffc */
"cmpl $0xfffffffe, %%esi\n\t"
"jb .Lcarry_xmm4%=\n\t" /* esi == 0xfffffffd */
"je .Lcarry_xmm3%=\n\t" /* esi == 0xfffffffe */
/* esi == 0xffffffff */
"psubq %%xmm1, %%xmm2\n\t"
".Lcarry_xmm3%=:\n\t"
"psubq %%xmm1, %%xmm3\n\t"
".Lcarry_xmm4%=:\n\t"
"psubq %%xmm1, %%xmm4\n\t"
".Lcarry_xmm5%=:\n\t"
"psubq %%xmm1, %%xmm5\n\t"
".Lno_carry%=:\n\t"
"movdqa (%[key]), %%xmm1\n\t" /* xmm1 := key[0] */
"movl %[rounds], %%esi\n\t"
"pshufb %%xmm6, %%xmm2\n\t" /* xmm2 := be(xmm2) */
"pshufb %%xmm6, %%xmm3\n\t" /* xmm3 := be(xmm3) */
"pshufb %%xmm6, %%xmm4\n\t" /* xmm4 := be(xmm4) */
"pshufb %%xmm6, %%xmm5\n\t" /* xmm5 := be(xmm5) */
"movdqa %%xmm5, (%[ctr])\n\t" /* Update CTR (mem). */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"pxor %%xmm1, %%xmm2\n\t" /* xmm2 ^= key[0] */
"pxor %%xmm1, %%xmm3\n\t" /* xmm3 ^= key[0] */
"pxor %%xmm1, %%xmm4\n\t" /* xmm4 ^= key[0] */
"movdqa 0x10(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x20(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x30(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x40(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x50(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x60(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x70(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x80(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x90(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xa0(%[key]), %%xmm1\n\t"
"cmpl $10, %%esi\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xb0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xc0(%[key]), %%xmm1\n\t"
"cmpl $12, %%esi\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xd0(%[key]), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xe0(%[key]), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
aesenclast_xmm1_xmm2
aesenclast_xmm1_xmm3
aesenclast_xmm1_xmm4
"movdqu (%[src]), %%xmm1\n\t" /* Get block 1. */
"pxor %%xmm1, %%xmm0\n\t" /* EncCTR-1 ^= input */
"movdqu %%xmm0, (%[dst])\n\t" /* Store block 1 */
"movdqu 16(%[src]), %%xmm1\n\t" /* Get block 2. */
"pxor %%xmm1, %%xmm2\n\t" /* EncCTR-2 ^= input */
"movdqu %%xmm2, 16(%[dst])\n\t" /* Store block 2. */
"movdqu 32(%[src]), %%xmm1\n\t" /* Get block 3. */
"pxor %%xmm1, %%xmm3\n\t" /* EncCTR-3 ^= input */
"movdqu %%xmm3, 32(%[dst])\n\t" /* Store block 3. */
"movdqu 48(%[src]), %%xmm1\n\t" /* Get block 4. */
"pxor %%xmm1, %%xmm4\n\t" /* EncCTR-4 ^= input */
"movdqu %%xmm4, 48(%[dst])" /* Store block 4. */
:
: [ctr] "r" (ctr),
[src] "r" (a),
[dst] "r" (b),
[key] "r" (ctx->keyschenc),
[rounds] "g" (ctx->rounds)
: "%esi", "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenc_xmm1_xmm2
#undef aesenc_xmm1_xmm3
#undef aesenc_xmm1_xmm4
#undef aesenclast_xmm1_xmm0
#undef aesenclast_xmm1_xmm2
#undef aesenclast_xmm1_xmm3
#undef aesenclast_xmm1_xmm4
}
#endif /*USE_AESNI*/
static unsigned int
rijndael_encrypt (void *context, byte *b, const byte *a)
{
RIJNDAEL_context *ctx = context;
unsigned int burn_stack;
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
do_padlock (ctx, 0, b, a);
burn_stack = (48 + 15 /* possible padding for alignment */);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
do_aesni_enc (ctx, b, a);
aesni_cleanup ();
burn_stack = 0;
}
#endif /*USE_AESNI*/
else
{
do_encrypt (ctx, b, a);
burn_stack = (56 + 2*sizeof(int));
}
return burn_stack;
}
/* Bulk encryption of complete blocks in CFB mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
void
_gcry_aes_cfb_enc (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn_depth = 48 + 2*sizeof(int);
