1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
|
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* Copyright (C) 2002-2017 Németh László
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* Hunspell is based on MySpell which is Copyright (C) 2002 Kevin Hendricks.
*
* Contributor(s): David Einstein, Davide Prina, Giuseppe Modugno,
* Gianluca Turconi, Simon Brouwer, Noll János, Bíró Árpád,
* Goldman Eleonóra, Sarlós Tamás, Bencsáth Boldizsár, Halácsy Péter,
* Dvornik László, Gefferth András, Nagy Viktor, Varga Dániel, Chris Halls,
* Rene Engelhard, Bram Moolenaar, Dafydd Jones, Harri Pitkänen
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* Copyright 2002 Kevin B. Hendricks, Stratford, Ontario, Canada
* And Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. All modifications to the source code must be clearly marked as
* such. Binary redistributions based on modified source code
* must be clearly marked as modified versions in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY KEVIN B. HENDRICKS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* KEVIN B. HENDRICKS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include "affentry.hxx"
#include "csutil.hxx"
AffEntry::~AffEntry() {
if (opts & aeLONGCOND)
free(c.l.conds2);
if (morphcode && !(opts & aeALIASM))
free(morphcode);
if (contclass && !(opts & aeALIASF))
free(contclass);
}
PfxEntry::PfxEntry(AffixMgr* pmgr)
// register affix manager
: pmyMgr(pmgr),
next(NULL),
nexteq(NULL),
nextne(NULL),
flgnxt(NULL) {
}
// add prefix to this word assuming conditions hold
std::string PfxEntry::add(const char* word, size_t len) {
std::string result;
if ((len > strip.size() || (len == 0 && pmyMgr->get_fullstrip())) &&
(len >= numconds) && test_condition(word) &&
(!strip.size() || (strncmp(word, strip.c_str(), strip.size()) == 0))) {
/* we have a match so add prefix */
result.assign(appnd);
result.append(word + strip.size());
}
return result;
}
inline char* PfxEntry::nextchar(char* p) {
if (p) {
p++;
if (opts & aeLONGCOND) {
// jump to the 2nd part of the condition
if (p == c.conds + MAXCONDLEN_1)
return c.l.conds2;
// end of the MAXCONDLEN length condition
} else if (p == c.conds + MAXCONDLEN)
return NULL;
return *p ? p : NULL;
}
return NULL;
}
inline int PfxEntry::test_condition(const char* st) {
const char* pos = NULL; // group with pos input position
bool neg = false; // complementer
bool ingroup = false; // character in the group
if (numconds == 0)
return 1;
char* p = c.conds;
while (1) {
switch (*p) {
case '\0':
return 1;
case '[': {
neg = false;
ingroup = false;
p = nextchar(p);
pos = st;
break;
}
case '^': {
p = nextchar(p);
neg = true;
break;
}
case ']': {
if ((neg && ingroup) || (!neg && !ingroup))
return 0;
pos = NULL;
p = nextchar(p);
// skip the next character
if (!ingroup && *st)
for (st++; (opts & aeUTF8) && (*st & 0xc0) == 0x80; st++)
;
if (*st == '\0' && p)
return 0; // word <= condition
break;
}
case '.':
if (!pos) { // dots are not metacharacters in groups: [.]
