1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
// ==========================================================
// Poisson solver based on a full multigrid algorithm
//
// Design and implementation by
// - Hervé Drolon (drolon@infonie.fr)
// Reference:
// PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
// 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press.
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
#include "ToneMapping.h"
static const int NPRE = 1; // Number of relaxation sweeps before ...
static const int NPOST = 1; // ... and after the coarse-grid correction is computed
static const int NGMAX = 15; // Maximum number of grids
/**
Copy src into dst
*/
static inline void fmg_copyArray(FIBITMAP *dst, FIBITMAP *src) {
memcpy(FreeImage_GetBits(dst), FreeImage_GetBits(src), FreeImage_GetHeight(dst) * FreeImage_GetPitch(dst));
}
/**
Fills src with zeros
*/
static inline void fmg_fillArrayWithZeros(FIBITMAP *src) {
memset(FreeImage_GetBits(src), 0, FreeImage_GetHeight(src) * FreeImage_GetPitch(src));
}
/**
Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input in
uf[0..2*nc-2][0..2*nc-2], the coarse-grid solution is returned in uc[0..nc-1][0..nc-1].
*/
static void fmg_restrict(FIBITMAP *UC, FIBITMAP *UF, int nc) {
int row_uc, row_uf, col_uc, col_uf;
const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float);
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
float *uc_bits = (float*)FreeImage_GetBits(UC);
const float *uf_bits = (float*)FreeImage_GetBits(UF);
// interior points
{
float *uc_scan = uc_bits + uc_pitch;
for (row_uc = 1, row_uf = 2; row_uc < nc-1; row_uc++, row_uf += 2) {
const float *uf_scan = uf_bits + row_uf * uf_pitch;
for (col_uc = 1, col_uf = 2; col_uc < nc-1; col_uc++, col_uf += 2) {
// calculate
// UC(row_uc, col_uc) =
// 0.5 * UF(row_uf, col_uf) + 0.125 * [ UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) + UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ]
float *uc_pixel = uc_scan + col_uc;
const float *uf_center = uf_scan + col_uf;
*uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1) );
}
uc_scan += uc_pitch;
}
}
// boundary points
const int ncc = 2*nc-1;
{
/*
calculate the following:
for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {
UC(row_uc, 0) = UF(row_uf, 0);
UC(row_uc, nc-1) = UF(row_uf, ncc-1);
}
*/
float *uc_scan = uc_bits;
for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {
const float *uf_scan = uf_bits + row_uf * uf_pitch;
uc_scan[0] = uf_scan[0];
uc_scan[nc-1] = uf_scan[ncc-1];
uc_scan += uc_pitch;
}
}
{
/*
calculate the following:
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
UC(0, col_uc) = UF(0, col_uf);
UC(nc-1, col_uc) = UF(ncc-1, col_uf);
}
*/
float *uc_scan_top = uc_bits;
float *uc_scan_bottom = uc_bits + (nc-1)*uc_pitch;
const float *uf_scan_top = uf_bits + (ncc-1)*uf_pitch;
const float *uf_scan_bottom = uf_bits;
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
uc_scan_top[col_uc] = uf_scan_top[col_uf];
uc_scan_bottom[col_uc] = uf_scan_bottom[col_uf];
}
}
}
/**
Solution of the model problem on the coarsest grid, where h = 1/2 .
The right-hand side is input
in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2].
*/
static void fmg_solve(FIBITMAP *U, FIBITMAP *RHS) {
// fill U with zeros
fmg_fillArrayWithZeros(U);
// calculate U(1, 1) = -h*h*RHS(1, 1)/4.0 where h = 1/2
float *u_scan = (float*)FreeImage_GetScanLine(U, 1);
const float *rhs_scan = (float*)FreeImage_GetScanLine(RHS, 1);
u_scan[1] = -rhs_scan[1] / 16;
}
/**
Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The coarsegrid
solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2 + 1. The fine-grid solution is
returned in uf[0..nf-1][0..nf-1].