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
/* Fixme: Let Padlock do the CFBing. */
for ( ;nblocks; nblocks-- )
{
/* Encrypt the IV. */
do_padlock (ctx, 0, iv, iv);
/* XOR the input with the IV and store input into IV. */
buf_xor_2dst(outbuf, iv, inbuf, BLOCKSIZE);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
for ( ;nblocks; nblocks-- )
{
do_aesni_cfb (ctx, 0, iv, outbuf, inbuf);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
aesni_cleanup ();
burn_depth = 0; /* No stack usage. */
}
#endif /*USE_AESNI*/
else
{
for ( ;nblocks; nblocks-- )
{
/* Encrypt the IV. */
do_encrypt_aligned (ctx, iv, iv);
/* XOR the input with the IV and store input into IV. */
buf_xor_2dst(outbuf, iv, inbuf, BLOCKSIZE);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
}
if (burn_depth)
_gcry_burn_stack (burn_depth);
}
/* Bulk encryption of complete blocks in CBC mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
void
_gcry_aes_cbc_enc (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks, int cbc_mac)
{
RIJNDAEL_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned char *last_iv;
unsigned int burn_depth = 48 + 2*sizeof(int);
#ifdef USE_AESNI
int use_aesni = ctx->use_aesni;
#endif
#ifdef USE_AESNI
if (use_aesni)
aesni_prepare ();
#endif /*USE_AESNI*/
last_iv = iv;
for ( ;nblocks; nblocks-- )
{
if (0)
;
#ifdef USE_AESNI
else if (use_aesni)
{
/* ~35% speed up on Sandy-Bridge when doing xoring and copying with
SSE registers. */
asm volatile ("movdqu %[iv], %%xmm0\n\t"
"movdqu %[inbuf], %%xmm1\n\t"
"pxor %%xmm0, %%xmm1\n\t"
"movdqu %%xmm1, %[outbuf]\n\t"
: /* No output */
: [iv] "m" (*last_iv),
[inbuf] "m" (*inbuf),
[outbuf] "m" (*outbuf)
: "memory" );
do_aesni_enc (ctx, outbuf, outbuf);
}
#endif /*USE_AESNI*/
else
{
buf_xor(outbuf, inbuf, last_iv, BLOCKSIZE);
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
do_padlock (ctx, 0, outbuf, outbuf);
#endif /*USE_PADLOCK*/
else
do_encrypt (ctx, outbuf, outbuf );
}
last_iv = outbuf;
inbuf += BLOCKSIZE;
if (!cbc_mac)
outbuf += BLOCKSIZE;
}
if (last_iv != iv)
{
if (0)
;
#ifdef USE_AESNI
else if (use_aesni)
asm volatile ("movdqu %[last], %%xmm0\n\t"
"movdqu %%xmm0, %[iv]\n\t"
: /* No output */
: [last] "m" (*last_iv),
[iv] "m" (*iv)
: "memory" );
#endif /*USE_AESNI*/
else
buf_cpy (iv, last_iv, BLOCKSIZE);
}
#ifdef USE_AESNI
if (use_aesni)
{
aesni_cleanup ();
burn_depth = 0; /* No stack usage. */
}
#endif /*USE_AESNI*/
if (burn_depth)
_gcry_burn_stack (burn_depth);
}
/* Bulk encryption of complete blocks in CTR mode. Caller needs to
make sure that CTR is aligned on a 16 byte boundary if AESNI; the
minimum alignment is for an u32. This function is only intended
for the bulk encryption feature of cipher.c. CTR is expected to be
of size BLOCKSIZE. */
void
_gcry_aes_ctr_enc (void *context, unsigned char *ctr,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn_depth = 48 + 2*sizeof(int);
int i;
if (0)
;
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
static const unsigned char be_mask[16] __attribute__ ((aligned (16))) =
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
aesni_prepare ();
asm volatile ("movdqa %[mask], %%xmm6\n\t" /* Preload mask */
"movdqa %[ctr], %%xmm5\n\t" /* Preload CTR */
: /* No output */
: [mask] "m" (*be_mask),
[ctr] "m" (*ctr)
: "memory");
for ( ;nblocks > 3 ; nblocks -= 4 )
{
do_aesni_ctr_4 (ctx, ctr, outbuf, inbuf);
outbuf += 4*BLOCKSIZE;
inbuf += 4*BLOCKSIZE;
}
for ( ;nblocks; nblocks-- )
{
