/* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is SHA 180-1 Reference Implementation (Compact version). * * The Initial Developer of the Original Code is * Paul Kocher of Cryptography Research. * Portions created by the Initial Developer are Copyright (C) 1995-9 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "commonheaders.h" #define SHA_ROTL(X, n) (((X) << (n)) | ((X) >> (32-(n)))) static void shaHashBlock(mir_sha1_ctx *ctx) { int t; unsigned long A, B, C, D, E, TEMP; for (t = 16; t <= 79; t++) ctx->W[t] = SHA_ROTL(ctx->W[t-3] ^ ctx->W[t-8] ^ ctx->W[t-14] ^ ctx->W[t-16], 1); A = ctx->H[0]; B = ctx->H[1]; C = ctx->H[2]; D = ctx->H[3]; E = ctx->H[4]; for (t = 0; t <= 19; t++) { TEMP = SHA_ROTL(A, 5) + (((C^D)&B)^D) + E + ctx->W[t] + 0x5a827999L; E = D; D = C; C = SHA_ROTL(B, 30); B = A; A = TEMP; } for (t = 20; t <= 39; t++) { TEMP = SHA_ROTL(A, 5) + (B^C^D) + E + ctx->W[t] + 0x6ed9eba1L; E = D; D = C; C = SHA_ROTL(B, 30); B = A; A = TEMP; } for (t = 40; t <= 59; t++) { TEMP = SHA_ROTL(A, 5) + ((B&C)|(D&(B|C))) + E + ctx->W[t] + 0x8f1bbcdcL; E = D; D = C; C = SHA_ROTL(B, 30); B = A; A = TEMP; } for (t = 60; t <= 79; t++) { TEMP = SHA_ROTL(A, 5) + (B^C^D) + E + ctx->W[t] + 0xca62c1d6L; E = D; D = C; C = SHA_ROTL(B, 30); B = A; A = TEMP; } ctx->H[0] += A; ctx->H[1] += B; ctx->H[2] += C; ctx->H[3] += D; ctx->H[4] += E; } MIR_CORE_DLL(void) mir_sha1_init(mir_sha1_ctx *ctx) { ctx->lenW = 0; ctx->sizeHi = ctx->sizeLo = 0; /* Initialize H with the magic constants (see FIPS180 for constants) */ ctx->H[0] = 0x67452301L; ctx->H[1] = 0xefcdab89L; ctx->H[2] = 0x98badcfeL; ctx->H[3] = 0x10325476L; ctx->H[4] = 0xc3d2e1f0L; for (int i = 0; i < 80; i++) ctx->W[i] = 0; } MIR_CORE_DLL(void) mir_sha1_append(mir_sha1_ctx *ctx, const BYTE *dataIn, int len) { /* Read the data into W and process blocks as they get full */ for (int i = 0; i < len; i++) { ctx->W[ctx->lenW / 4] <<= 8; ctx->W[ctx->lenW / 4] |= (unsigned long)dataIn[i]; if ((++ctx->lenW) % 64 == 0) { shaHashBlock(ctx); ctx->lenW = 0; } ctx->sizeLo += 8; ctx->sizeHi += (ctx->sizeLo < 8); } } MIR_CORE_DLL(void) mir_sha1_finish(mir_sha1_ctx *ctx, BYTE hashout[20]) { unsigned char pad0x80 = 0x80; unsigned char pad0x00 = 0x00; unsigned char padlen[8]; int i; /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length */ padlen[0] = (unsigned char)((ctx->sizeHi >> 24) & 255); padlen[1] = (unsigned char)((ctx->sizeHi >> 16) & 255); padlen[2] = (unsigned char)((ctx->sizeHi >> 8) & 255); padlen[3] = (unsigned char)((ctx->sizeHi >> 0) & 255); padlen[4] = (unsigned char)((ctx->sizeLo >> 24) & 255); padlen[5] = (unsigned char)((ctx->sizeLo >> 16) & 255); padlen[6] = (unsigned char)((ctx->sizeLo >> 8) & 255); padlen[7] = (unsigned char)((ctx->sizeLo >> 0) & 255); mir_sha1_append(ctx, &pad0x80, 1); while (ctx->lenW != 56) mir_sha1_append(ctx, &pad0x00, 1); mir_sha1_append(ctx, padlen, 8); /* Output hash */ for (i = 0; i < 20; i++) { hashout[i] = (unsigned char)(ctx->H[i / 4] >> 24); ctx->H[i / 4] <<= 8; } /* * Re-initialize the context (also zeroizes contents) */ mir_sha1_init(ctx); } MIR_CORE_DLL(void) mir_sha1_hash(BYTE *dataIn, int len, BYTE hashout[20]) { mir_sha1_ctx ctx; mir_sha1_init(&ctx); mir_sha1_append(&ctx, dataIn, len); mir_sha1_finish(&ctx, hashout); } ///////////////////////////////////////////////////////////////////////////////////////// MIR_CORE_DLL(void) mir_hmac_sha1(BYTE hashout[MIR_SHA1_HASH_SIZE], const BYTE *key, size_t keylen, const BYTE *text, size_t textlen) { const unsigned SHA_BLOCKSIZE = 64; BYTE mdkey[MIR_SHA1_HASH_SIZE], k_ipad[SHA_BLOCKSIZE], k_opad[SHA_BLOCKSIZE]; mir_sha1_ctx ctx; if (keylen > SHA_BLOCKSIZE) { mir_sha1_init(&ctx); mir_sha1_append(&ctx, key, (int)keylen); mir_sha1_finish(&ctx, mdkey); keylen = 20; key = mdkey; } memcpy(k_ipad, key, keylen); memcpy(k_opad, key, keylen); memset(k_ipad+keylen, 0x36, SHA_BLOCKSIZE - keylen); memset(k_opad+keylen, 0x5c, SHA_BLOCKSIZE - keylen); for (unsigned i = 0; i < keylen; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } mir_sha1_init(&ctx); mir_sha1_append(&ctx, k_ipad, SHA_BLOCKSIZE); mir_sha1_append(&ctx, text, (int)textlen); mir_sha1_finish(&ctx, hashout); mir_sha1_init(&ctx); mir_sha1_append(&ctx, k_opad, SHA_BLOCKSIZE); mir_sha1_append(&ctx, hashout, MIR_SHA1_HASH_SIZE); mir_sha1_finish(&ctx, hashout); }