/* mpi-inv.c - MPI functions * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include "mpi-internal.h" #include "g10lib.h" /**************** * Calculate the multiplicative inverse X of A mod N * That is: Find the solution x for * 1 = (a*x) mod n */ int gcry_mpi_invm( gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t n ) { #if 0 gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3; gcry_mpi_t ta, tb, tc; u = mpi_copy(a); v = mpi_copy(n); u1 = mpi_alloc_set_ui(1); u2 = mpi_alloc_set_ui(0); u3 = mpi_copy(u); v1 = mpi_alloc_set_ui(0); v2 = mpi_alloc_set_ui(1); v3 = mpi_copy(v); q = mpi_alloc( mpi_get_nlimbs(u)+1 ); t1 = mpi_alloc( mpi_get_nlimbs(u)+1 ); t2 = mpi_alloc( mpi_get_nlimbs(u)+1 ); t3 = mpi_alloc( mpi_get_nlimbs(u)+1 ); while( mpi_cmp_ui( v3, 0 ) ) { mpi_fdiv_q( q, u3, v3 ); mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q); mpi_sub(t1, u1, t1); mpi_sub(t2, u2, t2); mpi_sub(t3, u3, t3); mpi_set(u1, v1); mpi_set(u2, v2); mpi_set(u3, v3); mpi_set(v1, t1); mpi_set(v2, t2); mpi_set(v3, t3); } /* log_debug("result:\n"); log_mpidump("q =", q ); log_mpidump("u1=", u1); log_mpidump("u2=", u2); log_mpidump("u3=", u3); log_mpidump("v1=", v1); log_mpidump("v2=", v2); */ mpi_set(x, u1); mpi_free(u1); mpi_free(u2); mpi_free(u3); mpi_free(v1); mpi_free(v2); mpi_free(v3); mpi_free(q); mpi_free(t1); mpi_free(t2); mpi_free(t3); mpi_free(u); mpi_free(v); #elif 0 /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) * modified according to Michael Penk's solution for Exercise 35 */ /* FIXME: we can simplify this in most cases (see Knuth) */ gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3; unsigned k; int sign; u = mpi_copy(a); v = mpi_copy(n); for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) { mpi_rshift(u, u, 1); mpi_rshift(v, v, 1); } u1 = mpi_alloc_set_ui(1); u2 = mpi_alloc_set_ui(0); u3 = mpi_copy(u); v1 = mpi_copy(v); /* !-- used as const 1 */ v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u ); v3 = mpi_copy(v); if ( mpi_test_bit(u, 0) ) { /* u is odd */ t1 = mpi_alloc_set_ui(0); t2 = mpi_alloc_set_ui(1); t2->sign = 1; t3 = mpi_copy(v); t3->sign = !t3->sign; goto Y4; } else { t1 = mpi_alloc_set_ui(1); t2 = mpi_alloc_set_ui(0); t3 = mpi_copy(u); } do { do { if ( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */ mpi_add(t1, t1, v); mpi_sub(t2, t2, u); } mpi_rshift(t1, t1, 1); mpi_rshift(t2, t2, 1); mpi_rshift(t3, t3, 1); Y4: ; } while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */ if ( !t3->sign ) { mpi_set(u1, t1); mpi_set(u2, t2); mpi_set(u3, t3); } else { mpi_sub(v1, v, t1); sign = u->sign; u->sign = !u->sign; mpi_sub(v2, u, t2); u->sign = sign; sign = t3->sign; t3->sign = !t3->sign; mpi_set(v3, t3); t3->sign = sign; } mpi_sub(t1, u1, v1); mpi_sub(t2, u2, v2); mpi_sub(t3, u3, v3); if ( t1->sign ) { mpi_add(t1, t1, v); mpi_sub(t2, t2, u); } } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */ /* mpi_lshift( u3, k ); */ mpi_set(x, u1); mpi_free(u1); mpi_free(u2); mpi_free(u3); mpi_free(v1); mpi_free(v2); mpi_free(v3); mpi_free(t1); mpi_free(t2); mpi_free(t3); #else /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) * modified according to Michael Penk's solution for Exercise 35 * with further enhancement */ gcry_mpi_t u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3; unsigned k; int sign; int odd ; u = mpi_copy(a); v = mpi_copy(n); for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) { mpi_rshift(u, u, 1); mpi_rshift(v, v, 1); } odd = mpi_test_bit(v,0); u1 = mpi_alloc_set_ui(1); if ( !odd ) u2 = mpi_alloc_set_ui(0); u3 = mpi_copy(u); v1 = mpi_copy(v); if ( !odd ) { v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u ); /* U is used as const 1 */ } v3 = mpi_copy(v); if ( mpi_test_bit(u, 0) ) { /* u is odd */ t1 = mpi_alloc_set_ui(0); if ( !odd ) { t2 = mpi_alloc_set_ui(1); t2->sign = 1; } t3 = mpi_copy(v); t3->sign = !t3->sign; goto Y4; } else { t1 = mpi_alloc_set_ui(1); if ( !odd ) t2 = mpi_alloc_set_ui(0); t3 = mpi_copy(u); } do { do { if ( !odd ) { if ( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */ mpi_add(t1, t1, v); mpi_sub(t2, t2, u); } mpi_rshift(t1, t1, 1); mpi_rshift(t2, t2, 1); mpi_rshift(t3, t3, 1); } else { if ( mpi_test_bit(t1, 0) ) mpi_add(t1, t1, v); mpi_rshift(t1, t1, 1); mpi_rshift(t3, t3, 1); } Y4: ; } while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */ if ( !t3->sign ) { mpi_set(u1, t1); if ( !odd ) mpi_set(u2, t2); mpi_set(u3, t3); } else { mpi_sub(v1, v, t1); sign = u->sign; u->sign = !u->sign; if ( !odd ) mpi_sub(v2, u, t2); u->sign = sign; sign = t3->sign; t3->sign = !t3->sign; mpi_set(v3, t3); t3->sign = sign; } mpi_sub(t1, u1, v1); if ( !odd ) mpi_sub(t2, u2, v2); mpi_sub(t3, u3, v3); if ( t1->sign ) { mpi_add(t1, t1, v); if ( !odd ) mpi_sub(t2, t2, u); } } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */ /* mpi_lshift( u3, k ); */ mpi_set(x, u1); mpi_free(u1); mpi_free(v1); mpi_free(t1); if ( !odd ) { mpi_free(u2); mpi_free(v2); mpi_free(t2); } mpi_free(u3); mpi_free(v3); mpi_free(t3); mpi_free(u); mpi_free(v); #endif return 1; }