do_aesni_ctr (ctx, ctr, outbuf, inbuf);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
aesni_cleanup ();
aesni_cleanup_2_6 ();
burn_depth = 0; /* No stack usage. */
}
#endif /*USE_AESNI*/
else
{
union { unsigned char x1[16]; u32 x32[4]; } tmp;
for ( ;nblocks; nblocks-- )
{
/* Encrypt the counter. */
do_encrypt_aligned (ctx, tmp.x1, ctr);
/* XOR the input with the encrypted counter and store in output. */
buf_xor(outbuf, tmp.x1, inbuf, BLOCKSIZE);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
/* Increment the counter. */
for (i = BLOCKSIZE; i > 0; i--)
{
ctr[i-1]++;
if (ctr[i-1])
break;
}
}
}
if (burn_depth)
_gcry_burn_stack (burn_depth);
}
/* Decrypt one block. A and B need to be aligned on a 4 byte boundary
and the decryption must have been prepared. A and B may be the
same. */
static void
do_decrypt_aligned (RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#ifdef USE_AMD64_ASM
_gcry_aes_amd64_decrypt_block(ctx->keyschdec, b, a, ctx->rounds);
#elif defined(USE_ARM_ASM)
_gcry_aes_arm_decrypt_block(ctx->keyschdec, b, a, ctx->rounds);
#else
#define rk (ctx->keyschdec)
int rounds = ctx->rounds;
int r;
union
{
u32 tempu32[4]; /* Force correct alignment. */
byte temp[4][4];
} u;
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(a )) ^ *((u32_a_t*)rk[rounds][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(a+ 4)) ^ *((u32_a_t*)rk[rounds][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(a+ 8)) ^ *((u32_a_t*)rk[rounds][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(a+12)) ^ *((u32_a_t*)rk[rounds][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T5[u.temp[0][0]])
^ *((u32_a_t*)T6[u.temp[3][1]])
^ *((u32_a_t*)T7[u.temp[2][2]])
^ *((u32_a_t*)T8[u.temp[1][3]]));
*((u32_a_t*)(b+ 4)) = (*((u32_a_t*)T5[u.temp[1][0]])
^ *((u32_a_t*)T6[u.temp[0][1]])
^ *((u32_a_t*)T7[u.temp[3][2]])
^ *((u32_a_t*)T8[u.temp[2][3]]));
*((u32_a_t*)(b+ 8)) = (*((u32_a_t*)T5[u.temp[2][0]])
^ *((u32_a_t*)T6[u.temp[1][1]])
^ *((u32_a_t*)T7[u.temp[0][2]])
^ *((u32_a_t*)T8[u.temp[3][3]]));
*((u32_a_t*)(b+12)) = (*((u32_a_t*)T5[u.temp[3][0]])
^ *((u32_a_t*)T6[u.temp[2][1]])
^ *((u32_a_t*)T7[u.temp[1][2]])
^ *((u32_a_t*)T8[u.temp[0][3]]));
for (r = rounds-1; r > 1; r--)
{
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[r][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[r][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[r][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[r][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T5[u.temp[0][0]])
^ *((u32_a_t*)T6[u.temp[3][1]])
^ *((u32_a_t*)T7[u.temp[2][2]])
^ *((u32_a_t*)T8[u.temp[1][3]]));
*((u32_a_t*)(b+ 4)) = (*((u32_a_t*)T5[u.temp[1][0]])
^ *((u32_a_t*)T6[u.temp[0][1]])
^ *((u32_a_t*)T7[u.temp[3][2]])
^ *((u32_a_t*)T8[u.temp[2][3]]));
*((u32_a_t*)(b+ 8)) = (*((u32_a_t*)T5[u.temp[2][0]])
^ *((u32_a_t*)T6[u.temp[1][1]])
^ *((u32_a_t*)T7[u.temp[0][2]])
^ *((u32_a_t*)T8[u.temp[3][3]]));
*((u32_a_t*)(b+12)) = (*((u32_a_t*)T5[u.temp[3][0]])
^ *((u32_a_t*)T6[u.temp[2][1]])
^ *((u32_a_t*)T7[u.temp[1][2]])
^ *((u32_a_t*)T8[u.temp[0][3]]));
}
/* Last round is special. */
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[1][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[1][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[1][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[1][3]);
b[ 0] = S5[u.temp[0][0]];
b[ 1] = S5[u.temp[3][1]];
b[ 2] = S5[u.temp[2][2]];
b[ 3] = S5[u.temp[1][3]];
b[ 4] = S5[u.temp[1][0]];
b[ 5] = S5[u.temp[0][1]];
b[ 6] = S5[u.temp[3][2]];
b[ 7] = S5[u.temp[2][3]];
