1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/*
Tlen Protocol Plugin for Miranda IM
Copyright (C) 2004-2007 Piotr Piastucki
This program is based on GSM 06.10 source code developed by
Jutta Degener and Carsten Bormann,
Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann,
Technische Universitaet Berlin
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "gsm.h"
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
/* Decision levels */
const static int gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
/* Quantization levels */
const static int gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
/*
* Long term parameters calculation - lag (Nc) and gain (bc).
*/
static void longTermLTPCalculation(gsm_state *state, short *in, short *in_1)
{
int k, lambda;
int Nc, bc;
float in_1_float_base[120], * in_1_float = in_1_float_base + 120;
float in_float[40];
float L_result, L_max, L_power;
for (k = -120; k < 0; k++) in_1_float[k] = (float)in_1[k];
for (k = 0; k < 40; k++) in_float[k] = (float)in[k];
/* Search for the maximum cross-correlation and coding of the LTP lag */
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda < 121; lambda++) {
for (L_result = 0, L_power = 0, k = 0; k < 40; k++) {
L_result += in_float[k] * in_1_float[k - lambda];
// L_power += in_1_float[k - lambda] * in_1_float[k - lambda];
}
// L_result = L_result / L_power;
if (L_result > L_max) {
Nc = lambda;
L_max = L_result;
}
}
state->Nc[state->subframe] = Nc;
if (L_max <= 0.) {
state->bc[state->subframe] = 0;
return;
}
/* Compute the power of the reconstructed short term residual signal dp[..] */
in_1_float -= Nc;
L_power = 0;
for (k = 0; k < 40; k++) {
float f = in_1_float[k];
L_power += f * f;
}
if (L_max >= L_power) { //1.0
state->bc[state->subframe] = 3;
return;
}
/* Coding of the LTP gain
* Table gsm_DLB must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
// lambda = L_max * 32768.;
lambda = (int)(L_max * 32768. / L_power);
for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
state->bc[state->subframe] = bc;
}
/*
* Here we decode the bc parameter and compute samples of the estimate out[0..39].
* The decoding of bc needs the gsm_QLB table.
* The long term residual signal e[0..39] is then calculated to be fed to the
* RPE encoding section.
*/
static void longTermAnalysisFilter(int Nc, int bc, short *in, short *in_1, short *out, int *e)
{
int gain, k, l;
gain = gsm_QLB[bc];
for (k = 0; k < 40; k++) {
l = (gain * (int)in_1[k - Nc] + 16384) >> 15;
if (l < -32768) l = -32768;
else if (l > 32767) l = 32767;
out[k] = l;
e[k] = in[k] - l;
}
}
/*
* This procedure uses the bcr and Ncr parameter to realize the
* long term synthesis filtering. The decoding of bcr needs table gsm_QLB.
*/
static void longTermSynthesisFilter(gsm_state * state, int Ncr, int bcr, int *e, short *out)
{
int k;
int brp, Nr;
/* Check the limits of Nr. */
Nr = Ncr < 40 || Ncr > 120 ? state->nrp : Ncr;
state->nrp = Nr;
/* Decoding of the LTP gain bcr */
brp = gsm_QLB[ bcr ];
/* Computation of the reconstructed short term residual
* signal drp[0..39]
*/
for (k = 0; k < 40; k++) {
int temp = (brp * (int)out[ k-Nr ] + 16384) >> 15;
out[k] = e[k] + temp;
}
}
/*
* This procedure performs long term analysis.
*/
void longTermAnalysis(gsm_state *state, short *in)
{
short *in_1 = state->dp0 + 120 + state->subframe * 40;
short *out = state->dp0 + 120 + state->subframe * 40;
int *e = state->e + state->subframe * 40;
/*
int i;
printf("Long-term in: \n");
for (i=0;i<40;i++) {
printf("%7d ", in[i]);
}
printf("\n");
*/
longTermLTPCalculation(state, in, in_1);
/* printf("Nc: %d, bc: %d \n", state->Nc[state->subframe], state->bc[state->subframe]);
*/
longTermAnalysisFilter(state->Nc[state->subframe], state->bc[state->subframe], in, in_1, out, e);
/*
printf("Long-term out: \n");
for (i=0;i<40;i++) {
printf("%7d ", out[i]);
}
printf("\n");
*/
}
/*
* This procedure performs long term synthesis.
*/
void longTermSynthesis(gsm_state *state)
{
int Nc = state->Nc[state->subframe];
int bc = state->bc[state->subframe];
int *e = state->e + state->subframe * 40;
short *out = state->dp0 + 120 + state->subframe * 40;
//int i;
longTermSynthesisFilter(state, Nc, bc, e, out);
/*
printf("Long-term reconstructed: \n");
for (i=0;i<160;i++) {
printf("%7d ", state->dp0[i]);
}
printf("\n");
*/
}
|