summaryrefslogtreecommitdiff
path: root/plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp
blob: e17cdefb3240228b6cb93746c41f4d40bbf83992 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
///////////////////////////////////////////////////////////////////////
//	    C Implementation of Wu's Color Quantizer (v. 2)
//	    (see Graphics Gems vol. II, pp. 126-133)
//
// Author:	Xiaolin Wu
// Dept. of Computer Science
// Univ. of Western Ontario
// London, Ontario N6A 5B7
// wu@csd.uwo.ca
// 
// Algorithm: Greedy orthogonal bipartition of RGB space for variance
// 	   minimization aided by inclusion-exclusion tricks.
// 	   For speed no nearest neighbor search is done. Slightly
// 	   better performance can be expected by more sophisticated
// 	   but more expensive versions.
// 
// The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of
// additional documentation and a cure to a previous bug.
// 
// Free to distribute, comments and suggestions are appreciated.
///////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////
// History
// -------
// July 2000:  C++ Implementation of Wu's Color Quantizer
//             and adaptation for the FreeImage 2 Library
//             Author: Hervé Drolon (drolon@infonie.fr)
// March 2004: Adaptation for the FreeImage 3 library (port to big endian processors)
//             Author: Hervé Drolon (drolon@infonie.fr)
///////////////////////////////////////////////////////////////////////

#include "Quantizers.h"
#include "FreeImage.h"
#include "Utilities.h"

///////////////////////////////////////////////////////////////////////

// Size of a 3D array : 33 x 33 x 33
#define SIZE_3D	35937

// 3D array indexation
#define INDEX(r, g, b)	((r << 10) + (r << 6) + r + (g << 5) + g + b)

#define MAXCOLOR	256

// Constructor / Destructor

WuQuantizer::WuQuantizer(FIBITMAP *dib) {
	width = FreeImage_GetWidth(dib);
	height = FreeImage_GetHeight(dib);
	pitch = FreeImage_GetPitch(dib);
	m_dib = dib;

	gm2 = NULL;
	wt = mr = mg = mb = NULL;
	Qadd = NULL;

	// Allocate 3D arrays
	gm2 = (float*)malloc(SIZE_3D * sizeof(float));
	wt = (LONG*)malloc(SIZE_3D * sizeof(LONG));
	mr = (LONG*)malloc(SIZE_3D * sizeof(LONG));
	mg = (LONG*)malloc(SIZE_3D * sizeof(LONG));
	mb = (LONG*)malloc(SIZE_3D * sizeof(LONG));

	// Allocate Qadd
	Qadd = (WORD *)malloc(sizeof(WORD) * width * height);

	if(!gm2 || !wt || !mr || !mg || !mb || !Qadd) {
		if(gm2)	free(gm2);
		if(wt)	free(wt);
		if(mr)	free(mr);
		if(mg)	free(mg);
		if(mb)	free(mb);
		if(Qadd)  free(Qadd);
		throw FI_MSG_ERROR_MEMORY;
	}
	memset(gm2, 0, SIZE_3D * sizeof(float));
	memset(wt, 0, SIZE_3D * sizeof(LONG));
	memset(mr, 0, SIZE_3D * sizeof(LONG));
	memset(mg, 0, SIZE_3D * sizeof(LONG));
	memset(mb, 0, SIZE_3D * sizeof(LONG));
	memset(Qadd, 0, sizeof(WORD) * width * height);
}

WuQuantizer::~WuQuantizer() {
	if(gm2)	free(gm2);
	if(wt)	free(wt);
	if(mr)	free(mr);
	if(mg)	free(mg);
	if(mb)	free(mb);
	if(Qadd)  free(Qadd);
}


// Histogram is in elements 1..HISTSIZE along each axis,
// element 0 is for base or marginal value
// NB: these must start out 0!