b[ 8] = S5[u.temp[2][0]];
b[ 9] = S5[u.temp[1][1]];
b[10] = S5[u.temp[0][2]];
b[11] = S5[u.temp[3][3]];
b[12] = S5[u.temp[3][0]];
b[13] = S5[u.temp[2][1]];
b[14] = S5[u.temp[1][2]];
b[15] = S5[u.temp[0][3]];
*((u32_a_t*)(b )) ^= *((u32_a_t*)rk[0][0]);
*((u32_a_t*)(b+ 4)) ^= *((u32_a_t*)rk[0][1]);
*((u32_a_t*)(b+ 8)) ^= *((u32_a_t*)rk[0][2]);
*((u32_a_t*)(b+12)) ^= *((u32_a_t*)rk[0][3]);
#undef rk
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
}
/* Decrypt one block. AX and BX may be the same. */
static void
do_decrypt (RIJNDAEL_context *ctx, byte *bx, const byte *ax)
{
#if !defined(USE_AMD64_ASM) && !defined(USE_ARM_ASM)
/* BX and AX are not necessary correctly aligned. Thus we might
need to copy them here. We try to align to a 16 bytes. */
if (((size_t)ax & 0x0f) || ((size_t)bx & 0x0f))
{
union
{
u32 dummy[4];
byte a[16] ATTR_ALIGNED_16;
} a;
union
{
u32 dummy[4];
byte b[16] ATTR_ALIGNED_16;
} b;
buf_cpy (a.a, ax, 16);
do_decrypt_aligned (ctx, b.b, a.a);
buf_cpy (bx, b.b, 16);
}
else
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
{
do_decrypt_aligned (ctx, bx, ax);
}
}
static inline void
check_decryption_preparation (RIJNDAEL_context *ctx)
{
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{ /* Padlock does not need decryption subkeys. */ }
#endif /*USE_PADLOCK*/
else if ( !ctx->decryption_prepared )
{
prepare_decryption ( ctx );
ctx->decryption_prepared = 1;
}
}
static unsigned int
rijndael_decrypt (void *context, byte *b, const byte *a)
{
RIJNDAEL_context *ctx = context;
unsigned int burn_stack;
check_decryption_preparation (ctx);
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
do_padlock (ctx, 1, b, a);
burn_stack = (48 + 2*sizeof(int) /* FIXME */);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
do_aesni_dec (ctx, b, a);
aesni_cleanup ();
burn_stack = 0;
}
#endif /*USE_AESNI*/
else
{
do_decrypt (ctx, b, a);
burn_stack = (56+2*sizeof(int));
}
return burn_stack;
}
/* Bulk decryption of complete blocks in CFB mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
void
_gcry_aes_cfb_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn_depth = 48 + 2*sizeof(int);
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
/* Fixme: Let Padlock do the CFBing. */
for ( ;nblocks; nblocks-- )
{
do_padlock (ctx, 0, iv, iv);
buf_xor_n_copy(outbuf, iv, inbuf, BLOCKSIZE);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
/* CFB decryption can be parallelized */
for ( ;nblocks >= 4; nblocks -= 4)
{
asm volatile
("movdqu (%[iv]), %%xmm1\n\t" /* load input blocks */
"movdqu 0*16(%[inbuf]), %%xmm2\n\t"
"movdqu 1*16(%[inbuf]), %%xmm3\n\t"
"movdqu 2*16(%[inbuf]), %%xmm4\n\t"
"movdqu 3*16(%[inbuf]), %%xmm0\n\t" /* update IV */
"movdqu %%xmm0, (%[iv])\n\t"
: /* No output */
: [inbuf] "r" (inbuf), [iv] "r" (iv)
: "memory");
do_aesni_enc_vec4 (ctx);
asm volatile
("movdqu 0*16(%[inbuf]), %%xmm5\n\t"
"pxor %%xmm5, %%xmm1\n\t"
"movdqu %%xmm1, 0*16(%[outbuf])\n\t"
"movdqu 1*16(%[inbuf]), %%xmm5\n\t"
"pxor %%xmm5, %%xmm2\n\t"
"movdqu %%xmm2, 1*16(%[outbuf])\n\t"
"movdqu 2*16(%[inbuf]), %%xmm5\n\t"
"pxor %%xmm5, %%xmm3\n\t"
"movdqu %%xmm3, 2*16(%[outbuf])\n\t"
"movdqu 3*16(%[inbuf]), %%xmm5\n\t"
"pxor %%xmm5, %%xmm4\n\t"
"movdqu %%xmm4, 3*16(%[outbuf])\n\t"
: /* No output */
: [inbuf] "r" (inbuf),
[outbuf] "r" (outbuf)
: "memory");
outbuf += 4*BLOCKSIZE;
inbuf += 4*BLOCKSIZE;
}
for ( ;nblocks; nblocks-- )
{
do_aesni_cfb (ctx, 1, iv, outbuf, inbuf);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
aesni_cleanup ();
aesni_cleanup_2_6 ();