*/
static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) {
int row_uc, row_uf, col_uc, col_uf;
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float);
float *uf_bits = (float*)FreeImage_GetBits(UF);
const float *uc_bits = (float*)FreeImage_GetBits(UC);
// do elements that are copies
{
const int nc = nf/2 + 1;
float *uf_scan = uf_bits;
const float *uc_scan = uc_bits;
for (row_uc = 0; row_uc < nc; row_uc++) {
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
// calculate UF(2*row_uc, col_uf) = UC(row_uc, col_uc);
uf_scan[col_uf] = uc_scan[col_uc];
}
uc_scan += uc_pitch;
uf_scan += 2 * uf_pitch;
}
}
// do odd-numbered columns, interpolating vertically
{
for(row_uf = 1; row_uf < nf-1; row_uf += 2) {
float *uf_scan = uf_bits + row_uf * uf_pitch;
for (col_uf = 0; col_uf < nf; col_uf += 2) {
// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) )
uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf) );
}
}
}
// do even-numbered columns, interpolating horizontally
{
float *uf_scan = uf_bits;
for(row_uf = 0; row_uf < nf; row_uf++) {
for (col_uf = 1; col_uf < nf-1; col_uf += 2) {
// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) )
uf_scan[col_uf] = 0.5F * ( uf_scan[col_uf + 1] + uf_scan[col_uf - 1] );
}
uf_scan += uf_pitch;
}
}
}
/**
Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the solution
u[0..n-1][0..n-1], using the right-hand side function rhs[0..n-1][0..n-1].
*/
static void fmg_relaxation(FIBITMAP *U, FIBITMAP *RHS, int n) {
int row, col, ipass, isw, jsw;
const float h = 1.0F / (n - 1);
const float h2 = h*h;
const int u_pitch = FreeImage_GetPitch(U) / sizeof(float);
const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float);
float *u_bits = (float*)FreeImage_GetBits(U);
const float *rhs_bits = (float*)FreeImage_GetBits(RHS);
for (ipass = 0, jsw = 1; ipass < 2; ipass++, jsw = 3-jsw) { // Red and black sweeps
float *u_scan = u_bits + u_pitch;
const float *rhs_scan = rhs_bits + rhs_pitch;
for (row = 1, isw = jsw; row < n-1; row++, isw = 3-isw) {
for (col = isw; col < n-1; col += 2) {
// Gauss-Seidel formula
// calculate U(row, col) =
// 0.25 * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - h2 * RHS(row, col) ]
float *u_center = u_scan + col;
const float *rhs_center = rhs_scan + col;
*u_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1);
*u_center -= h2 * *rhs_center;
*u_center *= 0.25F;
}
u_scan += u_pitch;
rhs_scan += rhs_pitch;
}
}
}
/**
Returns minus the residual for the model problem. Input quantities are u[0..n-1][0..n-1] and
rhs[0..n-1][0..n-1], while res[0..n-1][0..n-1] is returned.
*/
static void fmg_residual(FIBITMAP *RES, FIBITMAP *U, FIBITMAP *RHS, int n) {
int row, col;
const float h = 1.0F / (n-1);
const float h2i = 1.0F / (h*h);
const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float);
const int u_pitch = FreeImage_GetPitch(U) / sizeof(float);
const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float);
float *res_bits = (float*)FreeImage_GetBits(RES);
const float *u_bits = (float*)FreeImage_GetBits(U);
const float *rhs_bits = (float*)FreeImage_GetBits(RHS);
// interior points
{
float *res_scan = res_bits + res_pitch;
const float *u_scan = u_bits + u_pitch;
const float *rhs_scan = rhs_bits + rhs_pitch;
for (row = 1; row < n-1; row++) {
for (col = 1; col < n-1; col++) {
// calculate RES(row, col) =
// -h2i * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - 4 * U(row, col) ] + RHS(row, col);
float *res_center = res_scan + col;
const float *u_center = u_scan + col;
const float *rhs_center = rhs_scan + col;
*res_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1) - 4 * *u_center;
*res_center *= -h2i;
*res_center += *rhs_center;
}
res_scan += res_pitch;
u_scan += u_pitch;
rhs_scan += rhs_pitch;
}
}
// boundary points
{
memset(FreeImage_GetScanLine(RES, 0), 0, FreeImage_GetPitch(RES));
memset(FreeImage_GetScanLine(RES, n-1), 0, FreeImage_GetPitch(RES));
float *left = res_bits;
float *right = res_bits + (n-1);
for(int k = 0; k < n; k++) {
*left = 0;
*right = 0;
left += res_pitch;
right += res_pitch;
}
}
}
/**
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2+1. The fine-grid solution
is returned in uf[0..nf-1][0..nf-1]. res[0..nf-1][0..nf-1] is used for temporary storage.
