1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#include <string.h>
#include <stdlib.h>
#include "ge.h"
#include "curve_sigs.h"
#include "crypto_sign.h"
void curve25519_keygen(unsigned char* curve25519_pubkey_out,
const unsigned char* curve25519_privkey_in)
{
ge_p3 ed; /* Ed25519 pubkey point */
fe ed_y, ed_y_plus_one, one_minus_ed_y, inv_one_minus_ed_y;
fe mont_x;
/* Perform a fixed-base multiplication of the Edwards base point,
(which is efficient due to precalculated tables), then convert
to the Curve25519 montgomery-format public key. In particular,
convert Curve25519's "montgomery" x-coordinate into an Ed25519
"edwards" y-coordinate:
mont_x = (ed_y + 1) / (1 - ed_y)
with projective coordinates:
mont_x = (ed_y + ed_z) / (ed_z - ed_y)
NOTE: ed_y=1 is converted to mont_x=0 since fe_invert is mod-exp
*/
ge_scalarmult_base(&ed, curve25519_privkey_in);
fe_add(ed_y_plus_one, ed.Y, ed.Z);
fe_sub(one_minus_ed_y, ed.Z, ed.Y);
fe_invert(inv_one_minus_ed_y, one_minus_ed_y);
fe_mul(mont_x, ed_y_plus_one, inv_one_minus_ed_y);
fe_tobytes(curve25519_pubkey_out, mont_x);
}
int curve25519_sign(unsigned char* signature_out,
const unsigned char* curve25519_privkey,
const unsigned char* msg, const unsigned long msg_len,
const unsigned char* random)
{
ge_p3 ed_pubkey_point; /* Ed25519 pubkey point */
unsigned char ed_pubkey[32]; /* Ed25519 encoded pubkey */
unsigned char *sigbuf; /* working buffer */
unsigned char sign_bit = 0;
if ((sigbuf = malloc(msg_len + 128)) == 0) {
memset(signature_out, 0, 64);
return -1;
}
/* Convert the Curve25519 privkey to an Ed25519 public key */
ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey);
ge_p3_tobytes(ed_pubkey, &ed_pubkey_point);
sign_bit = ed_pubkey[31] & 0x80;
/* Perform an Ed25519 signature with explicit private key */
crypto_sign_modified(sigbuf, msg, msg_len, curve25519_privkey,
ed_pubkey, random);
memmove(signature_out, sigbuf, 64);
/* Encode the sign bit into signature (in unused high bit of S) */
signature_out[63] &= 0x7F; /* bit should be zero already, but just in case */
signature_out[63] |= sign_bit;
free(sigbuf);
return 0;
}
int curve25519_verify(const unsigned char* signature,
const unsigned char* curve25519_pubkey,
const unsigned char* msg, const unsigned long msg_len)
{
fe mont_x, mont_x_minus_one, mont_x_plus_one, inv_mont_x_plus_one;
fe one;
fe ed_y;
unsigned char ed_pubkey[32];
unsigned long long some_retval;
unsigned char *verifybuf = NULL; /* working buffer */
unsigned char *verifybuf2 = NULL; /* working buffer #2 */
int result;
if ((verifybuf = malloc(msg_len + 64)) == 0) {
result = -1;
goto err;
}
if ((verifybuf2 = malloc(msg_len + 64)) == 0) {
result = -1;
goto err;
}
/* Convert the Curve25519 public key into an Ed25519 public key. In
particular, convert Curve25519's "montgomery" x-coordinate into an
Ed25519 "edwards" y-coordinate:
ed_y = (mont_x - 1) / (mont_x + 1)
NOTE: mont_x=-1 is converted to ed_y=0 since fe_invert is mod-exp
Then move the sign bit into the pubkey from the signature.
*/
fe_frombytes(mont_x, curve25519_pubkey);
fe_1(one);
fe_sub(mont_x_minus_one, mont_x, one);
fe_add(mont_x_plus_one, mont_x, one);
fe_invert(inv_mont_x_plus_one, mont_x_plus_one);
fe_mul(ed_y, mont_x_minus_one, inv_mont_x_plus_one);
fe_tobytes(ed_pubkey, ed_y);
/* Copy the sign bit, and remove it from signature */
ed_pubkey[31] &= 0x7F; /* bit should be zero already, but just in case */
ed_pubkey[31] |= (signature[63] & 0x80);
memmove(verifybuf, signature, 64);
verifybuf[63] &= 0x7F;
memmove(verifybuf+64, msg, msg_len);
/* Then perform a normal Ed25519 verification, return 0 on success */
/* The below call has a strange API: */
/* verifybuf = R || S || message */
/* verifybuf2 = internal to next call gets a copy of verifybuf, S gets
replaced with pubkey for hashing, then the whole thing gets zeroized
(if bad sig), or contains a copy of msg (good sig) */
result = crypto_sign_open(verifybuf2, &some_retval, verifybuf, 64 + msg_len, ed_pubkey);
err:
if (verifybuf != NULL) {
free(verifybuf);
}
if (verifybuf2 != NULL) {
free(verifybuf2);
}
return result;
}
|