burn_depth = 0; /* No stack usage. */
}
#endif /*USE_AESNI*/
else
{
for ( ;nblocks; nblocks-- )
{
do_encrypt_aligned (ctx, iv, iv);
buf_xor_n_copy(outbuf, iv, inbuf, BLOCKSIZE);
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
}
if (burn_depth)
_gcry_burn_stack (burn_depth);
}
/* Bulk decryption of complete blocks in CBC mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
void
_gcry_aes_cbc_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn_depth = 48 + 2*sizeof(int) + 4*sizeof (char*);
check_decryption_preparation (ctx);
if (0)
;
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
asm volatile
("movdqu %[iv], %%xmm5\n\t" /* use xmm5 as fast IV storage */
: /* No output */
: [iv] "m" (*iv)
: "memory");
for ( ;nblocks > 3 ; nblocks -= 4 )
{
asm volatile
("movdqu 0*16(%[inbuf]), %%xmm1\n\t" /* load input blocks */
"movdqu 1*16(%[inbuf]), %%xmm2\n\t"
"movdqu 2*16(%[inbuf]), %%xmm3\n\t"
"movdqu 3*16(%[inbuf]), %%xmm4\n\t"
: /* No output */
: [inbuf] "r" (inbuf)
: "memory");
do_aesni_dec_vec4 (ctx);
asm volatile
("pxor %%xmm5, %%xmm1\n\t" /* xor IV with output */
"movdqu 0*16(%[inbuf]), %%xmm5\n\t" /* load new IV */
"movdqu %%xmm1, 0*16(%[outbuf])\n\t"
"pxor %%xmm5, %%xmm2\n\t" /* xor IV with output */
"movdqu 1*16(%[inbuf]), %%xmm5\n\t" /* load new IV */
"movdqu %%xmm2, 1*16(%[outbuf])\n\t"
"pxor %%xmm5, %%xmm3\n\t" /* xor IV with output */
"movdqu 2*16(%[inbuf]), %%xmm5\n\t" /* load new IV */
"movdqu %%xmm3, 2*16(%[outbuf])\n\t"
"pxor %%xmm5, %%xmm4\n\t" /* xor IV with output */
"movdqu 3*16(%[inbuf]), %%xmm5\n\t" /* load new IV */
"movdqu %%xmm4, 3*16(%[outbuf])\n\t"
: /* No output */
: [inbuf] "r" (inbuf),
[outbuf] "r" (outbuf)
: "memory");
outbuf += 4*BLOCKSIZE;
inbuf += 4*BLOCKSIZE;
}
for ( ;nblocks; nblocks-- )
{
asm volatile
("movdqu %[inbuf], %%xmm2\n\t" /* use xmm2 as savebuf */
: /* No output */
: [inbuf] "m" (*inbuf)
: "memory");
/* uses only xmm0 and xmm1 */
do_aesni_dec (ctx, outbuf, inbuf);
asm volatile
("movdqu %[outbuf], %%xmm0\n\t"
"pxor %%xmm5, %%xmm0\n\t" /* xor IV with output */
"movdqu %%xmm0, %[outbuf]\n\t"
"movdqu %%xmm2, %%xmm5\n\t" /* store savebuf as new IV */
: /* No output */
: [outbuf] "m" (*outbuf)
: "memory");
outbuf += BLOCKSIZE;
inbuf += BLOCKSIZE;
}
asm volatile
("movdqu %%xmm5, %[iv]\n\t" /* store IV */
: /* No output */
: [iv] "m" (*iv)
: "memory");
aesni_cleanup ();
aesni_cleanup_2_6 ();
burn_depth = 0; /* No stack usage. */
}
#endif /*USE_AESNI*/
else
{
unsigned char savebuf[BLOCKSIZE];
for ( ;nblocks; nblocks-- )
{
/* INBUF is needed later and it may be identical to OUTBUF, so store
the intermediate result to SAVEBUF. */
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
do_padlock (ctx, 1, savebuf, inbuf);
#endif /*USE_PADLOCK*/
else
do_decrypt (ctx, savebuf, inbuf);
buf_xor_n_copy_2(outbuf, savebuf, iv, inbuf, BLOCKSIZE);
inbuf += BLOCKSIZE;
outbuf += BLOCKSIZE;
}
wipememory(savebuf, sizeof(savebuf));
}
if (burn_depth)
_gcry_burn_stack (burn_depth);
}
/* Run the self-tests for AES 128. Returns NULL on success. */
static const char*
selftest_basic_128 (void)
{
RIJNDAEL_context ctx;
unsigned char scratch[16];
/* The test vectors are from the AES supplied ones; more or less
randomly taken from ecb_tbl.txt (I=42,81,14) */
#if 1
static const unsigned char plaintext_128[16] =
{
0x01,0x4B,0xAF,0x22,0x78,0xA6,0x9D,0x33,
0x1D,0x51,0x80,0x10,0x36,0x43,0xE9,0x9A
};
static const unsigned char key_128[16] =
{
0xE8,0xE9,0xEA,0xEB,0xED,0xEE,0xEF,0xF0,
0xF2,0xF3,0xF4,0xF5,0xF7,0xF8,0xF9,0xFA
};
