1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
|
/*
** $Id: ltable.c $
** Lua tables (hash)
** See Copyright Notice in lua.h
*/
#define ltable_c
#define LUA_CORE
#include "lprefix.h"
/*
** Implementation of tables (aka arrays, objects, or hash tables).
** Tables keep its elements in two parts: an array part and a hash part.
** Non-negative integer keys are all candidates to be kept in the array
** part. The actual size of the array is the largest 'n' such that
** more than half the slots between 1 and n are in use.
** Hash uses a mix of chained scatter table with Brent's variation.
** A main invariant of these tables is that, if an element is not
** in its main position (i.e. the 'original' position that its hash gives
** to it), then the colliding element is in its own main position.
** Hence even when the load factor reaches 100%, performance remains good.
*/
#include <math.h>
#include <limits.h>
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "lvm.h"
/*
** MAXABITS is the largest integer such that MAXASIZE fits in an
** unsigned int.
*/
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
/*
** MAXASIZE is the maximum size of the array part. It is the minimum
** between 2^MAXABITS and the maximum size that, measured in bytes,
** fits in a 'size_t'.
*/
#define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
/*
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
** signed int.
*/
#define MAXHBITS (MAXABITS - 1)
/*
** MAXHSIZE is the maximum size of the hash part. It is the minimum
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
** it fits in a 'size_t'.
*/
#define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
#define hashstr(t,str) hashpow2(t, (str)->hash)
#define hashboolean(t,p) hashpow2(t, p)
#define hashint(t,i) hashpow2(t, i)
/*
** for some types, it is better to avoid modulus by power of 2, as
** they tend to have many 2 factors.
*/
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
#define hashpointer(t,p) hashmod(t, point2uint(p))
#define dummynode (&dummynode_)
static const Node dummynode_ = {
{{NULL}, LUA_VEMPTY, /* value's value and type */
LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
};
static const TValue absentkey = {ABSTKEYCONSTANT};
/*
** Hash for floating-point numbers.
** The main computation should be just
** n = frexp(n, &i); return (n * INT_MAX) + i
** but there are some numerical subtleties.
** In a two-complement representation, INT_MAX does not has an exact
** representation as a float, but INT_MIN does; because the absolute
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
** INT_MIN.
*/
#if !defined(l_hashfloat)
static int l_hashfloat (lua_Number n) {
int i;
lua_Integer ni;
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
return 0;
}
else { /* normal case */
unsigned int u = cast_uint(i) + cast_uint(ni);
return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
}
}
#endif
/*
** returns the 'main' position of an element in a table (that is,
** the index of its hash value). The key comes broken (tag in 'ktt'
** and value in 'vkl') so that we can call it on keys inserted into
** nodes.
*/
static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
switch (withvariant(ktt)) {
case LUA_VNUMINT:
return hashint(t, ivalueraw(*kvl));
case LUA_VNUMFLT:
return hashmod(t, l_hashfloat(fltvalueraw(*kvl)));
case LUA_VSHRSTR:
return hashstr(t, tsvalueraw(*kvl));
case LUA_VLNGSTR:
return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl)));
case LUA_VFALSE:
return hashboolean(t, 0);
case LUA_VTRUE:
return hashboolean(t, 1);
case LUA_VLIGHTUSERDATA:
return hashpointer(t, pvalueraw(*kvl));
case LUA_VLCF:
return hashpointer(t, fvalueraw(*kvl));
default:
return hashpointer(t, gcvalueraw(*kvl));
}
}
/*
** Returns the main position of an element given as a 'TValue'
*/
static Node *mainpositionTV (const Table *t, const TValue *key) {
return mainposition(t, rawtt(key), valraw(key));
