/* Miranda NG: the free IM client for Microsoft* Windows* Copyright (C) 2012-13 Miranda NG project, all portions of this codebase are copyrighted to the people listed in contributors.txt. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "commonheaders.h" bool getRandomBytes(BYTE *buf, size_t bufLen) { // try to use Intel hardware randomizer first HCRYPTPROV hProvider = NULL; if (::CryptAcquireContext(&hProvider, NULL, _T("Intel Hardware Cryptographic Service Provider"), PROV_INTEL_SEC, 0)) { ::CryptGenRandom(hProvider, DWORD(bufLen), buf); ::CryptReleaseContext(hProvider, 0); } // no luck? try to use RSA else if (::CryptAcquireContext(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { ::CryptGenRandom(hProvider, DWORD(bufLen), buf); ::CryptReleaseContext(hProvider, 0); } // no luck? try to use Windows NT RTL else { typedef BOOL(WINAPI *pfnGetRandom)(PVOID RandomBuffer, ULONG RandomBufferLength); pfnGetRandom fnGetRandom = (pfnGetRandom)GetProcAddress(GetModuleHandleA("advapi32.dll"), "SystemFunction036"); if (fnGetRandom == NULL) return false; fnGetRandom(buf, DWORD(bufLen)); } return true; } ///////////////////////////////////////////////////////////////////////////////////////// struct SHA256_CONTEXT { UINT32 h0, h1, h2, h3, h4, h5, h6, h7; UINT32 nblocks; BYTE buf[64]; int count; }; static void sha256_init(SHA256_CONTEXT *hd) { hd->h0 = 0x6a09e667; hd->h1 = 0xbb67ae85; hd->h2 = 0x3c6ef372; hd->h3 = 0xa54ff53a; hd->h4 = 0x510e527f; hd->h5 = 0x9b05688c; hd->h6 = 0x1f83d9ab; hd->h7 = 0x5be0cd19; hd->nblocks = 0; hd->count = 0; } /* Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ #define ror(x,n) ( ((x) >> (n)) | ((x) << (32-(n))) ) #define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */ #define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */ #define R(a,b,c,d,e,f,g,h,k,w) do \ { \ t1 = (h)+Sum1((e)) + Cho((e), (f), (g)) + (k)+(w); \ t2 = Sum0((a)) + Maj((a), (b), (c)); \ h = g; \ g = f; \ f = e; \ e = d + t1; \ d = c; \ c = b; \ b = a; \ a = t1 + t2; \ } while (0) /* (4.2) same as SHA-1's F1. */ static inline UINT32 Cho(UINT32 x, UINT32 y, UINT32 z) { return (z ^ (x & (y ^ z))); } /* (4.3) same as SHA-1's F3 */ static inline UINT32 Maj(UINT32 x, UINT32 y, UINT32 z) { return ((x & y) | (z & (x | y))); } /* (4.4) */ static inline UINT32 Sum0(UINT32 x) { return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22)); } /* (4.5) */ static inline UINT32 Sum1(UINT32 x) { return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25)); } static void transform(SHA256_CONTEXT *hd, const unsigned char *data) { static const UINT32 K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; UINT32 a, b, c, d, e, f, g, h, t1, t2; UINT32 x[16]; UINT32 w[64]; int i; a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; #ifdef WORDS_BIGENDIAN memcpy(x, data, 64); #else { BYTE *p2; for (i = 0, p2 = (BYTE*)x; i < 16; i++, p2 += 4) { p2[3] = *data++; p2[2] = *data++; p2[1] = *data++; p2[0] = *data++; } } #endif for (i = 0; i < 16; i++) w[i] = x[i]; for (; i < 64; i++) w[i] = S1(w[i - 2]) + w[i - 7] + S0(w[i - 15]) + w[i - 16]; for (i = 0; i < 64;) { #if 0 R(a, b, c, d, e, f, g, h, K[i], w[i]); i++; #else t1 = h + Sum1(e) + Cho(e, f, g) + K[i] + w[i]; t2 = Sum0(a) + Maj(a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1(d) + Cho(d, e, f) + K[i + 1] + w[i + 1]; t2 = Sum0(h) + Maj(h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1(c) + Cho(c, d, e) + K[i + 2] + w[i + 2]; t2 = Sum0(g) + Maj(g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1(b) + Cho(b, c, d) + K[i + 3] + w[i + 3]; t2 = Sum0(f) + Maj(f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1(a) + Cho(a, b, c) + K[i + 4] + w[i + 4]; t2 = Sum0(e) + Maj(e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1(h) + Cho(h, a, b) + K[i + 5] + w[i + 5]; t2 = Sum0(d) + Maj(d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1(g) + Cho(g, h, a) + K[i + 6] + w[i + 6]; t2 = Sum0(c) + Maj(c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1(f) + Cho(f, g, h) + K[i + 7] + w[i + 7]; t2 = Sum0(b) + Maj(b, c, d); e += t1; a = t1 + t2; i += 8; #endif } hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; } #undef S0 #undef S1 #undef R /* Update the message digest with the contents of INBUF with length INLEN. */ static void sha256_write(SHA256_CONTEXT *hd, const void *inbuf_arg, size_t inlen) { const unsigned char *inbuf = (const unsigned char *)inbuf_arg; if (hd->count == 64) { /* flush the buffer */ transform(hd, hd->buf); hd->count = 0; hd->nblocks++; } if (!inbuf) return; if (hd->count) { for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; sha256_write(hd, NULL, 0); if (!inlen) return; } while (inlen >= 64) { transform(hd, inbuf); hd->count = 0; hd->nblocks++; inlen -= 64; inbuf += 64; } for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; } /* The routine finally terminates the computation and returns the digest. The handle is prepared for a new cycle, but adding bytes to the handle will the destroy the returned buffer. Returns: 32 bytes with the message the digest. */ static void sha256_final(SHA256_CONTEXT *hd, BYTE tmpHash[32]) { UINT32 t, msb, lsb; sha256_write(hd, NULL, 0); /* flush */; t = hd->nblocks; /* multiply by 64 to make a BYTE count */ lsb = t << 6; msb = t >> 26; /* add the count */ t = lsb; if ((lsb += hd->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (hd->count < 56) { /* enough room */ hd->buf[hd->count++] = 0x80; /* pad */ while (hd->count < 56) hd->buf[hd->count++] = 0; /* pad */ } else { /* need one extra block */ hd->buf[hd->count++] = 0x80; /* pad character */ while (hd->count < 64) hd->buf[hd->count++] = 0; sha256_write(hd, NULL, 0); /* flush */; memset(hd->buf, 0, 56); /* fill next block with zeroes */ } /* append the 64 bit count */ hd->buf[56] = msb >> 24; hd->buf[57] = msb >> 16; hd->buf[58] = msb >> 8; hd->buf[59] = msb; hd->buf[60] = lsb >> 24; hd->buf[61] = lsb >> 16; hd->buf[62] = lsb >> 8; hd->buf[63] = lsb; transform(hd, hd->buf); BYTE *p = tmpHash; #ifdef WORDS_BIGENDIAN #define X(a) do { *(UINT32*)p = hd->h##a ; p += 4; } while(0) #else /* little endian */ #define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \ *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while (0) #endif X(0); X(1); X(2); X(3); X(4); X(5); X(6); X(7); #undef X } static void make_sha256(const void *buf, size_t bufLen, BYTE tmpHash[32]) { SHA256_CONTEXT tmp; sha256_init(&tmp); sha256_write(&tmp, buf, bufLen); sha256_final(&tmp, tmpHash); } void slow_hash(const void *buf, size_t bufLen, BYTE tmpHash[32]) { make_sha256(buf, bufLen, tmpHash); for (int i = 0; i < 50000; i++) make_sha256(tmpHash, sizeof(tmpHash), tmpHash); }