static const unsigned char ciphertext_128[16] =
{
0x67,0x43,0xC3,0xD1,0x51,0x9A,0xB4,0xF2,
0xCD,0x9A,0x78,0xAB,0x09,0xA5,0x11,0xBD
};
#else
/* Test vectors from fips-197, appendix C. */
# warning debug test vectors in use
static const unsigned char plaintext_128[16] =
{
0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,
0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff
};
static const unsigned char key_128[16] =
{
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f
/* 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, */
/* 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c */
};
static const unsigned char ciphertext_128[16] =
{
0x69,0xc4,0xe0,0xd8,0x6a,0x7b,0x04,0x30,
0xd8,0xcd,0xb7,0x80,0x70,0xb4,0xc5,0x5a
};
#endif
rijndael_setkey (&ctx, key_128, sizeof (key_128));
rijndael_encrypt (&ctx, scratch, plaintext_128);
if (memcmp (scratch, ciphertext_128, sizeof (ciphertext_128)))
return "AES-128 test encryption failed.";
rijndael_decrypt (&ctx, scratch, scratch);
if (memcmp (scratch, plaintext_128, sizeof (plaintext_128)))
return "AES-128 test decryption failed.";
return NULL;
}
/* Run the self-tests for AES 192. Returns NULL on success. */
static const char*
selftest_basic_192 (void)
{
RIJNDAEL_context ctx;
unsigned char scratch[16];
static unsigned char plaintext_192[16] =
{
0x76,0x77,0x74,0x75,0xF1,0xF2,0xF3,0xF4,
0xF8,0xF9,0xE6,0xE7,0x77,0x70,0x71,0x72
};
static unsigned char key_192[24] =
{
0x04,0x05,0x06,0x07,0x09,0x0A,0x0B,0x0C,
0x0E,0x0F,0x10,0x11,0x13,0x14,0x15,0x16,
0x18,0x19,0x1A,0x1B,0x1D,0x1E,0x1F,0x20
};
static const unsigned char ciphertext_192[16] =
{
0x5D,0x1E,0xF2,0x0D,0xCE,0xD6,0xBC,0xBC,
0x12,0x13,0x1A,0xC7,0xC5,0x47,0x88,0xAA
};
rijndael_setkey (&ctx, key_192, sizeof(key_192));
rijndael_encrypt (&ctx, scratch, plaintext_192);
if (memcmp (scratch, ciphertext_192, sizeof (ciphertext_192)))
return "AES-192 test encryption failed.";
rijndael_decrypt (&ctx, scratch, scratch);
if (memcmp (scratch, plaintext_192, sizeof (plaintext_192)))
return "AES-192 test decryption failed.";
return NULL;
}
/* Run the self-tests for AES 256. Returns NULL on success. */
static const char*
selftest_basic_256 (void)
{
RIJNDAEL_context ctx;
unsigned char scratch[16];
static unsigned char plaintext_256[16] =
{
0x06,0x9A,0x00,0x7F,0xC7,0x6A,0x45,0x9F,
0x98,0xBA,0xF9,0x17,0xFE,0xDF,0x95,0x21
};
static unsigned char key_256[32] =
{
0x08,0x09,0x0A,0x0B,0x0D,0x0E,0x0F,0x10,
0x12,0x13,0x14,0x15,0x17,0x18,0x19,0x1A,
0x1C,0x1D,0x1E,0x1F,0x21,0x22,0x23,0x24,
0x26,0x27,0x28,0x29,0x2B,0x2C,0x2D,0x2E
};
static const unsigned char ciphertext_256[16] =
{
0x08,0x0E,0x95,0x17,0xEB,0x16,0x77,0x71,
0x9A,0xCF,0x72,0x80,0x86,0x04,0x0A,0xE3
};
rijndael_setkey (&ctx, key_256, sizeof(key_256));
rijndael_encrypt (&ctx, scratch, plaintext_256);
if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256)))
return "AES-256 test encryption failed.";
rijndael_decrypt (&ctx, scratch, scratch);
if (memcmp (scratch, plaintext_256, sizeof (plaintext_256)))
return "AES-256 test decryption failed.";
return NULL;
}
/* Run the self-tests for AES-CTR-128, tests IV increment of bulk CTR
encryption. Returns NULL on success. */
static const char*
selftest_ctr_128 (void)
{
const int nblocks = 8+1;
const int blocksize = BLOCKSIZE;
const int context_size = sizeof(RIJNDAEL_context);
return _gcry_selftest_helper_ctr("AES", &rijndael_setkey,
&rijndael_encrypt, &_gcry_aes_ctr_enc, nblocks, blocksize,
context_size);
}
/* Run the self-tests for AES-CBC-128, tests bulk CBC decryption.