}
/*
** Check whether key 'k1' is equal to the key in node 'n2'. This
** equality is raw, so there are no metamethods. Floats with integer
** values have been normalized, so integers cannot be equal to
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
** that short strings are handled in the default case.
** A true 'deadok' means to accept dead keys as equal to their original
** values. All dead keys are compared in the default case, by pointer
** identity. (Only collectable objects can produce dead keys.) Note that
** dead long strings are also compared by identity.
** Once a key is dead, its corresponding value may be collected, and
** then another value can be created with the same address. If this
** other value is given to 'next', 'equalkey' will signal a false
** positive. In a regular traversal, this situation should never happen,
** as all keys given to 'next' came from the table itself, and therefore
** could not have been collected. Outside a regular traversal, we
** have garbage in, garbage out. What is relevant is that this false
** positive does not break anything. (In particular, 'next' will return
** some other valid item on the table or nil.)
*/
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
!(deadok && keyisdead(n2) && iscollectable(k1)))
return 0; /* cannot be same key */
switch (keytt(n2)) {
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
return 1;
case LUA_VNUMINT:
return (ivalue(k1) == keyival(n2));
case LUA_VNUMFLT:
return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
case LUA_VLIGHTUSERDATA:
return pvalue(k1) == pvalueraw(keyval(n2));
case LUA_VLCF:
return fvalue(k1) == fvalueraw(keyval(n2));
case ctb(LUA_VLNGSTR):
return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
default:
return gcvalue(k1) == gcvalueraw(keyval(n2));
}
}
/*
** True if value of 'alimit' is equal to the real size of the array
** part of table 't'. (Otherwise, the array part must be larger than
** 'alimit'.)
*/
#define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
/*
** Returns the real size of the 'array' array
*/
LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
if (limitequalsasize(t))
return t->alimit; /* this is the size */
else {
unsigned int size = t->alimit;
/* compute the smallest power of 2 not smaller than 'n' */
size |= (size >> 1);
size |= (size >> 2);
size |= (size >> 4);
size |= (size >> 8);
size |= (size >> 16);
#if (UINT_MAX >> 30) > 3
size |= (size >> 32); /* unsigned int has more than 32 bits */
#endif
size++;
lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
return size;
}
}
/*
** Check whether real size of the array is a power of 2.
** (If it is not, 'alimit' cannot be changed to any other value
** without changing the real size.)
*/
static int ispow2realasize (const Table *t) {
return (!isrealasize(t) || ispow2(t->alimit));
}
static unsigned int setlimittosize (Table *t) {
t->alimit = luaH_realasize(t);
setrealasize(t);
return t->alimit;
}
#define limitasasize(t) check_exp(isrealasize(t), t->alimit)
/*
** "Generic" get version. (Not that generic: not valid for integers,
** which may be in array part, nor for floats with integral values.)
** See explanation about 'deadok' in function 'equalkey'.
*/
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
Node *n = mainpositionTV(t, key);
for (;;) { /* check whether 'key' is somewhere in the chain */
if (equalkey(key, n, deadok))
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0)
return &absentkey; /* not found */
n += nx;
}
}
}
/*
** returns the index for 'k' if 'k' is an appropriate key to live in
** the array part of a table, 0 otherwise.
*/
static unsigned int arrayindex (lua_Integer k) {
if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
return cast_uint(k); /* 'key' is an appropriate array index */
else
return 0;
}
/*
** returns the index of a 'key' for table traversals. First goes all
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signaled by 0.
*/
static unsigned int findindex (lua_State *L, Table *t, TValue *key,
unsigned int asize) {
unsigned int i;
if (ttisnil(key)) return 0; /* first iteration */
i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
if (i - 1u < asize) /* is 'key' inside array part? */
return i; /* yes; that's the index */
else {
const TValue *n = getgeneric(t, key, 1);
if (unlikely(isabstkey(n)))
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
/* hash elements are numbered after array ones */
return (i + 1) + asize;
}
}
int luaH_next (lua_State *L, Table *t, StkId key) {
unsigned int asize = luaH_realasize(t);
unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
for (; i < asize; i++) { /* try first array part */
if (!isempty(&t->array[i])) { /* a non-empty entry? */
setivalue(s2v(key), i + 1);
setobj2s(L, key + 1, &t->array[i]);
return 1;
}
}
for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
Node *n = gnode(t, i);
getnodekey(L, s2v(key), n);
setobj2s(L, key + 1, gval(n));
return 1;
}
}
return 0; /* no more elements */
}
static void freehash (lua_State *L, Table *t) {
if (!isdummy(t))
luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
}
/*
** {=============================================================
** Rehash
** ==============================================================
*/
/*
** Compute the optimal size for the array part of table 't'. 'nums' is a
** "count array" where 'nums[i]' is the number of integers in the table
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
** integer keys in the table and leaves with the number of keys that
** will go to the array part; return the optimal size. (The condition
** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
*/
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
int i;
unsigned int twotoi; /* 2^i (candidate for optimal size) */
unsigned int a = 0; /* number of elements smaller than 2^i */
unsigned int na = 0; /* number of elements to go to array part */
unsigned int optimal = 0; /* optimal size for array part */
/* loop while keys can fill more than half of total size */
for (i = 0, twotoi = 1;
twotoi > 0 && *pna > twotoi / 2;
i++, twotoi *= 2) {
a += nums[i];
if (a > twotoi/2) { /* more than half elements present? */
optimal = twotoi; /* optimal size (till now) */
na = a; /* all elements up to 'optimal' will go to array part */
}
}
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
*pna = na;
return optimal;
}
static int countint (lua_Integer key, unsigned int *nums) {
unsigned int k = arrayindex(key);
if (k != 0) { /* is 'key' an appropriate array index? */
nums[luaO_ceillog2(k)]++; /* count as such */
return 1;
}
else
return 0;
