/* mpih-mul.c - MPI helper functions * Copyright (C) 1994, 1996, 1998, 1999, 2000, * 2001, 2002 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. */ #include #include #include #include #include "mpi-internal.h" #include "longlong.h" #include "g10lib.h" #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ do { \ if ( (size) < KARATSUBA_THRESHOLD ) \ mul_n_basecase (prodp, up, vp, size); \ else \ mul_n (prodp, up, vp, size, tspace); \ } while (0); #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ do { \ if ((size) < KARATSUBA_THRESHOLD) \ _gcry_mpih_sqr_n_basecase (prodp, up, size); \ else \ _gcry_mpih_sqr_n (prodp, up, size, tspace); \ } while (0); /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are * always stored. Return the most significant limb. * * Argument constraints: * 1. PRODP != UP and PRODP != VP, i.e. the destination * must be distinct from the multiplier and the multiplicand. * * * Handle simple cases with traditional multiplication. * * This is the most critical code of multiplication. All multiplies rely * on this, both small and huge. Small ones arrive here immediately. Huge * ones arrive here as this is the base case for Karatsuba's recursive * algorithm below. */ static mpi_limb_t mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) { mpi_size_t i; mpi_limb_t cy; mpi_limb_t v_limb; /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = vp[0]; if ( v_limb <= 1 ) { if ( v_limb == 1 ) MPN_COPY( prodp, up, size ); else MPN_ZERO( prodp, size ); cy = 0; } else cy = _gcry_mpih_mul_1( prodp, up, size, v_limb ); prodp[size] = cy; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for ( i = 1; i < size; i++ ) { v_limb = vp[i]; if ( v_limb <= 1 ) { cy = 0; if ( v_limb == 1 ) cy = _gcry_mpih_add_n(prodp, prodp, up, size); } else cy = _gcry_mpih_addmul_1(prodp, up, size, v_limb); prodp[size] = cy; prodp++; } return cy; } static void mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size, mpi_ptr_t tspace ) { if ( size & 1 ) { /* The size is odd, and the code below doesn't handle that. * Multiply the least significant (size - 1) limbs with a recursive * call, and handle the most significant limb of S1 and S2 * separately. * A slightly faster way to do this would be to make the Karatsuba * code below behave as if the size were even, and let it check for * odd size in the end. I.e., in essence move this code to the end. * Doing so would save us a recursive call, and potentially make the * stack grow a lot less. */ mpi_size_t esize = size - 1; /* even size */ mpi_limb_t cy_limb; MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace ); cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, vp[esize] ); prodp[esize + esize] = cy_limb; cy_limb = _gcry_mpih_addmul_1( prodp + esize, vp, size, up[esize] ); prodp[esize + size] = cy_limb; } else { /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. * * Split U in two pieces, U1 and U0, such that * U = U0 + U1*(B**n), * and V in V1 and V0, such that * V = V0 + V1*(B**n). * * UV is then computed recursively using the identity * * 2n n n n * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V * 1 1 1 0 0 1 0 0 * * Where B = 2**BITS_PER_MP_LIMB. */ mpi_size_t hsize = size >> 1; mpi_limb_t cy; int negflg; /* Product H. ________________ ________________ * |_____U1 x V1____||____U0 x V0_____| * Put result in upper part of PROD and pass low part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace); /* Product M. ________________ * |_(U1-U0)(V0-V1)_| */ if ( _gcry_mpih_cmp(up + hsize, up, hsize) >= 0 ) { _gcry_mpih_sub_n(prodp, up + hsize, up, hsize); negflg = 0; } else { _gcry_mpih_sub_n(prodp, up, up + hsize, hsize); negflg = 1; } if ( _gcry_mpih_cmp(vp + hsize, vp, hsize) >= 0 ) { _gcry_mpih_sub_n(prodp + hsize, vp + hsize, vp, hsize); negflg ^= 1; } else { _gcry_mpih_sub_n(prodp + hsize, vp, vp + hsize, hsize); /* No change of NEGFLG. */ } /* Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size); /* Add/copy product