1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#include <assert.h>
#include "fe.h"
#include "crypto_additions.h"
/* sqrt(-1) */
static unsigned char i_bytes[32] = {
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b
};
/* Preconditions: a is square or zero */
void fe_sqrt(fe out, const fe a)
{
fe exp, b, b2, bi, i;
fe_frombytes(i, i_bytes);
fe_pow22523(exp, a); /* b = a^(q-5)/8 */
/* PRECONDITION: legendre symbol == 1 (square) or 0 (a == zero) */
#ifndef NDEBUG
fe legendre, zero, one;
fe_sq(legendre, exp); /* in^((q-5)/4) */
fe_sq(legendre, legendre); /* in^((q-5)/2) */
fe_mul(legendre, legendre, a); /* in^((q-3)/2) */
fe_mul(legendre, legendre, a); /* in^((q-1)/2) */
fe_0(zero);
fe_1(one);
assert(fe_isequal(legendre, zero) || fe_isequal(legendre, one));
#endif
fe_mul(b, a, exp); /* b = a * a^(q-5)/8 */
fe_sq(b2, b); /* b^2 = a * a^(q-1)/4 */
/* note b^4 == a^2, so b^2 == a or -a
* if b^2 != a, multiply it by sqrt(-1) */
fe_mul(bi, b, i);
fe_cmov(b, bi, 1 ^ fe_isequal(b2, a));
fe_copy(out, b);
/* PRECONDITION: out^2 == a */
#ifndef NDEBUG
fe_sq(b2, out);
assert(fe_isequal(a, b2));
#endif
}
|