}
/*
** Count keys in array part of table 't': Fill 'nums[i]' with
** number of keys that will go into corresponding slice and return
** total number of non-nil keys.
*/
static unsigned int numusearray (const Table *t, unsigned int *nums) {
int lg;
unsigned int ttlg; /* 2^lg */
unsigned int ause = 0; /* summation of 'nums' */
unsigned int i = 1; /* count to traverse all array keys */
unsigned int asize = limitasasize(t); /* real array size */
/* traverse each slice */
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
unsigned int lc = 0; /* counter */
unsigned int lim = ttlg;
if (lim > asize) {
lim = asize; /* adjust upper limit */
if (i > lim)
break; /* no more elements to count */
}
/* count elements in range (2^(lg - 1), 2^lg] */
for (; i <= lim; i++) {
if (!isempty(&t->array[i-1]))
lc++;
}
nums[lg] += lc;
ause += lc;
}
return ause;
}
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
int totaluse = 0; /* total number of elements */
int ause = 0; /* elements added to 'nums' (can go to array part) */
int i = sizenode(t);
while (i--) {
Node *n = &t->node[i];
if (!isempty(gval(n))) {
if (keyisinteger(n))
ause += countint(keyival(n), nums);
totaluse++;
}
}
*pna += ause;
return totaluse;
}
/*
** Creates an array for the hash part of a table with the given
** size, or reuses the dummy node if size is zero.
** The computation for size overflow is in two steps: the first
** comparison ensures that the shift in the second one does not
** overflow.
*/
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
if (size == 0) { /* no elements to hash part? */
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
t->lsizenode = 0;
t->lastfree = NULL; /* signal that it is using dummy node */
}
else {
int i;
int lsize = luaO_ceillog2(size);
if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
luaG_runerror(L, "table overflow");
size = twoto(lsize);
t->node = luaM_newvector(L, size, Node);
for (i = 0; i < (int)size; i++) {
Node *n = gnode(t, i);
gnext(n) = 0;
setnilkey(n);
setempty(gval(n));
}
t->lsizenode = cast_byte(lsize);
t->lastfree = gnode(t, size); /* all positions are free */
}
}
/*
** (Re)insert all elements from the hash part of 'ot' into table 't'.
*/
static void reinsert (lua_State *L, Table *ot, Table *t) {
int j;
int size = sizenode(ot);
for (j = 0; j < size; j++) {
Node *old = gnode(ot, j);
if (!isempty(gval(old))) {
/* doesn't need barrier/invalidate cache, as entry was
already present in the table */
TValue k;
getnodekey(L, &k, old);
setobjt2t(L, luaH_set(L, t, &k), gval(old));
