summaryrefslogtreecommitdiff
path: root/libs/liblua/src/lcode.c
blob: 14d41f1a7ef47751e5b01410ce6cf8494b946b80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
/*
** $Id: lcode.c $
** Code generator for Lua
** See Copyright Notice in lua.h
*/

#define lcode_c
#define LUA_CORE

#include "lprefix.h"


#include <limits.h>
#include <math.h>
#include <stdlib.h>

#include "lua.h"

#include "lcode.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "llex.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "lstring.h"
#include "ltable.h"
#include "lvm.h"


/* Maximum number of registers in a Lua function (must fit in 8 bits) */
#define MAXREGS		255


#define hasjumps(e)	((e)->t != (e)->f)


static int codesJ (FuncState *fs, OpCode o, int sj, int k);



/* semantic error */
l_noret luaK_semerror (LexState *ls, const char *msg) {
  ls->t.token = 0;  /* remove "near <token>" from final message */
  luaX_syntaxerror(ls, msg);
}


/*
** If expression is a numeric constant, fills 'v' with its value
** and returns 1. Otherwise, returns 0.
*/
static int tonumeral (const expdesc *e, TValue *v) {
  if (hasjumps(e))
    return 0;  /* not a numeral */
  switch (e->k) {
    case VKINT:
      if (v) setivalue(v, e->u.ival);
      return 1;
    case VKFLT:
      if (v) setfltvalue(v, e->u.nval);
      return 1;
    default: return 0;
  }
}


/*
** Get the constant value from a constant expression
*/
static TValue *const2val (FuncState *fs, const expdesc *e) {
  lua_assert(e->k == VCONST);
  return &fs->ls->dyd->actvar.arr[e->u.info].k;
}


/*
** If expression is a constant, fills 'v' with its value
** and returns 1. Otherwise, returns 0.
*/
int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  if (hasjumps(e))
    return 0;  /* not a constant */
  switch (e->k) {
    case VFALSE:
      setbfvalue(v);
      return 1;
    case VTRUE:
      setbtvalue(v);
      return 1;
    case VNIL:
      setnilvalue(v);
      return 1;
    case VKSTR: {
      setsvalue(fs->ls->L, v, e->u.strval);
      return 1;
    }
    case VCONST: {
      setobj(fs->ls->L, v, const2val(fs, e));
      return 1;
    }
    default: return tonumeral(e, v);
  }
}


/*
** Return the previous instruction of the current code. If there
** may be a jump target between the current instruction and the
** previous one, return an invalid instruction (to avoid wrong
** optimizations).
*/
static Instruction *previousinstruction (FuncState *fs) {
  static const Instruction invalidinstruction = ~(Instruction)0;
  if (fs->pc > fs->lasttarget)
    return &fs->f->code[fs->pc - 1];  /* previous instruction */
  else
    return cast(Instruction*, &invalidinstruction);
}


/*
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
** instruction is also OP_LOADNIL and ranges are compatible, adjust
** range of previous instruction instead of emitting a new one. (For
** instance, 'local a; local b' will generate a single opcode.)
*/
void luaK_nil (FuncState *fs, int from, int n) {
  int l = from + n - 1;  /* last register to set nil */
  Instruction *previous = previousinstruction(fs);
  if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
    int pfrom = GETARG_A(*previous);  /* get previous range */
    int pl = pfrom + GETARG_B(*previous);
    if ((pfrom <= from && from <= pl + 1) ||
        (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
      if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
      if (pl > l) l = pl;  /* l = max(l, pl) */
      SETARG_A(*previous, from);
      SETARG_B(*previous, l - from);
      return;
    }  /* else go through */
  }
  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
}


/*
** Gets the destination address of a jump instruction. Used to traverse
** a list of jumps.
*/
static int getjump (FuncState *fs, int pc) {
  int offset = GETARG_sJ(fs->f->code[pc]);
  if (offset == NO_JUMP)  /* point to itself represents end of list */
    return NO_JUMP;  /* end of list */
  else
    return (pc+1)+offset;  /* turn offset into absolute position */
}


/*
** Fix jump instruction at position 'pc' to jump to 'dest'.
** (Jump addresses are relative in Lua)
*/
static void fixjump (FuncState *fs, int pc, int dest) {
  Instruction *jmp = &fs->f->code[pc];
  int offset = dest - (pc + 1);
  lua_assert(dest != NO_JUMP);
  if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
    luaX_syntaxerror(fs->ls, "control structure too long");
  lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  SETARG_sJ(*jmp, offset);
}


/*
** Concatenate jump-list 'l2' into jump-list 'l1'
*/
void luaK_concat (FuncState *fs, int *l1, int l2) {
  if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
  else if (*l1 == NO_JUMP)  /* no original list? */
    *l1 = l2;  /* 'l1' points to 'l2' */
  else {
    int list = *l1;
    int next;
    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
      list = next;
    fixjump(fs, list, l2);  /* last element links to 'l2' */
  }
}


/*
** Create a jump instruction and return its position, so its destination
** can be fixed later (with 'fixjump').
*/
int luaK_jump (FuncState *fs) {
  return codesJ(fs, OP_JMP, NO_JUMP, 0);
}


/*
** Code a 'return' instruction
*/
void luaK_ret (FuncState *fs, int first, int nret) {
  OpCode op;
  switch (nret) {
    case 0: op = OP_RETURN0; break;
    case 1: op = OP_RETURN1; break;
    default: op = OP_RETURN; break;
  }
  luaK_codeABC(fs, op, first, nret + 1, 0);
}


/*
** Code a "conditional jump", that is, a test or comparison opcode
** followed by a jump. Return jump position.
*/
static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  luaK_codeABCk(fs, op, A, B, C, k);
  return luaK_jump(fs);
}


