/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include "glibconfig.h" #include #ifdef HAVE_UNISTD_H #include #endif /* HAVE_UNISTD_H */ #include #ifndef G_OS_WIN32 #include #endif /* G_OS_WIN32 */ #ifdef G_OS_WIN32 #include #endif /* G_OS_WIN32 */ #include "gtimer.h" #include "gmem.h" #include "gstrfuncs.h" #include "gtestutils.h" #include "gthread.h" /** * SECTION: timers * @title: Timers * @short_description: keep track of elapsed time * * #GTimer records a start time, and counts microseconds elapsed since * that time. This is done somewhat differently on different platforms, * and can be tricky to get exactly right, so #GTimer provides a * portable/convenient interface. * * * #GTimer uses a higher-quality clock when thread support is available. * Therefore, calling g_thread_init() while timers are running may lead to * unreliable results. It is best to call g_thread_init() before starting any * timers, if you are using threads at all. * **/ #define G_NSEC_PER_SEC 1000000000 #define GETTIME(v) (v = g_thread_gettime ()) /** * GTimer: * * Opaque datatype that records a start time. **/ struct _GTimer { guint64 start; guint64 end; guint active : 1; }; /** * g_timer_new: * @Returns: a new #GTimer. * * Creates a new timer, and starts timing (i.e. g_timer_start() is * implicitly called for you). **/ GTimer* g_timer_new (void) { GTimer *timer; timer = g_new (GTimer, 1); timer->active = TRUE; GETTIME (timer->start); return timer; } /** * g_timer_destroy: * @timer: a #GTimer to destroy. * * Destroys a timer, freeing associated resources. **/ void g_timer_destroy (GTimer *timer) { g_return_if_fail (timer != NULL); g_free (timer); } /** * g_timer_start: * @timer: a #GTimer. * * Marks a start time, so that future calls to g_timer_elapsed() will * report the time since g_timer_start() was called. g_timer_new() * automatically marks the start time, so no need to call * g_timer_start() immediately after creating the timer. **/ void g_timer_start (GTimer *timer) { g_return_if_fail (timer != NULL); timer->active = TRUE; GETTIME (timer->start); } /** * g_timer_stop: * @timer: a #GTimer. * * Marks an end time, so calls to g_timer_elapsed() will return the * difference between this end time and the start time. **/ void g_timer_stop (GTimer *timer) { g_return_if_fail (timer != NULL); timer->active = FALSE; GETTIME (timer->end); } /** * g_timer_reset: * @timer: a #GTimer. * * This function is useless; it's fine to call g_timer_start() on an * already-started timer to reset the start time, so g_timer_reset() * serves no purpose. **/ void g_timer_reset (GTimer *timer) { g_return_if_fail (timer != NULL); GETTIME (timer->start); } /** * g_timer_continue: * @timer: a #GTimer. * * Resumes a timer that has previously been stopped with * g_timer_stop(). g_timer_stop() must be called before using this * function. * * Since: 2.4 **/ void g_timer_continue (GTimer *timer) { guint64 elapsed; g_return_if_fail (timer != NULL); g_return_if_fail (timer->active == FALSE); /* Get elapsed time and reset timer start time * to the current time minus the previously * elapsed interval. */ elapsed = timer->end - timer->start; GETTIME (timer->start); timer->start -= elapsed; timer->active = TRUE; } /** * g_timer_elapsed: * @timer: a #GTimer. * @microseconds: return location for the fractional part of seconds * elapsed, in microseconds (that is, the total number * of microseconds elapsed, modulo 1000000), or %NULL * @Returns: seconds elapsed as a floating point value, including any * fractional part. * * If @timer has been started but not stopped, obtains the time since * the timer