// Build 3-D color histogram of counts, r/g/b, c^2
void 
WuQuantizer::Hist3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2, int ReserveSize, RGBQUAD *ReservePalette) {
	int ind = 0;
	int inr, ing, inb, table[256];
	int i;
	unsigned y, x;

	for(i = 0; i < 256; i++)
		table[i] = i * i;

	if (FreeImage_GetBPP(m_dib) == 24) {
		for(y = 0; y < height; y++) {
			BYTE *bits = FreeImage_GetScanLine(m_dib, y);

			for(x = 0; x < width; x++)	{
				inr = (bits[FI_RGBA_RED] >> 3) + 1;
				ing = (bits[FI_RGBA_GREEN] >> 3) + 1;
				inb = (bits[FI_RGBA_BLUE] >> 3) + 1;
				ind = INDEX(inr, ing, inb);
				Qadd[y*width + x] = (WORD)ind;
				// [inr][ing][inb]
				vwt[ind]++;
				vmr[ind] += bits[FI_RGBA_RED];
				vmg[ind] += bits[FI_RGBA_GREEN];
				vmb[ind] += bits[FI_RGBA_BLUE];
				m2[ind] += (float)(table[bits[FI_RGBA_RED]] + table[bits[FI_RGBA_GREEN]] + table[bits[FI_RGBA_BLUE]]);
				bits += 3;
			}
		}
	} else {
		for(y = 0; y < height; y++) {
			BYTE *bits = FreeImage_GetScanLine(m_dib, y);

			for(x = 0; x < width; x++)	{
				inr = (bits[FI_RGBA_RED] >> 3) + 1;
				ing = (bits[FI_RGBA_GREEN] >> 3) + 1;
				inb = (bits[FI_RGBA_BLUE] >> 3) + 1;
				ind = INDEX(inr, ing, inb);
				Qadd[y*width + x] = (WORD)ind;
				// [inr][ing][inb]
				vwt[ind]++;
				vmr[ind] += bits[FI_RGBA_RED];
				vmg[ind] += bits[FI_RGBA_GREEN];
				vmb[ind] += bits[FI_RGBA_BLUE];
				m2[ind] += (float)(table[bits[FI_RGBA_RED]] + table[bits[FI_RGBA_GREEN]] + table[bits[FI_RGBA_BLUE]]);
				bits += 4;
			}
		}
	}

	if( ReserveSize > 0 ) {
		int max = 0;
		for(i = 0; i < SIZE_3D; i++) {
			if( vwt[i] > max ) max = vwt[i];
		}
		max++;
		for(i = 0; i < ReserveSize; i++) {
			inr = (ReservePalette[i].rgbRed >> 3) + 1;
			ing = (ReservePalette[i].rgbGreen >> 3) + 1;
			inb = (ReservePalette[i].rgbBlue >> 3) + 1;
			ind = INDEX(inr, ing, inb);
			wt[ind] = max;
			mr[ind] = max * ReservePalette[i].rgbRed;
			mg[ind] = max * ReservePalette[i].rgbGreen;
			mb[ind] = max * ReservePalette[i].rgbBlue;
			gm2[ind] = (float)max * (float)(table[ReservePalette[i].rgbRed] + table[ReservePalette[i].rgbGreen] + table[ReservePalette[i].rgbBlue]);
		}
	}
}


// At conclusion of the histogram step, we can interpret
// wt[r][g][b] = sum over voxel of P(c)
// mr[r][g][b] = sum over voxel of r*P(c)  ,  similarly for mg, mb
// m2[r][g][b] = sum over voxel of c^2*P(c)
// Actually each of these should be divided by 'ImageSize' to give the usual
// interpretation of P() as ranging from 0 to 1, but we needn't do that here.


// We now convert histogram into moments so that we can rapidly calculate
// the sums of the above quantities over any desired box.

// Compute cumulative moments
void 
WuQuantizer::M3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2) {
	unsigned ind1, ind2;
	BYTE i, r, g, b;
	LONG line, line_r, line_g, line_b;
	LONG area[33], area_r[33], area_g[33], area_b[33];
	float line2, area2[33];