/*
** returns current 'pc' and marks it as a jump target (to avoid wrong
** optimizations with consecutive instructions not in the same basic block).
*/
int luaK_getlabel (FuncState *fs) {
  fs->lasttarget = fs->pc;
  return fs->pc;
}


/*
** Returns the position of the instruction "controlling" a given
** jump (that is, its condition), or the jump itself if it is
** unconditional.
*/
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  Instruction *pi = &fs->f->code[pc];
  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
    return pi-1;
  else
    return pi;
}


/*
** Patch destination register for a TESTSET instruction.
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
** register. Otherwise, change instruction to a simple 'TEST' (produces
** no register value)
*/
static int patchtestreg (FuncState *fs, int node, int reg) {
  Instruction *i = getjumpcontrol(fs, node);
  if (GET_OPCODE(*i) != OP_TESTSET)
    return 0;  /* cannot patch other instructions */
  if (reg != NO_REG && reg != GETARG_B(*i))
    SETARG_A(*i, reg);
  else {
     /* no register to put value or register already has the value;
        change instruction to simple test */
    *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  }
  return 1;
}


/*
** Traverse a list of tests ensuring no one produces a value
*/
static void removevalues (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list))
      patchtestreg(fs, list, NO_REG);
}


/*
** Traverse a list of tests, patching their destination address and
** registers: tests producing values jump to 'vtarget' (and put their
** values in 'reg'), other tests jump to 'dtarget'.
*/
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
                          int dtarget) {
  while (list != NO_JUMP) {
    int next = getjump(fs, list);
    if (patchtestreg(fs, list, reg))
      fixjump(fs, list, vtarget);
    else
      fixjump(fs, list, dtarget);  /* jump to default target */
    list = next;
  }
}


/*
** Path all jumps in 'list' to jump to 'target'.
** (The assert means that we cannot fix a jump to a forward address
** because we only know addresses once code is generated.)
*/
void luaK_patchlist (FuncState *fs, int list, int target) {
  lua_assert(target <= fs->pc);
  patchlistaux(fs, list, target, NO_REG, target);
}


void luaK_patchtohere (FuncState *fs, int list) {
  int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
  luaK_patchlist(fs, list, hr);
}


/*
** MAXimum number of successive Instructions WiTHout ABSolute line
** information.
*/
#if !defined(MAXIWTHABS)
#define MAXIWTHABS	120
#endif


/* limit for difference between lines in relative line info. */
#define LIMLINEDIFF	0x80


/*
** Save line info for a new instruction. If difference from last line
** does not fit in a byte, of after that many instructions, save a new
** absolute line info; (in that case, the special value 'ABSLINEINFO'
** in 'lineinfo' signals the existence of this absolute information.)
** Otherwise, store the difference from last line in 'lineinfo'.
*/
static void savelineinfo (FuncState *fs, Proto *f, int line) {
  int linedif = line - fs->previousline;
  int pc = fs->pc - 1;  /* last instruction coded */
  if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) {
    luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
                    f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
    f->abslineinfo[fs->nabslineinfo].pc = pc;
    f->abslineinfo[fs->nabslineinfo++].line = line;
    linedif = ABSLINEINFO;  /* signal that there is absolute information */
    fs->iwthabs = 0;  /* restart counter */
  }
  luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
                  MAX_INT, "opcodes");
  f->lineinfo[pc] = linedif;
  fs->previousline = line;  /* last line saved */
}


/*
** Remove line information from the last instruction.
** If line information for that instruction is absolute, set 'iwthabs'
** above its max to force the new (replacing) instruction to have
** absolute line info, too.
*/
static void removelastlineinfo (FuncState *fs) {
  Proto *f = fs->f;
  int pc = fs->pc - 1;  /* last instruction coded */
  if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
    fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
    fs->iwthabs--;  /* undo previous increment */
  }
  else {  /* absolute line information */
    lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
    fs->nabslineinfo--;  /* remove it */
    fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
  }
}


/*
** Remove the last instruction created, correcting line information
** accordingly.
*/
static void removelastinstruction (FuncState *fs) {
  removelastlineinfo(fs);
  fs->pc--;
}


/*
** Emit instruction 'i', checking for array sizes and saving also its
** line information. Return 'i' position.
*/
int luaK_code (FuncState *fs, Instruction i) {
  Proto *f = fs->f;
  /* put new instruction in code array */
  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
                  MAX_INT, "opcodes");
  f->code[fs->pc++] = i;
  savelineinfo(fs, f, fs->ls->lastline);
  return fs->pc - 1;  /* index of new instruction */
}


/*
** Format and emit an 'iABC' instruction. (Assertions check consistency
** of parameters versus opcode.)
*/
int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  lua_assert(getOpMode(o) == iABC);
  lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
             c <= MAXARG_C && (k & ~1) == 0);
  return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
}


/*
** Format and emit an 'iABx' instruction.
*/
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  lua_assert(getOpMode(o) == iABx);
  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  return luaK_code(fs, CREATE_ABx(o, a, bc));
}


/*
** Format and emit an 'iAsBx' instruction.
*/
int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  unsigned int b = bc + OFFSET_sBx;
  lua_assert(getOpMode(o) == iAsBx);
  lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  return luaK_code(fs, CREATE_ABx(o, a, b));
}


/*
** Format and emit an 'isJ' instruction.
*/
static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  unsigned int j = sj + OFFSET_sJ;
  lua_assert(getOpMode(o) == isJ);
  lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  return luaK_code(fs, CREATE_sJ(o, j, k));
}


/*
** Emit an "extra argument" instruction (format 'iAx')
*/
static int codeextraarg (FuncState *fs, int a) {
  lua_assert(a <= MAXARG_Ax);
  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
}