}
}
}
/*
** Exchange the hash part of 't1' and 't2'.
*/
static void exchangehashpart (Table *t1, Table *t2) {
lu_byte lsizenode = t1->lsizenode;
Node *node = t1->node;
Node *lastfree = t1->lastfree;
t1->lsizenode = t2->lsizenode;
t1->node = t2->node;
t1->lastfree = t2->lastfree;
t2->lsizenode = lsizenode;
t2->node = node;
t2->lastfree = lastfree;
}
/*
** Resize table 't' for the new given sizes. Both allocations (for
** the hash part and for the array part) can fail, which creates some
** subtleties. If the first allocation, for the hash part, fails, an
** error is raised and that is it. Otherwise, it copies the elements from
** the shrinking part of the array (if it is shrinking) into the new
** hash. Then it reallocates the array part. If that fails, the table
** is in its original state; the function frees the new hash part and then
** raises the allocation error. Otherwise, it sets the new hash part
** into the table, initializes the new part of the array (if any) with
** nils and reinserts the elements of the old hash back into the new
** parts of the table.
*/
void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
unsigned int nhsize) {
unsigned int i;
Table newt; /* to keep the new hash part */
unsigned int oldasize = setlimittosize(t);
TValue *newarray;
/* create new hash part with appropriate size into 'newt' */
setnodevector(L, &newt, nhsize);
if (newasize < oldasize) { /* will array shrink? */
t->alimit = newasize; /* pretend array has new size... */
exchangehashpart(t, &newt); /* and new hash */
/* re-insert into the new hash the elements from vanishing slice */
for (i = newasize; i < oldasize; i++) {
if (!isempty(&t->array[i]))
luaH_setint(L, t, i + 1, &t->array[i]);
}
t->alimit = oldasize; /* restore current size... */
exchangehashpart(t, &newt); /* and hash (in case of errors) */
}
/* allocate new array */
newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
freehash(L, &newt); /* release new hash part */
luaM_error(L); /* raise error (with array unchanged) */
}
/* allocation ok; initialize new part of the array */
exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
t->array = newarray; /* set new array part */
t->alimit = newasize;
for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
setempty(&t->array[i]);
/* re-insert elements from old hash part into new parts */
reinsert(L, &newt, t); /* 'newt' now has the old hash */
freehash(L, &newt); /* free old hash part */
}
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
int nsize = allocsizenode(t);
luaH_resize(L, t, nasize, nsize);
}
/*
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
*/
static void rehash (lua_State *L, Table *t, const TValue *ek) {
unsigned int asize; /* optimal size for array part */
unsigned int na; /* number of keys in the array part */
unsigned int nums[MAXABITS + 1];
int i;
int totaluse;
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
setlimittosize(t);
na = numusearray(t, nums); /* count keys in array part */
totaluse = na; /* all those keys are integer keys */
totaluse += numusehash(t, nums, &na); /* count keys in hash part */
/* count extra key */
if (ttisinteger(ek))
na += countint(ivalue(ek), nums);
totaluse++;
/* compute new size for array part */
asize = computesizes(nums, &na);
/* resize the table to new computed sizes */
luaH_resize(L, t, asize, totaluse - na);
}
/*
** }=============================================================
*/
Table *luaH_new (lua_State *L) {
GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
Table *t = gco2t(o);
t->metatable = NULL;
t->flags = cast_byte(maskflags); /* table has no metamethod fields */
t->array = NULL;
t->alimit = 0;
setnodevector(L, t, 0);
return t;
}
void luaH_free (lua_State *L, Table *t) {
freehash(L, t);
luaM_freearray(L, t->array, luaH_realasize(t));
luaM_free(L, t);
}
static Node *getfreepos (Table *t) {
if (!isdummy(t)) {
while (t->lastfree > t->node) {
t->lastfree--;
if (keyisnil(t->lastfree))
return t->lastfree;