p = nextchar(p);
// skip the next character
for (st++; (opts & aeUTF8) && (*st & 0xc0) == 0x80; st++)
;
if (*st == '\0' && p)
return 0; // word <= condition
break;
}
/* FALLTHROUGH */
default: {
if (*st == *p) {
st++;
p = nextchar(p);
if ((opts & aeUTF8) && (*(st - 1) & 0x80)) { // multibyte
while (p && (*p & 0xc0) == 0x80) { // character
if (*p != *st) {
if (!pos)
return 0;
st = pos;
break;
}
p = nextchar(p);
st++;
}
if (pos && st != pos) {
ingroup = true;
while (p && *p != ']' && ((p = nextchar(p)) != NULL)) {
}
}
} else if (pos) {
ingroup = true;
while (p && *p != ']' && ((p = nextchar(p)) != NULL)) {
}
}
} else if (pos) { // group
p = nextchar(p);
} else
return 0;
}
}
if (!p)
return 1;
}
}
// check if this prefix entry matches
struct hentry* PfxEntry::checkword(const char* word,
int len,
char in_compound,
const FLAG needflag) {
struct hentry* he; // hash entry of root word or NULL
// on entry prefix is 0 length or already matches the beginning of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if (tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) {
// generate new root word by removing prefix and adding
// back any characters that would have been stripped
std::string tmpword(strip);
tmpword.append(word + appnd.size());
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then check if resulting
// root word in the dictionary
if (test_condition(tmpword.c_str())) {
tmpl += strip.size();
if ((he = pmyMgr->lookup(tmpword.c_str())) != NULL) {
do {
if (TESTAFF(he->astr, aflag, he->alen) &&
// forbid single prefixes with needaffix flag
!TESTAFF(contclass, pmyMgr->get_needaffix(), contclasslen) &&
// needflag
((!needflag) || TESTAFF(he->astr, needflag, he->alen) ||
(contclass && TESTAFF(contclass, needflag, contclasslen))))
return he;
he = he->next_homonym; // check homonyms
} while (he);
}
// prefix matched but no root word was found
// if aeXPRODUCT is allowed, try again but now
// ross checked combined with a suffix
// if ((opts & aeXPRODUCT) && in_compound) {
if ((opts & aeXPRODUCT)) {
he = pmyMgr->suffix_check(tmpword.c_str(), tmpl, aeXPRODUCT, this,
FLAG_NULL, needflag, in_compound);
if (he)
return he;
}
}
}
return NULL;
}
// check if this prefix entry matches
struct hentry* PfxEntry::check_twosfx(const char* word,
int len,
char in_compound,
const FLAG needflag) {
// on entry prefix is 0 length or already matches the beginning of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing prefix and adding
// back any characters that would have been stripped
std::string tmpword(strip);
tmpword.append(word + appnd.size());
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then check if resulting
// root word in the dictionary
if (test_condition(tmpword.c_str())) {
tmpl += strip.size();
// prefix matched but no root word was found
// if aeXPRODUCT is allowed, try again but now
// cross checked combined with a suffix
if ((opts & aeXPRODUCT) && (in_compound != IN_CPD_BEGIN)) {
// hash entry of root word or NULL
struct hentry* he = pmyMgr->suffix_check_twosfx(tmpword.c_str(), tmpl, aeXPRODUCT, this,
needflag);
if (he)
return he;
}
}
}
return NULL;
}
// check if this prefix entry matches
std::string PfxEntry::check_twosfx_morph(const char* word,
int len,
char in_compound,
const FLAG needflag) {
std::string result;
// on entry prefix is 0 length or already matches the beginning of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing prefix and adding
// back any characters that would have been stripped
std::string tmpword(strip);
tmpword.append(word + appnd.size());
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then check if resulting
// root word in the dictionary
if (test_condition(tmpword.c_str())) {
tmpl += strip.size();
// prefix matched but no root word was found
// if aeXPRODUCT is allowed, try again but now
// ross checked combined with a suffix