/*
** Emit a "load constant" instruction, using either 'OP_LOADK'
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
** instruction with "extra argument".
*/
static int luaK_codek (FuncState *fs, int reg, int k) {
  if (k <= MAXARG_Bx)
    return luaK_codeABx(fs, OP_LOADK, reg, k);
  else {
    int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
    codeextraarg(fs, k);
    return p;
  }
}


/*
** Check register-stack level, keeping track of its maximum size
** in field 'maxstacksize'
*/
void luaK_checkstack (FuncState *fs, int n) {
  int newstack = fs->freereg + n;
  if (newstack > fs->f->maxstacksize) {
    if (newstack >= MAXREGS)
      luaX_syntaxerror(fs->ls,
        "function or expression needs too many registers");
    fs->f->maxstacksize = cast_byte(newstack);
  }
}


/*
** Reserve 'n' registers in register stack
*/
void luaK_reserveregs (FuncState *fs, int n) {
  luaK_checkstack(fs, n);
  fs->freereg += n;
}


/*
** Free register 'reg', if it is neither a constant index nor
** a local variable.
)
*/
static void freereg (FuncState *fs, int reg) {
  if (reg >= luaY_nvarstack(fs)) {
    fs->freereg--;
    lua_assert(reg == fs->freereg);
  }
}


/*
** Free two registers in proper order
*/
static void freeregs (FuncState *fs, int r1, int r2) {
  if (r1 > r2) {
    freereg(fs, r1);
    freereg(fs, r2);
  }
  else {
    freereg(fs, r2);
    freereg(fs, r1);
  }
}


/*
** Free register used by expression 'e' (if any)
*/
static void freeexp (FuncState *fs, expdesc *e) {
  if (e->k == VNONRELOC)
    freereg(fs, e->u.info);
}


/*
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
** order.
*/
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  freeregs(fs, r1, r2);
}


/*
** Add constant 'v' to prototype's list of constants (field 'k').
** Use scanner's table to cache position of constants in constant list
** and try to reuse constants. Because some values should not be used
** as keys (nil cannot be a key, integer keys can collapse with float
** keys), the caller must provide a useful 'key' for indexing the cache.
*/
static int addk (FuncState *fs, TValue *key, TValue *v) {
  lua_State *L = fs->ls->L;
  Proto *f = fs->f;
  TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
  int k, oldsize;
  if (ttisinteger(idx)) {  /* is there an index there? */
    k = cast_int(ivalue(idx));
    /* correct value? (warning: must distinguish floats from integers!) */
    if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
                      luaV_rawequalobj(&f->k[k], v))
      return k;  /* reuse index */
  }
  /* constant not found; create a new entry */
  oldsize = f->sizek;
  k = fs->nk;
  /* numerical value does not need GC barrier;
     table has no metatable, so it does not need to invalidate cache */
  setivalue(idx, k);
  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  setobj(L, &f->k[k], v);
  fs->nk++;
  luaC_barrier(L, f, v);
  return k;
}


/*
** Add a string to list of constants and return its index.
*/
static int stringK (FuncState *fs, TString *s) {
  TValue o;
  setsvalue(fs->ls->L, &o, s);
  return addk(fs, &o, &o);  /* use string itself as key */
}


/*
** Add an integer to list of constants and return its index.
** Integers use userdata as keys to avoid collision with floats with
** same value; conversion to 'void*' is used only for hashing, so there
** are no "precision" problems.
*/
static int luaK_intK (FuncState *fs, lua_Integer n) {
  TValue k, o;
  setpvalue(&k, cast_voidp(cast_sizet(n)));
  setivalue(&o, n);
  return addk(fs, &k, &o);
}

/*
** Add a float to list of constants and return its index.
*/
static int luaK_numberK (FuncState *fs, lua_Number r) {
  TValue o;
  setfltvalue(&o, r);
  return addk(fs, &o, &o);  /* use number itself as key */
}


/*
** Add a false to list of constants and return its index.
*/
static int boolF (FuncState *fs) {
  TValue o;
  setbfvalue(&o);
  return addk(fs, &o, &o);  /* use boolean itself as key */
}


/*
** Add a true to list of constants and return its index.
*/
static int boolT (FuncState *fs) {
  TValue o;
  setbtvalue(&o);
  return addk(fs, &o, &o);  /* use boolean itself as key */
}


/*
** Add nil to list of constants and return its index.
*/
static int nilK (FuncState *fs) {
  TValue k, v;
  setnilvalue(&v);
  /* cannot use nil as key; instead use table itself to represent nil */
  sethvalue(fs->ls->L, &k, fs->ls->h);
  return addk(fs, &k, &v);
}


/*
** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
** overflows in the hidden addition inside 'int2sC'.
*/
static int fitsC (lua_Integer i) {
  return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
}


/*
** Check whether 'i' can be stored in an 'sBx' operand.
*/
static int fitsBx (lua_Integer i) {
  return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
}


void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  if (fitsBx(i))
    luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  else
    luaK_codek(fs, reg, luaK_intK(fs, i));
}


static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  lua_Integer fi;
  if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
    luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  else
    luaK_codek(fs, reg, luaK_numberK(fs, f));
}


/*
** Convert a constant in 'v' into an expression description 'e'
*/
static void const2exp (TValue *v, expdesc *e) {
  switch (ttypetag(v)) {
    case LUA_VNUMINT:
      e->k = VKINT; e->u.ival = ivalue(v);
      break;
    case LUA_VNUMFLT:
      e->k = VKFLT; e->u.nval = fltvalue(v);
      break;
    case LUA_VFALSE:
      e->k = VFALSE;
      break;
    case LUA_VTRUE:
      e->k = VTRUE;
      break;
    case LUA_VNIL:
      e->k = VNIL;
      break;
    case LUA_VSHRSTR:  case LUA_VLNGSTR:
      e->k = VKSTR; e->u.strval = tsvalue(v);
      break;
    default: lua_assert(0);
  }
}