H. */ MPN_COPY (prodp + hsize, prodp + size, hsize); cy = _gcry_mpih_add_n( prodp + size, prodp + size, prodp + size + hsize, hsize); /* Add product M (if NEGFLG M is a negative number) */ if(negflg) cy -= _gcry_mpih_sub_n(prodp + hsize, prodp + hsize, tspace, size); else cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size); /* Product L. ________________ ________________ * |________________||____U0 x V0_____| * Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); /* Add/copy Product L (twice) */ cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size); if ( cy ) _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy); MPN_COPY(prodp, tspace, hsize); cy = _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize); if ( cy ) _gcry_mpih_add_1(prodp + size, prodp + size, size, 1); } } void _gcry_mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size ) { mpi_size_t i; mpi_limb_t cy_limb; mpi_limb_t v_limb; /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = up[0]; if ( v_limb <= 1 ) { if ( v_limb == 1 ) MPN_COPY( prodp, up, size ); else MPN_ZERO(prodp, size); cy_limb = 0; } else cy_limb = _gcry_mpih_mul_1( prodp, up, size, v_limb ); prodp[size] = cy_limb; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for ( i=1; i < size; i++) { v_limb = up[i]; if ( v_limb <= 1 ) { cy_limb = 0; if ( v_limb == 1 ) cy_limb = _gcry_mpih_add_n(prodp, prodp, up, size); } else cy_limb = _gcry_mpih_addmul_1(prodp, up, size, v_limb); prodp[size] = cy_limb; prodp++; } } void _gcry_mpih_sqr_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) { if ( size & 1 ) { /* The size is odd, and the code below doesn't handle that. * Multiply the least significant (size - 1) limbs with a recursive * call, and handle the most significant limb of S1 and S2 * separately. * A slightly faster way to do this would be to make the Karatsuba * code below behave as if the size were even, and let it check for * odd size in the end. I.e., in essence move this code to the end. * Doing so would save us a recursive call, and potentially make the * stack grow a lot less. */ mpi_size_t esize = size - 1; /* even size */ mpi_limb_t cy_limb; MPN_SQR_N_RECURSE( prodp, up, esize, tspace ); cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, up[esize] ); prodp[esize + esize] = cy_limb; cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, size, up[esize] ); prodp[esize + size] = cy_limb; } else { mpi_size_t hsize = size >> 1; mpi_limb_t cy; /* Product H. ________________ ________________ * |_____U1 x U1____||____U0 x U0_____| * Put result in upper part of PROD and pass low part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); /* Product M. ________________ * |_(U1-U0)(U0-U1)_| */ if ( _gcry_mpih_cmp( up + hsize, up, hsize) >= 0 ) _gcry_mpih_sub_n( prodp, up + hsize, up, hsize); else _gcry_mpih_sub_n (prodp, up, up + hsize, hsize); /* Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); /* Add/copy product H */ MPN_COPY(prodp + hsize, prodp + size, hsize); cy = _gcry_mpih_add_n(prodp + size, prodp + size, prodp + size + hsize, hsize); /* Add product M (if NEGFLG M is a negative number). */ cy -= _gcry_mpih_sub_n (prodp + hsize, prodp + hsize, tspace, size); /* Product L. ________________ ________________ * |________________||____U0 x U0_____| * Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); /* Add/copy Product L (twice). */ cy += _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace, size); if ( cy ) _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy); MPN_COPY(prodp, tspace, hsize); cy = _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); if ( cy ) _gcry_mpih_add_1 (prodp + size, prodp + size, size, 1); } } /* This should be made into an inline function in gmp.h. */ void _gcry_mpih_mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) { int secure; if ( up == vp ) { if ( size < KARATSUBA_THRESHOLD ) _gcry_mpih_sqr_n_basecase( prodp, up, size ); else { mpi_ptr_t tspace; secure = gcry_is_secure( up ); tspace = mpi_alloc_limb_space( 2 * size, secure ); _gcry_mpih_sqr_n( prodp, up, size, tspace ); _gcry_mpi_free_limb_space (tspace, 2 * size ); } } else { if ( size < KARATSUBA_THRESHOLD ) mul_n_basecase( prodp, up, vp, size ); else { mpi_ptr_t tspace; secure = gcry_is_secure( up ) || gcry_is_secure( vp ); tspace = mpi_alloc_limb_space( 2 * size, secure ); mul_n (prodp, up, vp, size, tspace); _gcry_mpi_free_limb_space (tspace, 2 * size ); } } } void _gcry_mpih_mul_karatsuba_case( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, mpi_ptr_t vp, mpi_size_t vsize, struct karatsuba_ctx *ctx ) { mpi_limb_t cy; if ( !ctx->tspace || ctx->tspace_size < vsize ) { if ( ctx->tspace ) _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); ctx->tspace_nlimbs = 2 * vsize; ctx->tspace = mpi_alloc_limb_space( 2 * vsize, (gcry_is_secure( up ) || gcry_is_secure( vp )) ); ctx->tspace_size = vsize; } MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace ); prodp += vsize; up += vsize; usize -= vsize; if ( usize >= vsize ) { if ( !ctx->tp || ctx->tp_size < vsize ) { if ( ctx->tp ) _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); ctx->tp_nlimbs = 2 * vsize; ctx->tp = mpi_alloc_limb_space( 2 * vsize, gcry_is_secure( up ) || gcry_is_secure( vp ) ); ctx->tp_size = vsize; } do { MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace ); cy = _gcry_mpih_add_n( prodp, prodp, ctx->tp, vsize ); _gcry_mpih_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy ); prodp += vsize; up += vsize; usize -= vsize; } while( usize >= vsize ); } if ( usize ) { if ( usize < KARATSUBA_THRESHOLD ) { _gcry_mpih_mul( ctx->tspace, vp, vsize, up, usize ); } else { if ( !ctx->next ) { ctx->next = gcry_xcalloc( 1, sizeof *ctx ); } _gcry_mpih_mul_karatsuba_case( ctx->tspace, vp, vsize, up, usize, ctx->next ); } cy = _gcry_mpih_add_n( prodp, prodp, ctx->tspace, vsize); _gcry_mpih_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy ); } } void _gcry_mpih_release_karatsuba_ctx( struct karatsuba_ctx *ctx ) { struct karatsuba_ctx *ctx2; if ( ctx->tp ) _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); if ( ctx->tspace ) _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); for ( ctx=ctx->next; ctx; ctx = ctx2 ) { ctx2 = ctx->next; if ( ctx->tp ) _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); if ( ctx->tspace ) _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); gcry_free( ctx ); } } /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) * and v (pointed to by VP, with VSIZE limbs), and store the result at * PRODP. USIZE + VSIZE limbs are always stored, but if the input * operands are normalized. Return the most significant limb of the * result. * * NOTE: The space pointed to by PRODP is overwritten before finished * with U and V, so overlap is an error. * * Argument constraints: * 1. USIZE >= VSIZE. * 2. PRODP != UP and PRODP != VP, i.e. the destination * must be distinct from the multiplier and the multiplicand. */ mpi_limb_t _gcry_mpih_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, mpi_ptr_t vp, mpi_size_t vsize) { mpi_ptr_t prod_endp = prodp + usize + vsize - 1; mpi_limb_t cy; struct karatsuba_ctx ctx; if ( vsize < KARATSUBA_THRESHOLD ) { mpi_size_t i; mpi_limb_t v_limb; if ( !vsize ) return 0; /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = vp[0]; if ( v_limb <= 1 ) { if ( v_limb == 1 ) MPN_COPY( prodp, up, usize ); else MPN_ZERO( prodp, usize ); cy = 0; } else cy = _gcry_mpih_mul_1( prodp, up, usize, v_limb ); prodp[usize] = cy; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for ( i = 1; i < vsize; i++ ) { v_limb = vp[i]; if ( v_limb <= 1 ) { cy = 0; if ( v_limb == 1 ) cy = _gcry_mpih_add_n(prodp, prodp, up, usize); } else cy = _gcry_mpih_addmul_1(prodp, up, usize, v_limb); prodp[usize] = cy; prodp++; } return cy; } memset( &ctx, 0, sizeof ctx ); _gcry_mpih_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx ); _gcry_mpih_release_karatsuba_ctx( &ctx ); return *prod_endp; }