if ((opts & aeXPRODUCT) && (in_compound != IN_CPD_BEGIN)) {
result = pmyMgr->suffix_check_twosfx_morph(tmpword.c_str(), tmpl,
aeXPRODUCT,
this, needflag);
}
}
}
return result;
}
// check if this prefix entry matches
std::string PfxEntry::check_morph(const char* word,
int len,
char in_compound,
const FLAG needflag) {
std::string result;
// on entry prefix is 0 length or already matches the beginning of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing prefix and adding
// back any characters that would have been stripped
std::string tmpword(strip);
tmpword.append(word + appnd.size());
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then check if resulting
// root word in the dictionary
if (test_condition(tmpword.c_str())) {
tmpl += strip.size();
struct hentry* he; // hash entry of root word or NULL
if ((he = pmyMgr->lookup(tmpword.c_str())) != NULL) {
do {
if (TESTAFF(he->astr, aflag, he->alen) &&
// forbid single prefixes with needaffix flag
!TESTAFF(contclass, pmyMgr->get_needaffix(), contclasslen) &&
// needflag
((!needflag) || TESTAFF(he->astr, needflag, he->alen) ||
(contclass && TESTAFF(contclass, needflag, contclasslen)))) {
if (morphcode) {
result.append(" ");
result.append(morphcode);
} else
result.append(getKey());
if (!HENTRY_FIND(he, MORPH_STEM)) {
result.append(" ");
result.append(MORPH_STEM);
result.append(HENTRY_WORD(he));
}
// store the pointer of the hash entry
if (HENTRY_DATA(he)) {
result.append(" ");
result.append(HENTRY_DATA2(he));
} else {
// return with debug information
char* flag = pmyMgr->encode_flag(getFlag());
result.append(" ");
result.append(MORPH_FLAG);
result.append(flag);
free(flag);
}
result.append("\n");
}
he = he->next_homonym;
} while (he);
}
// prefix matched but no root word was found
// if aeXPRODUCT is allowed, try again but now
// ross checked combined with a suffix
if ((opts & aeXPRODUCT) && (in_compound != IN_CPD_BEGIN)) {
std::string st = pmyMgr->suffix_check_morph(tmpword.c_str(), tmpl, aeXPRODUCT, this,
FLAG_NULL, needflag);
if (!st.empty()) {
result.append(st);
}
}
}
}
return result;
}
SfxEntry::SfxEntry(AffixMgr* pmgr)
: pmyMgr(pmgr) // register affix manager
,
next(NULL),
nexteq(NULL),
nextne(NULL),
flgnxt(NULL),
l_morph(NULL),
r_morph(NULL),
eq_morph(NULL) {
}
// add suffix to this word assuming conditions hold
std::string SfxEntry::add(const char* word, size_t len) {
std::string result;
/* make sure all conditions match */
if ((len > strip.size() || (len == 0 && pmyMgr->get_fullstrip())) &&
(len >= numconds) && test_condition(word + len, word) &&
(!strip.size() ||
(strcmp(word + len - strip.size(), strip.c_str()) == 0))) {
result.assign(word);
/* we have a match so add suffix */
result.replace(len - strip.size(), std::string::npos, appnd);
}
return result;
}
inline char* SfxEntry::nextchar(char* p) {
if (p) {
p++;
if (opts & aeLONGCOND) {
// jump to the 2nd part of the condition
if (p == c.l.conds1 + MAXCONDLEN_1)
return c.l.conds2;
// end of the MAXCONDLEN length condition
} else if (p == c.conds + MAXCONDLEN)
return NULL;
return *p ? p : NULL;
}
return NULL;
}
inline int SfxEntry::test_condition(const char* st, const char* beg) {
const char* pos = NULL; // group with pos input position
bool neg = false; // complementer
bool ingroup = false; // character in the group
if (numconds == 0)
return 1;
char* p = c.conds;
st--;
int i = 1;
while (1) {
switch (*p) {
case '\0':
return 1;
case '[':
p = nextchar(p);
pos = st;
break;
case '^':
p = nextchar(p);
neg = true;
break;
case ']':
if (!neg && !ingroup)
return 0;
i++;
// skip the next character
if (!ingroup) {
for (; (opts & aeUTF8) && (st >= beg) && (*st & 0xc0) == 0x80; st--)
;
st--;
}
pos = NULL;
neg = false;
ingroup = false;
p = nextchar(p);
if (st < beg && p)
return 0; // word <= condition
break;
case '.':
if (!pos) {
// dots are not metacharacters in groups: [.]