/*
** Fix an expression to return the number of results 'nresults'.
** 'e' must be a multi-ret expression (function call or vararg).
*/
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  Instruction *pc = &getinstruction(fs, e);
  if (e->k == VCALL)  /* expression is an open function call? */
    SETARG_C(*pc, nresults + 1);
  else {
    lua_assert(e->k == VVARARG);
    SETARG_C(*pc, nresults + 1);
    SETARG_A(*pc, fs->freereg);
    luaK_reserveregs(fs, 1);
  }
}


/*
** Convert a VKSTR to a VK
*/
static void str2K (FuncState *fs, expdesc *e) {
  lua_assert(e->k == VKSTR);
  e->u.info = stringK(fs, e->u.strval);
  e->k = VK;
}


/*
** Fix an expression to return one result.
** If expression is not a multi-ret expression (function call or
** vararg), it already returns one result, so nothing needs to be done.
** Function calls become VNONRELOC expressions (as its result comes
** fixed in the base register of the call), while vararg expressions
** become VRELOC (as OP_VARARG puts its results where it wants).
** (Calls are created returning one result, so that does not need
** to be fixed.)
*/
void luaK_setoneret (FuncState *fs, expdesc *e) {
  if (e->k == VCALL) {  /* expression is an open function call? */
    /* already returns 1 value */
    lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
    e->k = VNONRELOC;  /* result has fixed position */
    e->u.info = GETARG_A(getinstruction(fs, e));
  }
  else if (e->k == VVARARG) {
    SETARG_C(getinstruction(fs, e), 2);
    e->k = VRELOC;  /* can relocate its simple result */
  }
}


/*
** Ensure that expression 'e' is not a variable (nor a <const>).
** (Expression still may have jump lists.)
*/
void luaK_dischargevars (FuncState *fs, expdesc *e) {
  switch (e->k) {
    case VCONST: {
      const2exp(const2val(fs, e), e);
      break;
    }
    case VLOCAL: {  /* already in a register */
      e->u.info = e->u.var.sidx;
      e->k = VNONRELOC;  /* becomes a non-relocatable value */
      break;
    }
    case VUPVAL: {  /* move value to some (pending) register */
      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
      e->k = VRELOC;
      break;
    }
    case VINDEXUP: {
      e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOC;
      break;
    }
    case VINDEXI: {
      freereg(fs, e->u.ind.t);
      e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOC;
      break;
    }
    case VINDEXSTR: {
      freereg(fs, e->u.ind.t);
      e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOC;
      break;
    }
    case VINDEXED: {
      freeregs(fs, e->u.ind.t, e->u.ind.idx);
      e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOC;
      break;
    }
    case VVARARG: case VCALL: {
      luaK_setoneret(fs, e);
      break;
    }
    default: break;  /* there is one value available (somewhere) */
  }
}


/*
** Ensure expression value is in register 'reg', making 'e' a
** non-relocatable expression.
** (Expression still may have jump lists.)
*/
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: {
      luaK_nil(fs, reg, 1);
      break;
    }
    case VFALSE: {
      luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
      break;
    }
    case VTRUE: {
      luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
      break;
    }
    case VKSTR: {
      str2K(fs, e);
    }  /* FALLTHROUGH */
    case VK: {
      luaK_codek(fs, reg, e->u.info);
      break;
    }
    case VKFLT: {
      luaK_float(fs, reg, e->u.nval);
      break;
    }
    case VKINT: {
      luaK_int(fs, reg, e->u.ival);
      break;
    }
    case VRELOC: {
      Instruction *pc = &getinstruction(fs, e);
      SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
      break;
    }
    case VNONRELOC: {
      if (reg != e->u.info)
        luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
      break;
    }
    default: {
      lua_assert(e->k == VJMP);
      return;  /* nothing to do... */
    }
  }
  e->u.info = reg;
  e->k = VNONRELOC;
}


/*
** Ensure expression value is in a register, making 'e' a
** non-relocatable expression.
** (Expression still may have jump lists.)
*/
static void discharge2anyreg (FuncState *fs, expdesc *e) {
  if (e->k != VNONRELOC) {  /* no fixed register yet? */
    luaK_reserveregs(fs, 1);  /* get a register */
    discharge2reg(fs, e, fs->freereg-1);  /* put value there */
  }
}


static int code_loadbool (FuncState *fs, int A, OpCode op) {
  luaK_getlabel(fs);  /* those instructions may be jump targets */
  return luaK_codeABC(fs, op, A, 0, 0);
}


/*
** check whether list has any jump that do not produce a value
** or produce an inverted value
*/
static int need_value (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list)) {
    Instruction i = *getjumpcontrol(fs, list);
    if (GET_OPCODE(i) != OP_TESTSET) return 1;
  }
  return 0;  /* not found */
}


/*
** Ensures final expression result (which includes results from its
** jump lists) is in register 'reg'.
** If expression has jumps, need to patch these jumps either to
** its final position or to "load" instructions (for those tests
** that do not produce values).
*/
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  discharge2reg(fs, e, reg);
  if (e->k == VJMP)  /* expression itself is a test? */
    luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
  if (hasjumps(e)) {
    int final;  /* position after whole expression */
    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
    if (need_value(fs, e->t) || need_value(fs, e->f)) {
      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
      p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
      p_t = code_loadbool(fs, reg, OP_LOADTRUE);
      /* jump around these booleans if 'e' is not a test */
      luaK_patchtohere(fs, fj);
    }
    final = luaK_getlabel(fs);
    patchlistaux(fs, e->f, final, reg, p_f);
    patchlistaux(fs, e->t, final, reg, p_t);
  }
  e->f = e->t = NO_JUMP;
  e->u.info = reg;
  e->k = VNONRELOC;
}