    for(r = 1; r <= 32; r++) {
		for(i = 0; i <= 32; i++) {
			area2[i] = 0;
			area[i] = area_r[i] = area_g[i] = area_b[i] = 0;
		}
		for(g = 1; g <= 32; g++) {
			line2 = 0;
			line = line_r = line_g = line_b = 0;
			for(b = 1; b <= 32; b++) {			 
				ind1 = INDEX(r, g, b); // [r][g][b]
				line += vwt[ind1];
				line_r += vmr[ind1]; 
				line_g += vmg[ind1]; 
				line_b += vmb[ind1];
				line2 += m2[ind1];
				area[b] += line;
				area_r[b] += line_r;
				area_g[b] += line_g;
				area_b[b] += line_b;
				area2[b] += line2;
				ind2 = ind1 - 1089; // [r-1][g][b]
				vwt[ind1] = vwt[ind2] + area[b];
				vmr[ind1] = vmr[ind2] + area_r[b];
				vmg[ind1] = vmg[ind2] + area_g[b];
				vmb[ind1] = vmb[ind2] + area_b[b];
				m2[ind1] = m2[ind2] + area2[b];
			}
		}
	}
}

// Compute sum over a box of any given statistic
LONG 
WuQuantizer::Vol( Box *cube, LONG *mmt ) {
    return( mmt[INDEX(cube->r1, cube->g1, cube->b1)] 
		  - mmt[INDEX(cube->r1, cube->g1, cube->b0)]
		  - mmt[INDEX(cube->r1, cube->g0, cube->b1)]
		  + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
		  - mmt[INDEX(cube->r0, cube->g1, cube->b1)]
		  + mmt[INDEX(cube->r0, cube->g1, cube->b0)]
		  + mmt[INDEX(cube->r0, cube->g0, cube->b1)]
		  - mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
}

// The next two routines allow a slightly more efficient calculation
// of Vol() for a proposed subbox of a given box.  The sum of Top()
// and Bottom() is the Vol() of a subbox split in the given direction
// and with the specified new upper bound.


// Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1
// (depending on dir)

LONG 
WuQuantizer::Bottom(Box *cube, BYTE dir, LONG *mmt) {
    switch(dir)
	{
		case FI_RGBA_RED:
			return( - mmt[INDEX(cube->r0, cube->g1, cube->b1)]
				    + mmt[INDEX(cube->r0, cube->g1, cube->b0)]
					+ mmt[INDEX(cube->r0, cube->g0, cube->b1)]
					- mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
			break;
		case FI_RGBA_GREEN:
			return( - mmt[INDEX(cube->r1, cube->g0, cube->b1)]
				    + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
					+ mmt[INDEX(cube->r0, cube->g0, cube->b1)]
					- mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
			break;
		case FI_RGBA_BLUE:
			return( - mmt[INDEX(cube->r1, cube->g1, cube->b0)]
				    + mmt[INDEX(cube->r1, cube->g0, cube->b0)]
					+ mmt[INDEX(cube->r0, cube->g1, cube->b0)]
					- mmt[INDEX(cube->r0, cube->g0, cube->b0)] );
			break;
	}

	return 0;
}


// Compute remainder of Vol(cube, mmt), substituting pos for
// r1, g1, or b1 (depending on dir)

LONG 
WuQuantizer::Top(Box *cube, BYTE dir, int pos, LONG *mmt) {
    switch(dir)
	{
		case FI_RGBA_RED:
			return( mmt[INDEX(pos, cube->g1, cube->b1)] 
				   -mmt[INDEX(pos, cube->g1, cube->b0)]
				   -mmt[INDEX(pos, cube->g0, cube->b1)]
				   +mmt[INDEX(pos, cube->g0, cube->b0)] );
			break;
		case FI_RGBA_GREEN:
			return( mmt[INDEX(cube->r1, pos, cube->b1)] 
				   -mmt[INDEX(cube->r1, pos, cube->b0)]
				   -mmt[INDEX(cube->r0, pos, cube->b1)]
				   +mmt[INDEX(cube->r0, pos, cube->b0)] );
			break;
		case FI_RGBA_BLUE:
			return( mmt[INDEX(cube->r1, cube->g1, pos)]
				   -mmt[INDEX(cube->r1, cube->g0, pos)]
				   -mmt[INDEX(cube->r0, cube->g1, pos)]
				   +mmt[INDEX(cube->r0, cube->g0, pos)] );
			break;
	}

	return 0;
}

// Compute the weighted variance of a box 
// NB: as with the raw statistics, this is really the variance * ImageSize 