p = nextchar(p);
// skip the next character
for (st--; (opts & aeUTF8) && (st >= beg) && (*st & 0xc0) == 0x80;
st--)
;
if (st < beg) { // word <= condition
if (p)
return 0;
else
return 1;
}
if ((opts & aeUTF8) && (*st & 0x80)) { // head of the UTF-8 character
st--;
if (st < beg) { // word <= condition
if (p)
return 0;
else
return 1;
}
}
break;
}
/* FALLTHROUGH */
default: {
if (*st == *p) {
p = nextchar(p);
if ((opts & aeUTF8) && (*st & 0x80)) {
st--;
while (p && (st >= beg)) {
if (*p != *st) {
if (!pos)
return 0;
st = pos;
break;
}
// first byte of the UTF-8 multibyte character
if ((*p & 0xc0) != 0x80)
break;
p = nextchar(p);
st--;
}
if (pos && st != pos) {
if (neg)
return 0;
else if (i == numconds)
return 1;
ingroup = true;
while (p && *p != ']' && ((p = nextchar(p)) != NULL)) {
}
st--;
}
if (p && *p != ']')
p = nextchar(p);
} else if (pos) {
if (neg)
return 0;
else if (i == numconds)
return 1;
ingroup = true;
while (p && *p != ']' && ((p = nextchar(p)) != NULL)) {
}
// if (p && *p != ']') p = nextchar(p);
st--;
}
if (!pos) {
i++;
st--;
}
if (st < beg && p && *p != ']')
return 0; // word <= condition
} else if (pos) { // group
p = nextchar(p);
} else
return 0;
}
}
if (!p)
return 1;
}
}
// see if this suffix is present in the word
struct hentry* SfxEntry::checkword(const char* word,
int len,
int optflags,
PfxEntry* ppfx,
const FLAG cclass,
const FLAG needflag,
const FLAG badflag) {
struct hentry* he; // hash entry pointer
PfxEntry* ep = ppfx;
// if this suffix is being cross checked with a prefix
// but it does not support cross products skip it
if (((optflags & aeXPRODUCT) != 0) && ((opts & aeXPRODUCT) == 0))
return NULL;
// upon entry suffix is 0 length or already matches the end of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
// the second condition is not enough for UTF-8 strings
// it checked in test_condition()
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing suffix and adding
// back any characters that would have been stripped or
// or null terminating the shorter string
std::string tmpstring(word, tmpl);
if (strip.size()) {
tmpstring.append(strip);
}
const char* tmpword = tmpstring.c_str();
const char* endword = tmpword + tmpstring.size();
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then check if resulting
// root word in the dictionary
if (test_condition(endword, tmpword)) {
#ifdef SZOSZABLYA_POSSIBLE_ROOTS
fprintf(stdout, "%s %s %c\n", word, tmpword, aflag);
#endif
if ((he = pmyMgr->lookup(tmpword)) != NULL) {
do {
// check conditional suffix (enabled by prefix)
if ((TESTAFF(he->astr, aflag, he->alen) ||
(ep && ep->getCont() &&
TESTAFF(ep->getCont(), aflag, ep->getContLen()))) &&
(((optflags & aeXPRODUCT) == 0) ||
(ep && TESTAFF(he->astr, ep->getFlag(), he->alen)) ||
// enabled by prefix
((contclass) &&
(ep && TESTAFF(contclass, ep->getFlag(), contclasslen)))) &&
// handle cont. class
((!cclass) ||
((contclass) && TESTAFF(contclass, cclass, contclasslen))) &&
// check only in compound homonyms (bad flags)
(!badflag || !TESTAFF(he->astr, badflag, he->alen)) &&
// handle required flag
((!needflag) ||
(TESTAFF(he->astr, needflag, he->alen) ||
((contclass) && TESTAFF(contclass, needflag, contclasslen)))))
return he;
he = he->next_homonym; // check homonyms
} while (he);
}
}
}
return NULL;
}
// see if two-level suffix is present in the word
struct hentry* SfxEntry::check_twosfx(const char* word,
int len,
int optflags,
PfxEntry* ppfx,
const FLAG needflag) {
PfxEntry* ep = ppfx;
// if this suffix is being cross checked with a prefix
// but it does not support cross products skip it
if ((optflags & aeXPRODUCT) != 0 && (opts & aeXPRODUCT) == 0)
return NULL;
// upon entry suffix is 0 length or already matches the end of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing suffix and adding
// back any characters that would have been stripped or
// or null terminating the shorter string