}
}
return NULL; /* could not find a free place */
}
/*
** inserts a new key into a hash table; first, check whether key's main
** position is free. If not, check whether colliding node is in its main
** position or not: if it is not, move colliding node to an empty place and
** put new key in its main position; otherwise (colliding node is in its main
** position), new key goes to an empty position.
*/
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
Node *mp;
TValue aux;
if (unlikely(ttisnil(key)))
luaG_runerror(L, "table index is nil");
else if (ttisfloat(key)) {
lua_Number f = fltvalue(key);
lua_Integer k;
if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
setivalue(&aux, k);
key = &aux; /* insert it as an integer */
}
else if (unlikely(luai_numisnan(f)))
luaG_runerror(L, "table index is NaN");
}
mp = mainpositionTV(t, key);
if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
Node *othern;
Node *f = getfreepos(t); /* get a free place */
if (f == NULL) { /* cannot find a free place? */
rehash(L, t, key); /* grow table */
/* whatever called 'newkey' takes care of TM cache */
return luaH_set(L, t, key); /* insert key into grown table */
}
lua_assert(!isdummy(t));
othern = mainposition(t, keytt(mp), &keyval(mp));
if (othern != mp) { /* is colliding node out of its main position? */
/* yes; move colliding node into free position */
while (othern + gnext(othern) != mp) /* find previous */
othern += gnext(othern);
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
if (gnext(mp) != 0) {
gnext(f) += cast_int(mp - f); /* correct 'next' */
gnext(mp) = 0; /* now 'mp' is free */
}
setempty(gval(mp));
}
else { /* colliding node is in its own main position */
/* new node will go into free position */
if (gnext(mp) != 0)
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
else lua_assert(gnext(f) == 0);
gnext(mp) = cast_int(f - mp);
mp = f;
}
}
setnodekey(L, mp, key);
luaC_barrierback(L, obj2gco(t), key);
lua_assert(isempty(gval(mp)));
return gval(mp);
}
/*
** Search function for integers. If integer is inside 'alimit', get it
** directly from the array part. Otherwise, if 'alimit' is not equal to
** the real size of the array, key still can be in the array part. In
** this case, try to avoid a call to 'luaH_realasize' when key is just
** one more than the limit (so that it can be incremented without
** changing the real size of the array).
*/
const TValue *luaH_getint (Table *t, lua_Integer key) {
if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
return &t->array[key - 1];
else if (!limitequalsasize(t) && /* key still may be in the array part? */
(l_castS2U(key) == t->alimit + 1 ||
l_castS2U(key) - 1u < luaH_realasize(t))) {
t->alimit = cast_uint(key); /* probably '#t' is here now */
return &t->array[key - 1];
}
else {
Node *n = hashint(t, key);
for (;;) { /* check whether 'key' is somewhere in the chain */
if (keyisinteger(n) && keyival(n) == key)
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0) break;
n += nx;
}
}
return &absentkey;
}
}
/*
** search function for short strings
*/
const TValue *luaH_getshortstr (Table *t, TString *key) {
Node *n = hashstr(t, key);
lua_assert(key->tt == LUA_VSHRSTR);
for (;;) { /* check whether 'key' is somewhere in the chain */
if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
return gval(n); /* that's it */
else {
int nx = gnext(n);
if (nx == 0)
return &absentkey; /* not found */
n += nx;
}
}
}
const TValue *luaH_getstr (Table *t, TString *key) {
if (key->tt == LUA_VSHRSTR)
return luaH_getshortstr(t, key);
else { /* for long strings, use generic case */
TValue ko;
setsvalue(cast(lua_State *, NULL), &ko, key);
return getgeneric(t, &ko, 0);
}
}
/*
** main search function
*/
const TValue *luaH_get (Table *t, const TValue *key) {
switch (ttypetag(key)) {
case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
case LUA_VNIL: return &absentkey;
case LUA_VNUMFLT: {
lua_Integer k;
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
return luaH_getint(t, k); /* use specialized version */
/* else... */
} /* FALLTHROUGH */
default:
return getgeneric(t, key, 0);
}
}
/*
** beware: when using this function you probably need to check a GC
** barrier and invalidate the TM cache.
*/
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
const TValue *p = luaH_get(t, key);
if (!isabstkey(p))
return cast(TValue *, p);
else return luaH_newkey(L, t, key);
}
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
const TValue *p = luaH_getint(t, key);
TValue *cell;
if (!isabstkey(p))
cell = cast(TValue *, p);
else {
TValue k;
setivalue(&k, key);
cell = luaH_newkey(L, t, &k);
}
setobj2t(L, cell, value);