float
WuQuantizer::Var(Box *cube) {
    float dr = (float) Vol(cube, mr); 
    float dg = (float) Vol(cube, mg); 
    float db = (float) Vol(cube, mb);
    float xx =  gm2[INDEX(cube->r1, cube->g1, cube->b1)] 
			-gm2[INDEX(cube->r1, cube->g1, cube->b0)]
			 -gm2[INDEX(cube->r1, cube->g0, cube->b1)]
			 +gm2[INDEX(cube->r1, cube->g0, cube->b0)]
			 -gm2[INDEX(cube->r0, cube->g1, cube->b1)]
			 +gm2[INDEX(cube->r0, cube->g1, cube->b0)]
			 +gm2[INDEX(cube->r0, cube->g0, cube->b1)]
			 -gm2[INDEX(cube->r0, cube->g0, cube->b0)];

    return (xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,wt));    
}

// We want to minimize the sum of the variances of two subboxes.
// The sum(c^2) terms can be ignored since their sum over both subboxes
// is the same (the sum for the whole box) no matter where we split.
// The remaining terms have a minus sign in the variance formula,
// so we drop the minus sign and MAXIMIZE the sum of the two terms.

float
WuQuantizer::Maximize(Box *cube, BYTE dir, int first, int last , int *cut, LONG whole_r, LONG whole_g, LONG whole_b, LONG whole_w) {
	LONG half_r, half_g, half_b, half_w;
	int i;
	float temp;

    LONG base_r = Bottom(cube, dir, mr);
    LONG base_g = Bottom(cube, dir, mg);
    LONG base_b = Bottom(cube, dir, mb);
    LONG base_w = Bottom(cube, dir, wt);

    float max = 0.0;

    *cut = -1;

    for (i = first; i < last; i++) {
		half_r = base_r + Top(cube, dir, i, mr);
		half_g = base_g + Top(cube, dir, i, mg);
		half_b = base_b + Top(cube, dir, i, mb);
		half_w = base_w + Top(cube, dir, i, wt);

        // now half_x is sum over lower half of box, if split at i

		if (half_w == 0) {		// subbox could be empty of pixels!
			continue;			// never split into an empty box
		} else {
			temp = ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;
		}

		half_r = whole_r - half_r;
		half_g = whole_g - half_g;
		half_b = whole_b - half_b;
		half_w = whole_w - half_w;

        if (half_w == 0) {		// subbox could be empty of pixels!
			continue;			// never split into an empty box
		} else {
			temp += ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;
		}

    	if (temp > max) {
			max=temp;
			*cut=i;
		}
    }

    return max;
}

bool
WuQuantizer::Cut(Box *set1, Box *set2) {
	BYTE dir;
	int cutr, cutg, cutb;

    LONG whole_r = Vol(set1, mr);
    LONG whole_g = Vol(set1, mg);
    LONG whole_b = Vol(set1, mb);
    LONG whole_w = Vol(set1, wt);

    float maxr = Maximize(set1, FI_RGBA_RED, set1->r0+1, set1->r1, &cutr, whole_r, whole_g, whole_b, whole_w);    
	float maxg = Maximize(set1, FI_RGBA_GREEN, set1->g0+1, set1->g1, &cutg, whole_r, whole_g, whole_b, whole_w);    
	float maxb = Maximize(set1, FI_RGBA_BLUE, set1->b0+1, set1->b1, &cutb, whole_r, whole_g, whole_b, whole_w);

    if ((maxr >= maxg) && (maxr >= maxb)) {
		dir = FI_RGBA_RED;

		if (cutr < 0) {
			return false; // can't split the box
		}
    } else if ((maxg >= maxr) && (maxg>=maxb)) {
		dir = FI_RGBA_GREEN;
	} else {
		dir = FI_RGBA_BLUE;
	}

	set2->r1 = set1->r1;
    set2->g1 = set1->g1;
    set2->b1 = set1->b1;

    switch (dir) {
		case FI_RGBA_RED:
			set2->r0 = set1->r1 = cutr;
			set2->g0 = set1->g0;
			set2->b0 = set1->b0;
			break;