/*
** Ensures final expression result is in next available register.
*/
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  freeexp(fs, e);
  luaK_reserveregs(fs, 1);
  exp2reg(fs, e, fs->freereg - 1);
}


/*
** Ensures final expression result is in some (any) register
** and return that register.
*/
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  if (e->k == VNONRELOC) {  /* expression already has a register? */
    if (!hasjumps(e))  /* no jumps? */
      return e->u.info;  /* result is already in a register */
    if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
      exp2reg(fs, e, e->u.info);  /* put final result in it */
      return e->u.info;
    }
    /* else expression has jumps and cannot change its register
       to hold the jump values, because it is a local variable.
       Go through to the default case. */
  }
  luaK_exp2nextreg(fs, e);  /* default: use next available register */
  return e->u.info;
}


/*
** Ensures final expression result is either in a register
** or in an upvalue.
*/
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  if (e->k != VUPVAL || hasjumps(e))
    luaK_exp2anyreg(fs, e);
}


/*
** Ensures final expression result is either in a register
** or it is a constant.
*/
void luaK_exp2val (FuncState *fs, expdesc *e) {
  if (hasjumps(e))
    luaK_exp2anyreg(fs, e);
  else
    luaK_dischargevars(fs, e);
}


/*
** Try to make 'e' a K expression with an index in the range of R/K
** indices. Return true iff succeeded.
*/
static int luaK_exp2K (FuncState *fs, expdesc *e) {
  if (!hasjumps(e)) {
    int info;
    switch (e->k) {  /* move constants to 'k' */
      case VTRUE: info = boolT(fs); break;
      case VFALSE: info = boolF(fs); break;
      case VNIL: info = nilK(fs); break;
      case VKINT: info = luaK_intK(fs, e->u.ival); break;
      case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
      case VKSTR: info = stringK(fs, e->u.strval); break;
      case VK: info = e->u.info; break;
      default: return 0;  /* not a constant */
    }
    if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
      e->k = VK;  /* make expression a 'K' expression */
      e->u.info = info;
      return 1;
    }
  }
  /* else, expression doesn't fit; leave it unchanged */
  return 0;
}


/*
** Ensures final expression result is in a valid R/K index
** (that is, it is either in a register or in 'k' with an index
** in the range of R/K indices).
** Returns 1 iff expression is K.
*/
int luaK_exp2RK (FuncState *fs, expdesc *e) {
  if (luaK_exp2K(fs, e))
    return 1;
  else {  /* not a constant in the right range: put it in a register */
    luaK_exp2anyreg(fs, e);
    return 0;
  }
}


static void codeABRK (FuncState *fs, OpCode o, int a, int b,
                      expdesc *ec) {
  int k = luaK_exp2RK(fs, ec);
  luaK_codeABCk(fs, o, a, b, ec->u.info, k);
}


/*
** Generate code to store result of expression 'ex' into variable 'var'.
*/
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  switch (var->k) {
    case VLOCAL: {
      freeexp(fs, ex);
      exp2reg(fs, ex, var->u.var.sidx);  /* compute 'ex' into proper place */
      return;
    }
    case VUPVAL: {
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
      break;
    }
    case VINDEXUP: {
      codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
      break;
    }
    case VINDEXI: {
      codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
      break;
    }
    case VINDEXSTR: {
      codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
      break;
    }
    case VINDEXED: {
      codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
      break;
    }
    default: lua_assert(0);  /* invalid var kind to store */
  }
  freeexp(fs, ex);
}


/*
** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
*/
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  int ereg;
  luaK_exp2anyreg(fs, e);
  ereg = e->u.info;  /* register where 'e' was placed */
  freeexp(fs, e);
  e->u.info = fs->freereg;  /* base register for op_self */
  e->k = VNONRELOC;  /* self expression has a fixed register */
  luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
  codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  freeexp(fs, key);
}


/*
** Negate condition 'e' (where 'e' is a comparison).
*/
static void negatecondition (FuncState *fs, expdesc *e) {
  Instruction *pc = getjumpcontrol(fs, e->u.info);
  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
                                           GET_OPCODE(*pc) != OP_TEST);
  SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
}


/*
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
** is true, code will jump if 'e' is true.) Return jump position.
** Optimize when 'e' is 'not' something, inverting the condition
** and removing the 'not'.
*/
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  if (e->k == VRELOC) {
    Instruction ie = getinstruction(fs, e);
    if (GET_OPCODE(ie) == OP_NOT) {
      removelastinstruction(fs);  /* remove previous OP_NOT */
      return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
    }
    /* else go through */
  }
  discharge2anyreg(fs, e);
  freeexp(fs, e);
  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
}


/*
** Emit code to go through if 'e' is true, jump otherwise.
*/
void luaK_goiftrue (FuncState *fs, expdesc *e) {
  int pc;  /* pc of new jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VJMP: {  /* condition? */
      negatecondition(fs, e);  /* jump when it is false */
      pc = e->u.info;  /* save jump position */
      break;
    }
    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
      pc = NO_JUMP;  /* always true; do nothing */
      break;
    }
    default: {
      pc = jumponcond(fs, e, 0);  /* jump when false */
      break;
    }
  }
  luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
  luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
  e->t = NO_JUMP;
}