}
/*
** Try to find a boundary in the hash part of table 't'. From the
** caller, we know that 'j' is zero or present and that 'j + 1' is
** present. We want to find a larger key that is absent from the
** table, so that we can do a binary search between the two keys to
** find a boundary. We keep doubling 'j' until we get an absent index.
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
** absent, we are ready for the binary search. ('j', being max integer,
** is larger or equal to 'i', but it cannot be equal because it is
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
** boundary. ('j + 1' cannot be a present integer key because it is
** not a valid integer in Lua.)
*/
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
lua_Unsigned i;
if (j == 0) j++; /* the caller ensures 'j + 1' is present */
do {
i = j; /* 'i' is a present index */
if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
j *= 2;
else {
j = LUA_MAXINTEGER;
if (isempty(luaH_getint(t, j))) /* t[j] not present? */
break; /* 'j' now is an absent index */
else /* weird case */
return j; /* well, max integer is a boundary... */
}
} while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
/* i < j && t[i] present && t[j] absent */
while (j - i > 1u) { /* do a binary search between them */
lua_Unsigned m = (i + j) / 2;
if (isempty(luaH_getint(t, m))) j = m;
else i = m;
}
return i;
}
static unsigned int binsearch (const TValue *array, unsigned int i,
unsigned int j) {
while (j - i > 1u) { /* binary search */
unsigned int m = (i + j) / 2;
if (isempty(&array[m - 1])) j = m;
else i = m;
}
return i;
}
/*
** Try to find a boundary in table 't'. (A 'boundary' is an integer index
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
** and 'maxinteger' if t[maxinteger] is present.)
** (In the next explanation, we use Lua indices, that is, with base 1.
** The code itself uses base 0 when indexing the array part of the table.)
** The code starts with 'limit = t->alimit', a position in the array
** part that may be a boundary.
**
** (1) If 't[limit]' is empty, there must be a boundary before it.
** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
** is present. If so, it is a boundary. Otherwise, do a binary search
** between 0 and limit to find a boundary. In both cases, try to
** use this boundary as the new 'alimit', as a hint for the next call.
**
** (2) If 't[limit]' is not empty and the array has more elements
** after 'limit', try to find a boundary there. Again, try first
** the special case (which should be quite frequent) where 'limit+1'
** is empty, so that 'limit' is a boundary. Otherwise, check the
** last element of the array part. If it is empty, there must be a
** boundary between the old limit (present) and the last element
** (absent), which is found with a binary search. (This boundary always
** can be a new limit.)
**
** (3) The last case is when there are no elements in the array part
** (limit == 0) or its last element (the new limit) is present.
** In this case, must check the hash part. If there is no hash part
** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
** 'hash_search' to find a boundary in the hash part of the table.
** (In those cases, the boundary is not inside the array part, and
** therefore cannot be used as a new limit.)
*/
lua_Unsigned luaH_getn (Table *t) {
unsigned int limit = t->alimit;
if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
/* there must be a boundary before 'limit' */
if (limit >= 2 && !isempty(&t->array[limit - 2])) {
/* 'limit - 1' is a boundary; can it be a new limit? */
if (ispow2realasize(t) && !ispow2(limit - 1)) {
t->alimit = limit - 1;
setnorealasize(t); /* now 'alimit' is not the real size */
}
return limit - 1;
}
else { /* must search for a boundary in [0, limit] */
unsigned int boundary = binsearch(t->array, 0, limit);
/* can this boundary represent the real size of the array? */
if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
t->alimit = boundary; /* use it as the new limit */
setnorealasize(t);
}
return boundary;
}
}
/* 'limit' is zero or present in table */
if (!limitequalsasize(t)) { /* (2)? */
/* 'limit' > 0 and array has more elements after 'limit' */
if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
return limit; /* this is the boundary */
/* else, try last element in the array */
limit = luaH_realasize(t);
if (isempty(&t->array[limit - 1])) { /* empty? */
/* there must be a boundary in the array after old limit,
and it must be a valid new limit */
unsigned int boundary = binsearch(t->array, t->alimit, limit);
t->alimit = boundary;
return boundary;
}
/* else, new limit is present in the table; check the hash part */
}
/* (3) 'limit' is the last element and either is zero or present in table */
lua_assert(limit == luaH_realasize(t) &&
(limit == 0 || !isempty(&t->array[limit - 1])));
if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
return limit; /* 'limit + 1' is absent */
else /* 'limit + 1' is also present */
return hash_search(t, limit);
}
#if defined(LUA_DEBUG)
/* export these functions for the test library */
Node *luaH_mainposition (const Table *t, const TValue *key) {
return mainpositionTV(t, key);
}
int luaH_isdummy (const Table *t) { return isdummy(t); }
#endif
|