was started. If @timer has been stopped, obtains the * elapsed time between the time it was started and the time it was * stopped. The return value is the number of seconds elapsed, * including any fractional part. The @microseconds out parameter is * essentially useless. * * * Calling initialization functions, in particular g_thread_init(), while a * timer is running will cause invalid return values from this function. * **/ gdouble g_timer_elapsed (GTimer *timer, gulong *microseconds) { gdouble total; gint64 elapsed; g_return_val_if_fail (timer != NULL, 0); if (timer->active) GETTIME (timer->end); elapsed = timer->end - timer->start; total = elapsed / 1e9; if (microseconds) *microseconds = (elapsed / 1000) % 1000000; return total; } void g_usleep (gulong microseconds) { #ifdef G_OS_WIN32 Sleep (microseconds / 1000); #else /* !G_OS_WIN32 */ # ifdef HAVE_NANOSLEEP struct timespec request, remaining; request.tv_sec = microseconds / G_USEC_PER_SEC; request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC); while (nanosleep (&request, &remaining) == -1 && errno == EINTR) request = remaining; # else /* !HAVE_NANOSLEEP */ # ifdef HAVE_NSLEEP /* on AIX, nsleep is analogous to nanosleep */ struct timespec request, remaining; request.tv_sec = microseconds / G_USEC_PER_SEC; request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC); while (nsleep (&request, &remaining) == -1 && errno == EINTR) request = remaining; # else /* !HAVE_NSLEEP */ if (g_thread_supported ()) { static GStaticMutex mutex = G_STATIC_MUTEX_INIT; static GCond* cond = NULL; GTimeVal end_time; g_get_current_time (&end_time); if (microseconds > G_MAXLONG) { microseconds -= G_MAXLONG; g_time_val_add (&end_time, G_MAXLONG); } g_time_val_add (&end_time, microseconds); g_static_mutex_lock (&mutex); if (!cond) cond = g_cond_new (); while (g_cond_timed_wait (cond, g_static_mutex_get_mutex (&mutex), &end_time)) /* do nothing */; g_static_mutex_unlock (&mutex); } else { struct timeval tv; tv.tv_sec = microseconds / G_USEC_PER_SEC; tv.tv_usec = microseconds % G_USEC_PER_SEC; select(0, NULL, NULL, NULL, &tv); } # endif /* !HAVE_NSLEEP */ # endif /* !HAVE_NANOSLEEP */ #endif /* !G_OS_WIN32 */ } /** * g_time_val_add: * @time_: a #GTimeVal * @microseconds: number of microseconds to add to @time * * Adds the given number of microseconds to @time_. @microseconds can * also be negative to decrease the value of @time_. **/ void g_time_val_add (GTimeVal *time_, glong microseconds) { g_return_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC); if (microseconds >= 0) { time_->tv_usec += microseconds % G_USEC_PER_SEC; time_->tv_sec += microseconds / G_USEC_PER_SEC; if (time_->tv_usec >= G_USEC_PER_SEC) { time_->tv_usec -= G_USEC_PER_SEC; time_->tv_sec++; } } else { microseconds *= -1; time_->tv_usec -= microseconds % G_USEC_PER_SEC; time_->tv_sec -= microseconds / G_USEC_PER_SEC; if (time_->tv_usec < 0) { time_->tv_usec += G_USEC_PER_SEC; time_->tv_sec--; } } } /* converts a broken down date representation, relative to UTC, to * a timestamp; it uses timegm() if it's available. */ static time_t mktime_utc (struct tm *tm) { time_t retval; #ifndef HAVE_TIMEGM static const gint days_before[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; #endif #ifndef HAVE_TIMEGM if (tm->tm_mon < 0 || tm->tm_mon > 11) return (time_t) -1; retval = (tm->tm_year - 70) * 365; retval += (tm->tm_year - 68) / 4; retval += days_before[tm->tm_mon] + tm->tm_mday - 1; if (tm->tm_year % 4 == 0 && tm->tm_mon < 2) retval -= 1; retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec; #else retval = timegm (tm); #endif /* !HAVE_TIMEGM */ return retval; } /** * g_time_val_from_iso8601: * @iso_date: an ISO 8601 encoded date string * @time_: a #GTimeVal * * Converts a string containing an ISO 8601 encoded date and time * to a #GTimeVal and puts it into @time_. * * Return value: %TRUE if the conversion was successful. * * Since: 2.12 */ gboolean g_time_val_from_iso8601 (const gchar *iso_date, GTimeVal *time_) { struct tm tm = {0}; long val; g_return_val_if_fail (iso_date != NULL, FALSE); g_return_val_if_fail (time_ != NULL, FALSE); /* Ensure that the first character is a digit, * the first digit of the date, otherwise we don't * have an ISO 8601 date */ while (g_ascii_isspace (*iso_date)) iso_date++; if (*iso_date == '\0') return FALSE; if (!g_ascii_isdigit (*iso_date) && *iso_date != '-' && *iso_date != '+') return FALSE; val = strtoul (iso_date, (char **)&iso_date, 10); if (*iso_date == '-') { /* YYYY-MM-DD */ tm.tm_year = val - 1900; iso_date++; tm.tm_mon = strtoul (iso_date, (char **)&iso_date, 10) - 1; if (*iso_date++ != '-') return FALSE; tm.tm_mday = strtoul (iso_date, (char **)&iso_date, 10); } else { /* YYYYMMDD */ tm.tm_mday = val % 100; tm.tm_mon = (val % 10000) / 100 - 1; tm.tm_year = val / 10000 - 1900; } if (*iso_date != 'T') { /* Date only */ if (*iso_date == '\0') return TRUE; return FALSE; } iso_date++; /* If there is a 'T' then there has to be a time */ if (!g_ascii_isdigit (*iso_date)) return FALSE; val = strtoul (iso_date, (char **)&iso_date, 10); if (*iso_date == ':') { /* hh:mm:ss */ tm.tm_hour = val; iso_date++; tm.tm_min = strtoul (iso_date, (char **)&iso_date, 10); if (*iso_date++ != ':') return FALSE; tm.tm_sec = strtoul (iso_date, (char **)&iso_date, 10); } else { /* hhmmss */ tm.tm_sec = val % 100; tm.tm_min = (val % 10000) / 100; tm.tm_hour = val / 10000; } time_->tv_usec = 0; if (*iso_date == ',' || *iso_date == '.') { glong mul = 100000; while (g_ascii_isdigit (*++iso_date)) { time_->tv_usec += (*iso_date - '0') * mul; mul /= 10; } } /* Now parse the offset and convert tm to a time_t */ if (*iso_date == 'Z') { iso_date++; time_->tv_sec = mktime_utc (&tm); } else if (*iso_date == '+' || *iso_date == '-') { gint sign = (*iso_date == '+') ? -1 : 1; val = strtoul (iso_date + 1, (char **)&iso_date, 10); if (*iso_date == ':') val = 60 * val + strtoul (iso_date + 1, (char **)&iso_date, 10); else val = 60 * (val / 100) + (val % 100); time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * val * sign); } else { /* No "Z" or offset, so local time */ tm.tm_isdst = -1; /* locale selects DST */ time_->tv_sec = mktime (&tm); } while (g_ascii_isspace (*iso_date)) iso_date++; return *iso_date == '\0'; } /** * g_time_val_to_iso8601: * @time_: a #GTimeVal * * Converts @time_ into an ISO 8601 encoded string, relative to the * Coordinated Universal Time (UTC). * * Return value: a newly allocated string containing an ISO 8601 date * * Since: 2.12 */ gchar * g_time_val_to_iso8601 (GTimeVal *time_) { gchar *retval; struct tm *tm; #ifdef HAVE_GMTIME_R struct tm tm_; #endif time_t secs; g_return_val_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC, NULL); secs = time_->tv_sec; #ifdef _WIN32 tm = gmtime (&secs); #else #ifdef HAVE_GMTIME_R tm = gmtime_r (&secs, &tm_); #else tm = gmtime (&secs); #endif #endif if (time_->tv_usec != 0) { /* ISO 8601 date and time format, with fractionary seconds: * YYYY-MM-DDTHH:MM:SS.MMMMMMZ */ retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, time_->tv_usec); } else { /* ISO 8601 date and time format: * YYYY-MM-DDTHH:MM:SSZ */ retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); } return retval; }