		case FI_RGBA_GREEN:
			set2->g0 = set1->g1 = cutg;
			set2->r0 = set1->r0;
			set2->b0 = set1->b0;
			break;

		case FI_RGBA_BLUE:
			set2->b0 = set1->b1 = cutb;
			set2->r0 = set1->r0;
			set2->g0 = set1->g0;
			break;
    }

    set1->vol = (set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0);
    set2->vol = (set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0);

    return true;
}


void
WuQuantizer::Mark(Box *cube, int label, BYTE *tag) {
    for (int r = cube->r0 + 1; r <= cube->r1; r++) {
		for (int g = cube->g0 + 1; g <= cube->g1; g++) {
			for (int b = cube->b0 + 1; b <= cube->b1; b++) {
				tag[INDEX(r, g, b)] = (BYTE)label;
			}
		}
	}
}

// Wu Quantization algorithm
FIBITMAP *
WuQuantizer::Quantize(int PaletteSize, int ReserveSize, RGBQUAD *ReservePalette) {
	BYTE *tag = NULL;

	try {
		Box	cube[MAXCOLOR];
		int	next;
		LONG i, weight;
		int k;
		float vv[MAXCOLOR], temp;
		
		// Compute 3D histogram

		Hist3D(wt, mr, mg, mb, gm2, ReserveSize, ReservePalette);

		// Compute moments

		M3D(wt, mr, mg, mb, gm2);

		cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;
		cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;
		next = 0;

		for (i = 1; i < PaletteSize; i++) {
			if(Cut(&cube[next], &cube[i])) {
				// volume test ensures we won't try to cut one-cell box
				vv[next] = (cube[next].vol > 1) ? Var(&cube[next]) : 0;
				vv[i] = (cube[i].vol > 1) ? Var(&cube[i]) : 0;
			} else {
				  vv[next] = 0.0;   // don't try to split this box again
				  i--;              // didn't create box i
			}

			next = 0; temp = vv[0];

			for (k = 1; k <= i; k++) {
				if (vv[k] > temp) {
					temp = vv[k]; next = k;
				}
			}

			if (temp <= 0.0) {
				  PaletteSize = i + 1;

				  // Error: "Only got 'PaletteSize' boxes"

				  break;
			}
		}

		// Partition done

		// the space for array gm2 can be freed now

		free(gm2);

		gm2 = NULL;

		// Allocate a new dib

		FIBITMAP *new_dib = FreeImage_Allocate(width, height, 8);

		if (new_dib == NULL) {
			throw FI_MSG_ERROR_MEMORY;
		}

		// create an optimized palette

		RGBQUAD *new_pal = FreeImage_GetPalette(new_dib);

		tag = (BYTE*) malloc(SIZE_3D * sizeof(BYTE));
		if (tag == NULL) {
			throw FI_MSG_ERROR_MEMORY;
		}
		memset(tag, 0, SIZE_3D * sizeof(BYTE));

		for (k = 0; k < PaletteSize ; k++) {
			Mark(&cube[k], k, tag);
			weight = Vol(&cube[k], wt);

			if (weight) {
				new_pal[k].rgbRed	= (BYTE)(((float)Vol(&cube[k], mr) / (float)weight) + 0.5f);
				new_pal[k].rgbGreen = (BYTE)(((float)Vol(&cube[k], mg) / (float)weight) + 0.5f);
				new_pal[k].rgbBlue	= (BYTE)(((float)Vol(&cube[k], mb) / (float)weight) + 0.5f);
			} else {
				// Error: bogus box 'k'

				new_pal[k].rgbRed = new_pal[k].rgbGreen = new_pal[k].rgbBlue = 0;		
			}
		}

		int npitch = FreeImage_GetPitch(new_dib);

		for (unsigned y = 0; y < height; y++) {
			BYTE *new_bits = FreeImage_GetBits(new_dib) + (y * npitch);

			for (unsigned x = 0; x < width; x++) {
				new_bits[x] = tag[Qadd[y*width + x]];
			}
		}

		// output 'new_pal' as color look-up table contents,
		// 'new_bits' as the quantized image (array of table addresses).

		free(tag);

		return (FIBITMAP*) new_dib;
	} catch(...) {
		free(tag);
	}

	return NULL;
}