/*
** Emit code to go through if 'e' is false, jump otherwise.
*/
void luaK_goiffalse (FuncState *fs, expdesc *e) {
  int pc;  /* pc of new jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VJMP: {
      pc = e->u.info;  /* already jump if true */
      break;
    }
    case VNIL: case VFALSE: {
      pc = NO_JUMP;  /* always false; do nothing */
      break;
    }
    default: {
      pc = jumponcond(fs, e, 1);  /* jump if true */
      break;
    }
  }
  luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
  luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
  e->f = NO_JUMP;
}


/*
** Code 'not e', doing constant folding.
*/
static void codenot (FuncState *fs, expdesc *e) {
  switch (e->k) {
    case VNIL: case VFALSE: {
      e->k = VTRUE;  /* true == not nil == not false */
      break;
    }
    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
      e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
      break;
    }
    case VJMP: {
      negatecondition(fs, e);
      break;
    }
    case VRELOC:
    case VNONRELOC: {
      discharge2anyreg(fs, e);
      freeexp(fs, e);
      e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
      e->k = VRELOC;
      break;
    }
    default: lua_assert(0);  /* cannot happen */
  }
  /* interchange true and false lists */
  { int temp = e->f; e->f = e->t; e->t = temp; }
  removevalues(fs, e->f);  /* values are useless when negated */
  removevalues(fs, e->t);
}


/*
** Check whether expression 'e' is a small literal string
*/
static int isKstr (FuncState *fs, expdesc *e) {
  return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
          ttisshrstring(&fs->f->k[e->u.info]));
}

/*
** Check whether expression 'e' is a literal integer.
*/
int luaK_isKint (expdesc *e) {
  return (e->k == VKINT && !hasjumps(e));
}


/*
** Check whether expression 'e' is a literal integer in
** proper range to fit in register C
*/
static int isCint (expdesc *e) {
  return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
}


/*
** Check whether expression 'e' is a literal integer in
** proper range to fit in register sC
*/
static int isSCint (expdesc *e) {
  return luaK_isKint(e) && fitsC(e->u.ival);
}


/*
** Check whether expression 'e' is a literal integer or float in
** proper range to fit in a register (sB or sC).
*/
static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  lua_Integer i;
  if (e->k == VKINT)
    i = e->u.ival;
  else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
    *isfloat = 1;
  else
    return 0;  /* not a number */
  if (!hasjumps(e) && fitsC(i)) {
    *pi = int2sC(cast_int(i));
    return 1;
  }
  else
    return 0;
}


/*
** Create expression 't[k]'. 't' must have its final result already in a
** register or upvalue. Upvalues can only be indexed by literal strings.
** Keys can be literal strings in the constant table or arbitrary
** values in registers.
*/
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  if (k->k == VKSTR)
    str2K(fs, k);
  lua_assert(!hasjumps(t) &&
             (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
    luaK_exp2anyreg(fs, t);  /* put it in a register */
  if (t->k == VUPVAL) {
    t->u.ind.t = t->u.info;  /* upvalue index */
    t->u.ind.idx = k->u.info;  /* literal string */
    t->k = VINDEXUP;
  }
  else {
    /* register index of the table */
    t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info;
    if (isKstr(fs, k)) {
      t->u.ind.idx = k->u.info;  /* literal string */
      t->k = VINDEXSTR;
    }
    else if (isCint(k)) {
      t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
      t->k = VINDEXI;
    }
    else {
      t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
      t->k = VINDEXED;
    }
  }
}


/*
** Return false if folding can raise an error.
** Bitwise operations need operands convertible to integers; division
** operations cannot have 0 as divisor.
*/
static int validop (int op, TValue *v1, TValue *v2) {
  switch (op) {
    case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
    case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
      lua_Integer i;
      return (tointegerns(v1, &i) && tointegerns(v2, &i));
    }
    case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
      return (nvalue(v2) != 0);
    default: return 1;  /* everything else is valid */
  }
}


/*
** Try to "constant-fold" an operation; return 1 iff successful.
** (In this case, 'e1' has the final result.)
*/
static int constfolding (FuncState *fs, int op, expdesc *e1,
                                        const expdesc *e2) {
  TValue v1, v2, res;
  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
    return 0;  /* non-numeric operands or not safe to fold */
  luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
  if (ttisinteger(&res)) {
    e1->k = VKINT;
    e1->u.ival = ivalue(&res);
  }
  else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
    lua_Number n = fltvalue(&res);
    if (luai_numisnan(n) || n == 0)
      return 0;
    e1->k = VKFLT;
    e1->u.nval = n;
  }
  return 1;
}


/*
** Emit code for unary expressions that "produce values"
** (everything but 'not').
** Expression to produce final result will be encoded in 'e'.
*/
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
  freeexp(fs, e);
  e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
  e->k = VRELOC;  /* all those operations are relocatable */
  luaK_fixline(fs, line);
}


/*
** Emit code for binary expressions that "produce values"
** (everything but logical operators 'and'/'or' and comparison
** operators).
** Expression to produce final result will be encoded in 'e1'.
*/
static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
                             OpCode op, int v2, int flip, int line,
                             OpCode mmop, TMS event) {
  int v1 = luaK_exp2anyreg(fs, e1);
  int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  freeexps(fs, e1, e2);
  e1->u.info = pc;
  e1->k = VRELOC;  /* all those operations are relocatable */
  luaK_fixline(fs, line);
  luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
  luaK_fixline(fs, line);
}


/*
** Emit code for binary expressions that "produce values" over
** two registers.
*/
static void codebinexpval (FuncState *fs, OpCode op,
                           expdesc *e1, expdesc *e2, int line) {
  int v2 = luaK_exp2anyreg(fs, e2);  /* both operands are in registers */
  lua_assert(OP_ADD <= op && op <= OP_SHR);
  finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
                  cast(TMS, (op - OP_ADD) + TM_ADD));
}


