#include "common.h" WORD CSteamProto::SteamToMirandaStatus(int state) { switch (state) { case 0: //Offline return ID_STATUS_OFFLINE; case 2: //Busy return ID_STATUS_DND; case 3: //Away return ID_STATUS_AWAY; /*case 4: //Snoozing prim = PURPLE_STATUS_EXTENDED_AWAY; break; case 5: //Looking to trade return "trade"; case 6: //Looking to play return "play";*/ //case 1: //Online default: return ID_STATUS_ONLINE; } } int CSteamProto::MirandaToSteamState(int status) { switch (status) { case ID_STATUS_OFFLINE: return 0; //Offline case ID_STATUS_DND: return 2; //Busy case ID_STATUS_AWAY: return 3; //Away /*case 4: //Snoozing prim = PURPLE_STATUS_EXTENDED_AWAY; break; case 5: //Looking to trade return "trade"; case 6: //Looking to play return "play";*/ //case 1: //Online default: return ID_STATUS_ONLINE; } } int CSteamProto::RsaEncrypt(const SteamWebApi::RsaKeyApi::RsaKey &rsaKey, const char *data, DWORD dataSize, BYTE *encryptedData, DWORD &encryptedSize) { const char *pszModulus = rsaKey.GetModulus(); DWORD cchModulus = (DWORD)strlen(pszModulus); // convert hex string to byte array DWORD cbLen = 0, dwSkip = 0, dwFlags = 0; if (!CryptStringToBinaryA(pszModulus, cchModulus, CRYPT_STRING_HEX, NULL, &cbLen, &dwSkip, &dwFlags)) return GetLastError(); // allocate a new buffer. BYTE *pbBuffer = (BYTE*)malloc(cbLen); if (!CryptStringToBinaryA(pszModulus, cchModulus, CRYPT_STRING_HEX, pbBuffer, &cbLen, &dwSkip, &dwFlags)) return GetLastError(); // reverse byte array, because of microsoft for (int i = 0; i < (int)(cbLen / 2); ++i) { BYTE temp = pbBuffer[cbLen - i - 1]; pbBuffer[cbLen - i - 1] = pbBuffer[i]; pbBuffer[i] = temp; } HCRYPTPROV hCSP = 0; if (!CryptAcquireContext(&hCSP, NULL, NULL, PROV_RSA_AES, CRYPT_SILENT) && !CryptAcquireContext(&hCSP, NULL, NULL, PROV_RSA_AES, CRYPT_SILENT | CRYPT_NEWKEYSET)) return GetLastError(); // Move the key into the key container. DWORD cbKeyBlob = sizeof(PUBLICKEYSTRUC) + sizeof(RSAPUBKEY) + cbLen; BYTE *pKeyBlob = (BYTE*)malloc(cbKeyBlob); // Fill in the data. PUBLICKEYSTRUC *pPublicKey = (PUBLICKEYSTRUC*)pKeyBlob; pPublicKey->bType = PUBLICKEYBLOB; pPublicKey->bVersion = CUR_BLOB_VERSION; // Always use this value. pPublicKey->reserved = 0; // Must be zero. pPublicKey->aiKeyAlg = CALG_RSA_KEYX; // RSA public-key key exchange. // The next block of data is the RSAPUBKEY structure. RSAPUBKEY *pRsaPubKey = (RSAPUBKEY*)(pKeyBlob + sizeof(PUBLICKEYSTRUC)); pRsaPubKey->magic = 0x31415352; // RSA1 // Use public key pRsaPubKey->bitlen = cbLen * 8; // Number of bits in the modulus. pRsaPubKey->pubexp = 0x10001; // "010001" // Exponent. // Copy the modulus into the blob. Put the modulus directly after the // RSAPUBKEY structure in the blob. BYTE *pKey = (BYTE*)(((BYTE *)pRsaPubKey) + sizeof(RSAPUBKEY)); //pKeyBlob + sizeof(BLOBHEADER)+ sizeof(RSAPUBKEY); memcpy(pKey, pbBuffer, cbLen); // Now import public key HCRYPTKEY phKey = 0; if (!CryptImportKey(hCSP, pKeyBlob, cbKeyBlob, 0, 0, &phKey)) return GetLastError(); // if data is not allocated just renurn size if (encryptedData == NULL) { // get length of encrypted data if (!CryptEncrypt(phKey, 0, TRUE, 0, NULL, &encryptedSize, dataSize)) return GetLastError(); return 0; } // encrypt password memcpy(encryptedData, data, dataSize); if (!CryptEncrypt(phKey, 0, TRUE, 0, encryptedData, &dataSize, encryptedSize)) return GetLastError(); // reverse byte array again for (int i = 0; i < (int)(encryptedSize / 2); ++i) { BYTE temp = encryptedData[encryptedSize - i - 1]; encryptedData[encryptedSize - i - 1] = encryptedData[i]; encryptedData[i] = temp; } free(pKeyBlob); CryptDestroyKey(phKey); free(pbBuffer); CryptReleaseContext(hCSP, 0); return 0; }