Returns NULL on success. */
static const char*
selftest_cbc_128 (void)
{
const int nblocks = 8+2;
const int blocksize = BLOCKSIZE;
const int context_size = sizeof(RIJNDAEL_context);
return _gcry_selftest_helper_cbc("AES", &rijndael_setkey,
&rijndael_encrypt, &_gcry_aes_cbc_dec, nblocks, blocksize,
context_size);
}
/* Run the self-tests for AES-CFB-128, tests bulk CFB decryption.
Returns NULL on success. */
static const char*
selftest_cfb_128 (void)
{
const int nblocks = 8+2;
const int blocksize = BLOCKSIZE;
const int context_size = sizeof(RIJNDAEL_context);
return _gcry_selftest_helper_cfb("AES", &rijndael_setkey,
&rijndael_encrypt, &_gcry_aes_cfb_dec, nblocks, blocksize,
context_size);
}
/* Run all the self-tests and return NULL on success. This function
is used for the on-the-fly self-tests. */
static const char *
selftest (void)
{
const char *r;
if ( (r = selftest_basic_128 ())
|| (r = selftest_basic_192 ())
|| (r = selftest_basic_256 ()) )
return r;
if ( (r = selftest_ctr_128 ()) )
return r;
if ( (r = selftest_cbc_128 ()) )
return r;
if ( (r = selftest_cfb_128 ()) )
return r;
return r;
}
/* SP800-38a.pdf for AES-128. */
static const char *
selftest_fips_128_38a (int requested_mode)
{
static const struct tv
{
int mode;
const unsigned char key[16];
const unsigned char iv[16];
struct
{
const unsigned char input[16];
const unsigned char output[16];
} data[4];
} tv[2] =
{
{
GCRY_CIPHER_MODE_CFB, /* F.3.13, CFB128-AES128 */
{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{
{ { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a },
{ 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a } },
{ { 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51 },
{ 0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b } },
{ { 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef },
{ 0x26, 0x75, 0x1f, 0x67, 0xa3, 0xcb, 0xb1, 0x40,
0xb1, 0x80, 0x8c, 0xf1, 0x87, 0xa4, 0xf4, 0xdf } },
{ { 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 },
{ 0xc0, 0x4b, 0x05, 0x35, 0x7c, 0x5d, 0x1c, 0x0e,
0xea, 0xc4, 0xc6, 0x6f, 0x9f, 0xf7, 0xf2, 0xe6 } }
}
},
{
GCRY_CIPHER_MODE_OFB,
{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{
{ { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a },
{ 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a } },
{ { 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51 },
{ 0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25 } },
{ { 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef },
{ 0x97, 0x40, 0x05, 0x1e, 0x9c, 0x5f, 0xec, 0xf6,
0x43, 0x44, 0xf7, 0xa8, 0x22, 0x60, 0xed, 0xcc } },
{ { 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 },
{ 0x30, 0x4c, 0x65, 0x28, 0xf6, 0x59, 0xc7, 0x78,
0x66, 0xa5, 0x10, 0xd9, 0xc1, 0xd6, 0xae, 0x5e } },
}
}
};
unsigned char scratch[16];
gpg_error_t err;
int tvi, idx;
gcry_cipher_hd_t hdenc = NULL;
gcry_cipher_hd_t hddec = NULL;
#define Fail(a) do { \
_gcry_cipher_close (hdenc); \
_gcry_cipher_close (hddec); \
return a; \
} while (0)
gcry_assert (sizeof tv[0].data[0].input == sizeof scratch);
gcry_assert (sizeof tv[0].data[0].output == sizeof scratch);
for (tvi=0; tvi < DIM (tv); tvi++)
if (tv[tvi].mode == requested_mode)
break;
if (tvi == DIM (tv))
Fail ("no test data for this mode");
err = _gcry_cipher_open (&hdenc, GCRY_CIPHER_AES, tv[tvi].mode, 0);
if (err)
Fail ("open");
err = _gcry_cipher_open (&hddec, GCRY_CIPHER_AES, tv[tvi].mode, 0);
if (err)
Fail ("open");
err = _gcry_cipher_setkey (hdenc, tv[tvi].key, sizeof tv[tvi].key);
if (!err)
err = _gcry_cipher_setkey (hddec, tv[tvi].key, sizeof tv[tvi].key);
if (err)
Fail ("set key");
err = _gcry_cipher_setiv (hdenc, tv[tvi].iv, sizeof tv[tvi].iv);
if (!err)
err = _gcry_cipher_setiv (hddec, tv[tvi].iv, sizeof tv[tvi].iv);
if (err)
Fail ("set IV");
for (idx=0; idx < DIM (tv[tvi].data); idx++)
{
err = _gcry_cipher_encrypt (hdenc, scratch, sizeof scratch,
tv[tvi].data[idx].input,
sizeof tv[tvi].data[idx].input);
if (err)