std::string tmpword(word);
tmpword.resize(tmpl);
tmpword.append(strip);
tmpl += strip.size();
const char* beg = tmpword.c_str();
const char* end = beg + tmpl;
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then recall suffix_check
if (test_condition(end, beg)) {
struct hentry* he; // hash entry pointer
if (ppfx) {
// handle conditional suffix
if ((contclass) && TESTAFF(contclass, ep->getFlag(), contclasslen))
he = pmyMgr->suffix_check(tmpword.c_str(), tmpl, 0, NULL,
(FLAG)aflag, needflag, IN_CPD_NOT);
else
he = pmyMgr->suffix_check(tmpword.c_str(), tmpl, optflags, ppfx,
(FLAG)aflag, needflag, IN_CPD_NOT);
} else {
he = pmyMgr->suffix_check(tmpword.c_str(), tmpl, 0, NULL,
(FLAG)aflag, needflag, IN_CPD_NOT);
}
if (he)
return he;
}
}
return NULL;
}
// see if two-level suffix is present in the word
std::string SfxEntry::check_twosfx_morph(const char* word,
int len,
int optflags,
PfxEntry* ppfx,
const FLAG needflag) {
PfxEntry* ep = ppfx;
std::string result;
// if this suffix is being cross checked with a prefix
// but it does not support cross products skip it
if ((optflags & aeXPRODUCT) != 0 && (opts & aeXPRODUCT) == 0)
return result;
// upon entry suffix is 0 length or already matches the end of the word.
// So if the remaining root word has positive length
// and if there are enough chars in root word and added back strip chars
// to meet the number of characters conditions, then test it
int tmpl = len - appnd.size(); // length of tmpword
if ((tmpl > 0 || (tmpl == 0 && pmyMgr->get_fullstrip())) &&
(tmpl + strip.size() >= numconds)) {
// generate new root word by removing suffix and adding
// back any characters that would have been stripped or
// or null terminating the shorter string
std::string tmpword(word);
tmpword.resize(tmpl);
tmpword.append(strip);
tmpl += strip.size();
const char* beg = tmpword.c_str();
const char* end = beg + tmpl;
// now make sure all of the conditions on characters
// are met. Please see the appendix at the end of
// this file for more info on exactly what is being
// tested
// if all conditions are met then recall suffix_check
if (test_condition(end, beg)) {
if (ppfx) {
// handle conditional suffix
if ((contclass) && TESTAFF(contclass, ep->getFlag(), contclasslen)) {
std::string st = pmyMgr->suffix_check_morph(tmpword.c_str(), tmpl, 0, NULL, aflag,
needflag);
if (!st.empty()) {
if (ppfx->getMorph()) {
result.append(ppfx->getMorph());
result.append(" ");
}
result.append(st);
mychomp(result);
}
} else {
std::string st = pmyMgr->suffix_check_morph(tmpword.c_str(), tmpl, optflags, ppfx, aflag,
needflag);
if (!st.empty()) {
result.append(st);
mychomp(result);
}
}
} else {
std::string st = pmyMgr->suffix_check_morph(tmpword.c_str(), tmpl, 0, NULL, aflag, needflag);
if (!st.empty()) {
result.append(st);
mychomp(result);
}
}
}
}
return result;
}
// get next homonym with same affix
struct hentry* SfxEntry::get_next_homonym(struct hentry* he,
int optflags,
PfxEntry* ppfx,
const FLAG cclass,
const FLAG needflag) {
PfxEntry* ep = ppfx;
FLAG eFlag = ep ? ep->getFlag() : FLAG_NULL;
while (he->next_homonym) {
he = he->next_homonym;
if ((TESTAFF(he->astr, aflag, he->alen) ||
(ep && ep->getCont() &&
TESTAFF(ep->getCont(), aflag, ep->getContLen()))) &&
((optflags & aeXPRODUCT) == 0 || TESTAFF(he->astr, eFlag, he->alen) ||
// handle conditional suffix
((contclass) && TESTAFF(contclass, eFlag, contclasslen))) &&
// handle cont. class
((!cclass) ||
((contclass) && TESTAFF(contclass, cclass, contclasslen))) &&
// handle required flag
((!needflag) ||
(TESTAFF(he->astr, needflag, he->alen) ||
((contclass) && TESTAFF(contclass, needflag, contclasslen)))))
return he;
}
return NULL;
}
void SfxEntry::initReverseWord() {
rappnd = appnd;
reverseword(rappnd);
}
#if 0
Appendix: Understanding Affix Code
An affix is either a prefix or a suffix attached to root words to make
other words.