/*
** Code binary operators with immediate operands.
*/
static void codebini (FuncState *fs, OpCode op,
                       expdesc *e1, expdesc *e2, int flip, int line,
                       TMS event) {
  int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
  lua_assert(e2->k == VKINT);
  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
}


/* Try to code a binary operator negating its second operand.
** For the metamethod, 2nd operand must keep its original value.
*/
static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
                             OpCode op, int line, TMS event) {
  if (!luaK_isKint(e2))
    return 0;  /* not an integer constant */
  else {
    lua_Integer i2 = e2->u.ival;
    if (!(fitsC(i2) && fitsC(-i2)))
      return 0;  /* not in the proper range */
    else {  /* operating a small integer constant */
      int v2 = cast_int(i2);
      finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
      /* correct metamethod argument */
      SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
      return 1;  /* successfully coded */
    }
  }
}


static void swapexps (expdesc *e1, expdesc *e2) {
  expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
}


/*
** Code arithmetic operators ('+', '-', ...). If second operand is a
** constant in the proper range, use variant opcodes with K operands.
*/
static void codearith (FuncState *fs, BinOpr opr,
                       expdesc *e1, expdesc *e2, int flip, int line) {
  TMS event = cast(TMS, opr + TM_ADD);
  if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) {  /* K operand? */
    int v2 = e2->u.info;  /* K index */
    OpCode op = cast(OpCode, opr + OP_ADDK);
    finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  }
  else {  /* 'e2' is neither an immediate nor a K operand */
    OpCode op = cast(OpCode, opr + OP_ADD);
    if (flip)
      swapexps(e1, e2);  /* back to original order */
    codebinexpval(fs, op, e1, e2, line);  /* use standard operators */
  }
}


/*
** Code commutative operators ('+', '*'). If first operand is a
** numeric constant, change order of operands to try to use an
** immediate or K operator.
*/
static void codecommutative (FuncState *fs, BinOpr op,
                             expdesc *e1, expdesc *e2, int line) {
  int flip = 0;
  if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
    swapexps(e1, e2);  /* change order */
    flip = 1;
  }
  if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
    codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
  else
    codearith(fs, op, e1, e2, flip, line);
}


/*
** Code bitwise operations; they are all associative, so the function
** tries to put an integer constant as the 2nd operand (a K operand).
*/
static void codebitwise (FuncState *fs, BinOpr opr,
                         expdesc *e1, expdesc *e2, int line) {
  int flip = 0;
  int v2;
  OpCode op;
  if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
    swapexps(e1, e2);  /* 'e2' will be the constant operand */
    flip = 1;
  }
  else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) {  /* no constants? */
    op = cast(OpCode, opr + OP_ADD);
    codebinexpval(fs, op, e1, e2, line);  /* all-register opcodes */
    return;
  }
  v2 = e2->u.info;  /* index in K array */
  op = cast(OpCode, opr + OP_ADDK);
  lua_assert(ttisinteger(&fs->f->k[v2]));
  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
                  cast(TMS, opr + TM_ADD));
}


/*
** Emit code for order comparisons. When using an immediate operand,
** 'isfloat' tells whether the original value was a float.
*/
static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  int r1, r2;
  int im;
  int isfloat = 0;
  if (isSCnumber(e2, &im, &isfloat)) {
    /* use immediate operand */
    r1 = luaK_exp2anyreg(fs, e1);
    r2 = im;
    op = cast(OpCode, (op - OP_LT) + OP_LTI);
  }
  else if (isSCnumber(e1, &im, &isfloat)) {
    /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
    r1 = luaK_exp2anyreg(fs, e2);
    r2 = im;
    op = (op == OP_LT) ? OP_GTI : OP_GEI;
  }
  else {  /* regular case, compare two registers */
    r1 = luaK_exp2anyreg(fs, e1);
    r2 = luaK_exp2anyreg(fs, e2);
  }
  freeexps(fs, e1, e2);
  e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  e1->k = VJMP;
}


/*
** Emit code for equality comparisons ('==', '~=').
** 'e1' was already put as RK by 'luaK_infix'.
*/
static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  int r1, r2;
  int im;
  int isfloat = 0;  /* not needed here, but kept for symmetry */
  OpCode op;
  if (e1->k != VNONRELOC) {
    lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
    swapexps(e1, e2);
  }
  r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
  if (isSCnumber(e2, &im, &isfloat)) {
    op = OP_EQI;
    r2 = im;  /* immediate operand */
  }
  else if (luaK_exp2RK(fs, e2)) {  /* 1st expression is constant? */
    op = OP_EQK;
    r2 = e2->u.info;  /* constant index */
  }
  else {
    op = OP_EQ;  /* will compare two registers */
    r2 = luaK_exp2anyreg(fs, e2);
  }
  freeexps(fs, e1, e2);
  e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  e1->k = VJMP;
}


/*
** Apply prefix operation 'op' to expression 'e'.
*/
void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  luaK_dischargevars(fs, e);
  switch (op) {
    case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
      if (constfolding(fs, op + LUA_OPUNM, e, &ef))
        break;
      /* else */ /* FALLTHROUGH */
    case OPR_LEN:
      codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
      break;
    case OPR_NOT: codenot(fs, e); break;
    default: lua_assert(0);
  }
}


