/* 100% free public domain implementation of the SHA-1 algorithm by Dominik Reichl Version 1.5 - 2005-01-01 - 64-bit compiler compatibility added - Made variable wiping optional (define SHA1_WIPE_VARIABLES) - Removed unnecessary variable initializations - ROL32 improvement for the Microsoft compiler (using _rotl) ======== Test Vectors (from FIPS PUB 180-1) ======== SHA1("abc") = A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") = 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 SHA1(A million repetitions of "a") = 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */ #include "stdafx.h" #include "baseProtocol.h" #include "SHA1.h" #define SHA1_MAX_FILE_BUFFER 8000 // Rotate x bits to the left #ifndef ROL32 #define ROL32(_val32, _nBits) _rotl(_val32, _nBits) #endif #ifdef SHA1_LITTLE_ENDIAN #define SHABLK0(i) (m_block->l[i] = \ (ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF)) #else #define SHABLK0(i) (m_block->l[i]) #endif #define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \ ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1)) // SHA-1 rounds #define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); } #define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); } #define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); } #define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); } #define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); } CSHA1::CSHA1() { m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace; Reset(); } CSHA1::~CSHA1() { Reset(); } void CSHA1::Reset() { // SHA1 initialization constants m_state[0] = 0x67452301; m_state[1] = 0xEFCDAB89; m_state[2] = 0x98BADCFE; m_state[3] = 0x10325476; m_state[4] = 0xC3D2E1F0; m_count[0] = 0; m_count[1] = 0; } void CSHA1::Transform(UINT_32 *state, UINT_8 *buffer) { // Copy state[] to working vars UINT_32 a = state[0], b = state[1], c = state[2], d = state[3], e = state[4]; memcpy(m_block, buffer, 64); // 4 rounds of 20 operations each. Loop unrolled. _R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3); _R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7); _R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11); _R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15); _R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19); _R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23); _R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27); _R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31); _R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35); _R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39); _R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43); _R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47); _R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51); _R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55); _R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59); _R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63); _R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67); _R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71); _R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75); _R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79); // Add the working vars back into state state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; // Wipe variables #ifdef SHA1_WIPE_VARIABLES a = b = c = d = e = 0; #endif } // Use this function to hash in binary data and strings void CSHA1::Update(UINT_8 *data, UINT_32 len) { UINT_32 i, j; j = (m_count[0] >> 3) & 63; if((m_count[0] += len << 3) < (len << 3)) m_count[1]++; m_count[1] += (len >> 29); if((j + len) > 63) { i = 64 - j; memcpy(&m_buffer[j], data, i); Transform(m_state, m_buffer); for( ; i + 63 < len; i += 64) Transform(m_state, &data[i]); j = 0; } else i = 0; memcpy(&m_buffer[j], &data[i], len - i); } // Hash in file contents bool CSHA1::HashFile(char *szFileName) { unsigned long ulFileSize, ulRest, ulBlocks; unsigned long i; UINT_8 uData[SHA1_MAX_FILE_BUFFER]; FILE *fIn; if(szFileName == NULL) return false; fIn = fopen(szFileName, "rb"); if(fIn == NULL) return false; fseek(fIn, 0, SEEK_END); ulFileSize = (unsigned long)ftell(fIn); fseek(fIn, 0, SEEK_SET); if(ulFileSize != 0) { ulBlocks = ulFileSize / SHA1_MAX_FILE_BUFFER; ulRest = ulFileSize % SHA1_MAX_FILE_BUFFER; } else { ulBlocks = 0; ulRest = 0; } for(i = 0; i < ulBlocks; i++) { fread(uData, 1, SHA1_MAX_FILE_BUFFER, fIn); Update((UINT_8 *)uData, SHA1_MAX_FILE_BUFFER); } if(ulRest != 0) { fread(uData, 1, ulRest, fIn); Update((UINT_8 *)uData, ulRest); } fclose(fIn); fIn = NULL; return true; } void CSHA1::Final() { UINT_32 i; UINT_8 finalcount[8]; for(i = 0; i < 8; i++) finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)] >> ((3 - (i & 3)) * 8) ) & 255); // Endian independent Update((UINT_8 *)"\200", 1); while ((m_count[0] & 504) != 448) Update((UINT_8 *)"\0", 1); Update(finalcount, 8); // Cause a SHA1Transform() for(i = 0; i < 20; i++) { m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255); } // Wipe variables for security reasons #ifdef SHA1_WIPE_VARIABLES i = 0; memset(m_buffer, 0, 64); memset(m_state, 0, 20); memset(m_count, 0, 8); memset(finalcount, 0, 8); Transform(m_state, m_buffer); #endif } // Get the final hash as a pre-formatted string void CSHA1::ReportHash(char *szReport, unsigned char uReportType) { unsigned char i; char szTemp[16]; if(szReport == NULL) return; if(uReportType == REPORT_HEX) { mir_snprintf(szTemp, SIZEOF(szTemp), "%02X", m_digest[0]); strcat(szReport, szTemp); for(i = 1; i < 20; i++) { mir_snprintf(szTemp, SIZEOF(szTemp), " %02X", m_digest[i]); strcat(szReport, szTemp); } } else if(uReportType == REPORT_DIGIT) { mir_snprintf(szTemp, SIZEOF(szTemp), "%u", m_digest[0]); strcat(szReport, szTemp); for(i = 1; i < 20; i++) { mir_snprintf(szTemp, SIZEOF(szTemp), " %u", m_digest[i]); strcat(szReport, szTemp); } } else strcpy(szReport, "Error: Unknown report type!"); } // Get the raw message digest void CSHA1::GetHash(UINT_8 *puDest) { memcpy(puDest, m_digest, 20); }