Basically a Prefix or a Suffix is set of AffEntry objects
which store information about the prefix or suffix along
with supporting routines to check if a word has a particular
prefix or suffix or a combination.
The structure affentry is defined as follows:
struct affentry
{
unsigned short aflag; // ID used to represent the affix
std::string strip; // string to strip before adding affix
std::string appnd; // the affix string to add
char numconds; // the number of conditions that must be met
char opts; // flag: aeXPRODUCT- combine both prefix and suffix
char conds[SETSIZE]; // array which encodes the conditions to be met
};
Here is a suffix borrowed from the en_US.aff file. This file
is whitespace delimited.
SFX D Y 4
SFX D 0 e d
SFX D y ied [^aeiou]y
SFX D 0 ed [^ey]
SFX D 0 ed [aeiou]y
This information can be interpreted as follows:
In the first line has 4 fields
Field
-----
1 SFX - indicates this is a suffix
2 D - is the name of the character flag which represents this suffix
3 Y - indicates it can be combined with prefixes (cross product)
4 4 - indicates that sequence of 4 affentry structures are needed to
properly store the affix information
The remaining lines describe the unique information for the 4 SfxEntry
objects that make up this affix. Each line can be interpreted
as follows: (note fields 1 and 2 are as a check against line 1 info)
Field
-----
1 SFX - indicates this is a suffix
2 D - is the name of the character flag for this affix
3 y - the string of chars to strip off before adding affix
(a 0 here indicates the NULL string)
4 ied - the string of affix characters to add
5 [^aeiou]y - the conditions which must be met before the affix
can be applied
Field 5 is interesting. Since this is a suffix, field 5 tells us that
there are 2 conditions that must be met. The first condition is that
the next to the last character in the word must *NOT* be any of the
following "a", "e", "i", "o" or "u". The second condition is that
the last character of the word must end in "y".
So how can we encode this information concisely and be able to
test for both conditions in a fast manner? The answer is found
but studying the wonderful ispell code of Geoff Kuenning, et.al.
(now available under a normal BSD license).
If we set up a conds array of 256 bytes indexed (0 to 255) and access it
using a character (cast to an unsigned char) of a string, we have 8 bits
of information we can store about that character. Specifically we
could use each bit to say if that character is allowed in any of the
last (or first for prefixes) 8 characters of the word.
Basically, each character at one end of the word (up to the number
of conditions) is used to index into the conds array and the resulting
value found there says whether the that character is valid for a
specific character position in the word.
For prefixes, it does this by setting bit 0 if that char is valid
in the first position, bit 1 if valid in the second position, and so on.
If a bit is not set, then that char is not valid for that postion in the
word.
If working with suffixes bit 0 is used for the character closest
to the front, bit 1 for the next character towards the end, ...,
with bit numconds-1 representing the last char at the end of the string.
Note: since entries in the conds[] are 8 bits, only 8 conditions
(read that only 8 character positions) can be examined at one
end of a word (the beginning for prefixes and the end for suffixes.
So to make this clearer, lets encode the conds array values for the
first two affentries for the suffix D described earlier.
For the first affentry:
numconds = 1 (only examine the last character)
conds['e'] = (1 << 0) (the word must end in an E)
all others are all 0
For the second affentry:
numconds = 2 (only examine the last two characters)
conds[X] = conds[X] | (1 << 0) (aeiou are not allowed)
where X is all characters *but* a, e, i, o, or u
conds['y'] = (1 << 1) (the last char must be a y)
all other bits for all other entries in the conds array are zero
#endif
|