/* mpi-mpow.c - MPI functions * Copyright (C) 1998, 1999, 2001, 2002, 2003 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include "mpi-internal.h" #include "longlong.h" #include "g10lib.h" /* Barrett is slower than the classical way. It can be tweaked by * using partial multiplications */ /*#define USE_BARRETT*/ #ifdef USE_BARRETT static void barrett_mulm( gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m, gcry_mpi_t y, int k, gcry_mpi_t r1, gcry_mpi_t r2 ); static gcry_mpi_t init_barrett( gcry_mpi_t m, int *k, gcry_mpi_t *r1, gcry_mpi_t *r2 ); static int calc_barrett( gcry_mpi_t r, gcry_mpi_t x, gcry_mpi_t m, gcry_mpi_t y, int k, gcry_mpi_t r1, gcry_mpi_t r2 ); #else #define barrett_mulm( w, u, v, m, y, k, r1, r2 ) _gcry_mpi_mulm( (w), (u), (v), (m) ) #endif static int build_index( gcry_mpi_t *exparray, int k, int i, int t ) { int j, bitno; int idx = 0; bitno = t-i; for(j=k-1; j >= 0; j-- ) { idx <<= 1; if( mpi_test_bit( exparray[j], bitno ) ) idx |= 1; } /*log_debug("t=%d i=%d idx=%d\n", t, i, idx );*/ return idx; } /**************** * RES = (BASE[0] ^ EXP[0]) * (BASE[1] ^ EXP[1]) * ... * mod M */ void _gcry_mpi_mulpowm( gcry_mpi_t res, gcry_mpi_t *basearray, gcry_mpi_t *exparray, gcry_mpi_t m) { int k; /* number of elements */ int t; /* bit size of largest exponent */ int i, j, idx; gcry_mpi_t *G; /* table with precomputed values of size 2^k */ gcry_mpi_t tmp; #ifdef USE_BARRETT gcry_mpi_t barrett_y, barrett_r1, barrett_r2; int barrett_k; #endif for(k=0; basearray[k]; k++ ) ; gcry_assert(k); for(t=0, i=0; (tmp=exparray[i]); i++ ) { /*log_mpidump("exp: ", tmp );*/ j = mpi_get_nbits(tmp); if( j > t ) t = j; } /*log_mpidump("mod: ", m );*/ gcry_assert (i==k); gcry_assert (t); gcry_assert (k < 10); G = xcalloc(1 << k, sizeof *G); #ifdef USE_BARRETT barrett_y = init_barrett( m, &barrett_k, &barrett_r1, &barrett_r2 ); #endif /* and calculate */ tmp = mpi_alloc( mpi_get_nlimbs(m)+1 ); mpi_set_ui( res, 1 ); for(i = 1; i <= t; i++ ) { barrett_mulm(tmp, res, res, m, barrett_y, barrett_k, barrett_r1, barrett_r2 ); idx = build_index( exparray, k, i, t ); gcry_assert (idx >= 0 && idx < (1< 3 ? k-3:0; mpi_normalize( x ); if( mpi_get_nlimbs(x) > 2*k ) return 1; /* can't do it */ /* 1. q1 = floor( x / b^k-1) * q2 = q1 * y * q3 = floor( q2 / b^k+1 ) * Actually, we don't need qx, we can work direct on r2 */ mpi_set( r2, x ); mpi_rshift_limbs( r2, k-1 ); mpi_mul( r2, r2, y ); mpi_rshift_limbs( r2, k+1 ); /* 2. r1 = x mod b^k+1 * r2 = q3 * m mod b^k+1 * r = r1 - r2 * 3. if r < 0 then r = r + b^k+1 */ mpi_set( r1, x ); if( r1->nlimbs > k+1 ) /* quick modulo operation */ r1->nlimbs = k+1; mpi_mul( r2, r2, m ); if( r2->nlimbs > k+1 ) /* quick modulo operation */ r2->nlimbs = k+1; mpi_sub( r, r1, r2 ); if( mpi_has_sign (r) ) { gcry_mpi_t tmp; tmp = mpi_alloc( k + 2 ); mpi_set_ui( tmp, 1 ); mpi_lshift_limbs( tmp, k+1 ); mpi_add( r, r, tmp ); mpi_free(tmp); } /* 4. while r >= m do r = r - m */ while( mpi_cmp( r, m ) >= 0 ) mpi_sub( r, r, m ); return 0; } #endif /* USE_BARRETT */