/*
** Process 1st operand 'v' of binary operation 'op' before reading
** 2nd operand.
*/
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  luaK_dischargevars(fs, v);
  switch (op) {
    case OPR_AND: {
      luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
      break;
    }
    case OPR_OR: {
      luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
      break;
    }
    case OPR_CONCAT: {
      luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
      break;
    }
    case OPR_ADD: case OPR_SUB:
    case OPR_MUL: case OPR_DIV: case OPR_IDIV:
    case OPR_MOD: case OPR_POW:
    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
    case OPR_SHL: case OPR_SHR: {
      if (!tonumeral(v, NULL))
        luaK_exp2anyreg(fs, v);
      /* else keep numeral, which may be folded with 2nd operand */
      break;
    }
    case OPR_EQ: case OPR_NE: {
      if (!tonumeral(v, NULL))
        luaK_exp2RK(fs, v);
      /* else keep numeral, which may be an immediate operand */
      break;
    }
    case OPR_LT: case OPR_LE:
    case OPR_GT: case OPR_GE: {
      int dummy, dummy2;
      if (!isSCnumber(v, &dummy, &dummy2))
        luaK_exp2anyreg(fs, v);
      /* else keep numeral, which may be an immediate operand */
      break;
    }
    default: lua_assert(0);
  }
}

/*
** Create code for '(e1 .. e2)'.
** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
** because concatenation is right associative), merge both CONCATs.
*/
static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  Instruction *ie2 = previousinstruction(fs);
  if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
    int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
    lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
    freeexp(fs, e2);
    SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
    SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
  }
  else {  /* 'e2' is not a concatenation */
    luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
    freeexp(fs, e2);
    luaK_fixline(fs, line);
  }
}


/*
** Finalize code for binary operation, after reading 2nd operand.
*/
void luaK_posfix (FuncState *fs, BinOpr opr,
                  expdesc *e1, expdesc *e2, int line) {
  luaK_dischargevars(fs, e2);
  if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
    return;  /* done by folding */
  switch (opr) {
    case OPR_AND: {
      lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
      luaK_concat(fs, &e2->f, e1->f);
      *e1 = *e2;
      break;
    }
    case OPR_OR: {
      lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
      luaK_concat(fs, &e2->t, e1->t);
      *e1 = *e2;
      break;
    }
    case OPR_CONCAT: {  /* e1 .. e2 */
      luaK_exp2nextreg(fs, e2);
      codeconcat(fs, e1, e2, line);
      break;
    }
    case OPR_ADD: case OPR_MUL: {
      codecommutative(fs, opr, e1, e2, line);
      break;
    }
    case OPR_SUB: {
      if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
        break; /* coded as (r1 + -I) */
      /* ELSE */
    }  /* FALLTHROUGH */
    case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
      codearith(fs, opr, e1, e2, 0, line);
      break;
    }
    case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
      codebitwise(fs, opr, e1, e2, line);
      break;
    }
    case OPR_SHL: {
      if (isSCint(e1)) {
        swapexps(e1, e2);
        codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
      }
      else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
        /* coded as (r1 >> -I) */;
      }
      else  /* regular case (two registers) */
       codebinexpval(fs, OP_SHL, e1, e2, line);
      break;
    }
    case OPR_SHR: {
      if (isSCint(e2))
        codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
      else  /* regular case (two registers) */
        codebinexpval(fs, OP_SHR, e1, e2, line);
      break;
    }
    case OPR_EQ: case OPR_NE: {
      codeeq(fs, opr, e1, e2);
      break;
    }
    case OPR_LT: case OPR_LE: {
      OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
      codeorder(fs, op, e1, e2);
      break;
    }
    case OPR_GT: case OPR_GE: {
      /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
      OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
      swapexps(e1, e2);
      codeorder(fs, op, e1, e2);
      break;
    }
    default: lua_assert(0);
  }
}


/*
** Change line information associated with current position, by removing
** previous info and adding it again with new line.
*/
void luaK_fixline (FuncState *fs, int line) {
  removelastlineinfo(fs);
  savelineinfo(fs, fs->f, line);
}


void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  Instruction *inst = &fs->f->code[pc];
  int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
  int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
  int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
  int k = (extra > 0);  /* true iff needs extra argument */
  *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
}


/*
** Emit a SETLIST instruction.
** 'base' is register that keeps table;
** 'nelems' is #table plus those to be stored now;
** 'tostore' is number of values (in registers 'base + 1',...) to add to
** table (or LUA_MULTRET to add up to stack top).
*/
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  if (tostore == LUA_MULTRET)
    tostore = 0;
  if (nelems <= MAXARG_C)
    luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  else {
    int extra = nelems / (MAXARG_C + 1);
    nelems %= (MAXARG_C + 1);
    luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
    codeextraarg(fs, extra);
  }
  fs->freereg = base + 1;  /* free registers with list values */
}


/*
** return the final target of a jump (skipping jumps to jumps)
*/
static int finaltarget (Instruction *code, int i) {
  int count;
  for (count = 0; count < 100; count++) {  /* avoid infinite loops */
    Instruction pc = code[i];
    if (GET_OPCODE(pc) != OP_JMP)
      break;
     else
       i += GETARG_sJ(pc) + 1;
  }
  return i;
}


/*
** Do a final pass over the code of a function, doing small peephole
** optimizations and adjustments.
*/
void luaK_finish (FuncState *fs) {
  int i;
  Proto *p = fs->f;
  for (i = 0; i < fs->pc; i++) {
    Instruction *pc = &p->code[i];
    lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
    switch (GET_OPCODE(*pc)) {
      case OP_RETURN0: case OP_RETURN1: {
        if (!(fs->needclose || p->is_vararg))
          break;  /* no extra work */
        /* else use OP_RETURN to do the extra work */
        SET_OPCODE(*pc, OP_RETURN);
      }  /* FALLTHROUGH */
      case OP_RETURN: case OP_TAILCALL: {
        if (fs->needclose)
          SETARG_k(*pc, 1);  /* signal that it needs to close */
        if (p->is_vararg)
          SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
        break;
      }
      case OP_JMP: {
        int target = finaltarget(p->code, i);
        fixjump(fs, i, target);
        break;
      }
      default: break;
    }
  }
}