Fail ("encrypt command");
if (memcmp (scratch, tv[tvi].data[idx].output, sizeof scratch))
Fail ("encrypt mismatch");
err = _gcry_cipher_decrypt (hddec, scratch, sizeof scratch,
tv[tvi].data[idx].output,
sizeof tv[tvi].data[idx].output);
if (err)
Fail ("decrypt command");
if (memcmp (scratch, tv[tvi].data[idx].input, sizeof scratch))
Fail ("decrypt mismatch");
}
#undef Fail
_gcry_cipher_close (hdenc);
_gcry_cipher_close (hddec);
return NULL;
}
/* Complete selftest for AES-128 with all modes and driver code. */
static gpg_err_code_t
selftest_fips_128 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "low-level";
errtxt = selftest_basic_128 ();
if (errtxt)
goto failed;
if (extended)
{
what = "cfb";
errtxt = selftest_fips_128_38a (GCRY_CIPHER_MODE_CFB);
if (errtxt)
goto failed;
what = "ofb";
errtxt = selftest_fips_128_38a (GCRY_CIPHER_MODE_OFB);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("cipher", GCRY_CIPHER_AES128, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Complete selftest for AES-192. */
static gpg_err_code_t
selftest_fips_192 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
(void)extended; /* No extended tests available. */
what = "low-level";
errtxt = selftest_basic_192 ();
if (errtxt)
goto failed;
return 0; /* Succeeded. */
failed:
if (report)
report ("cipher", GCRY_CIPHER_AES192, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Complete selftest for AES-256. */
static gpg_err_code_t
selftest_fips_256 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
(void)extended; /* No extended tests available. */
what = "low-level";
errtxt = selftest_basic_256 ();
if (errtxt)
goto failed;
return 0; /* Succeeded. */
failed:
if (report)
report ("cipher", GCRY_CIPHER_AES256, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Run a full self-test for ALGO and return 0 on success. */
static gpg_err_code_t
run_selftests (int algo, int extended, selftest_report_func_t report)
{
gpg_err_code_t ec;
switch (algo)
{
case GCRY_CIPHER_AES128:
ec = selftest_fips_128 (extended, report);
break;
case GCRY_CIPHER_AES192:
ec = selftest_fips_192 (extended, report);
break;
case GCRY_CIPHER_AES256:
ec = selftest_fips_256 (extended, report);
break;
default:
ec = GPG_ERR_CIPHER_ALGO;
break;
}
return ec;
}
static const char *rijndael_names[] =
{
"RIJNDAEL",
"AES128",
"AES-128",
NULL
};
static gcry_cipher_oid_spec_t rijndael_oids[] =
{
{ "2.16.840.1.101.3.4.1.1", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.2", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.3", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.4", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes =
{
GCRY_CIPHER_AES, {0, 1},
"AES", rijndael_names, rijndael_oids, 16, 128,
sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt,
NULL, NULL,
run_selftests
};
static const char *rijndael192_names[] =
{
"RIJNDAEL192",
"AES-192",
NULL
};
static gcry_cipher_oid_spec_t rijndael192_oids[] =
{
{ "2.16.840.1.101.3.4.1.21", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.22", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.23", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.24", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes192 =
{
GCRY_CIPHER_AES192, {0, 1},
"AES192", rijndael192_names, rijndael192_oids, 16, 192,
sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt,
NULL, NULL,
run_selftests
};
static const char *rijndael256_names[] =
{
"RIJNDAEL256",
"AES-256",
NULL
};
static gcry_cipher_oid_spec_t rijndael256_oids[] =
{
{ "2.16.840.1.101.3.4.1.41", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.42", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.43", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.44", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes256 =
{
GCRY_CIPHER_AES256, {0, 1},
"AES256", rijndael256_names, rijndael256_oids, 16, 256,
sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt,
NULL, NULL,
run_selftests
};