*/
static void fmg_addint(FIBITMAP *UF, FIBITMAP *UC, FIBITMAP *RES, int nf) {
fmg_prolongate(RES, UC, nf);
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float);
float *uf_bits = (float*)FreeImage_GetBits(UF);
const float *res_bits = (float*)FreeImage_GetBits(RES);
for(int row = 0; row < nf; row++) {
for(int col = 0; col < nf; col++) {
// calculate UF(row, col) = UF(row, col) + RES(row, col);
uf_bits[col] += res_bits[col];
}
uf_bits += uf_pitch;
res_bits += res_pitch;
}
}
/**
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem (19.0.6).
On input u[0..n-1][0..n-1] contains the right-hand side ñ, while on output it returns the solution.
The dimension n must be of the form 2^j + 1 for some integer j. (j is actually the number of
grid levels used in the solution, called ng below.) ncycle is the number of V-cycles to be
used at each level.
*/
static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) {
int j, jcycle, jj, jpost, jpre, nf, ngrid;
FIBITMAP **IRHO = NULL;
FIBITMAP **IU = NULL;
FIBITMAP **IRHS = NULL;
FIBITMAP **IRES = NULL;
int ng = 0; // number of allocated grids
// --------------------------------------------------------------------------
#define _CREATE_ARRAY_GRID_(array, array_size) \
array = (FIBITMAP**)malloc(array_size * sizeof(FIBITMAP*));\
if(!array) throw(1);\
memset(array, 0, array_size * sizeof(FIBITMAP*))
#define _FREE_ARRAY_GRID_(array, array_size) \
if(NULL != array) {\
for(int k = 0; k < array_size; k++) {\
if(NULL != array[k]) {\
FreeImage_Unload(array[k]); array[k] = NULL;\
}\
}\
free(array);\
}
// --------------------------------------------------------------------------
try {
int nn = n;
// check grid size and grid levels
while (nn >>= 1) ng++;
if (n != 1 + (1L << ng)) {
FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: n = %d, while n-1 must be a power of 2.", n);
throw(1);
}
if (ng > NGMAX) {
FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: ng = %d while NGMAX = %d, increase NGMAX.", ng, NGMAX);
throw(1);
}
// allocate grid arrays
{
_CREATE_ARRAY_GRID_(IRHO, ng);
_CREATE_ARRAY_GRID_(IU, ng);
_CREATE_ARRAY_GRID_(IRHS, ng);
_CREATE_ARRAY_GRID_(IRES, ng);
}
nn = n/2 + 1;
ngrid = ng - 2;
// allocate storage for r.h.s. on grid (ng - 2) ...
IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHO[ngrid]) throw(1);
// ... and fill it by restricting from the fine grid
fmg_restrict(IRHO[ngrid], U, nn);
// similarly allocate storage and fill r.h.s. on all coarse grids.
while (nn > 3) {
nn = nn/2 + 1;
ngrid--;
IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHO[ngrid]) throw(1);
fmg_restrict(IRHO[ngrid], IRHO[ngrid+1], nn);
}
nn = 3;
IU[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IU[0]) throw(1);
IRHS[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHS[0]) throw(1);
// initial solution on coarsest grid
fmg_solve(IU[0], IRHO[0]);
// irho[0] no longer needed ...
FreeImage_Unload(IRHO[0]); IRHO[0] = NULL;
ngrid = ng;
// nested iteration loop
for (j = 1; j < ngrid; j++) {
nn = 2*nn - 1;
IU[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IU[j]) throw(1);
IRHS[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHS[j]) throw(1);
IRES[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRES[j]) throw(1);
fmg_prolongate(IU[j], IU[j-1], nn);
// interpolate from coarse grid to next finer grid
// set up r.h.s.
fmg_copyArray(IRHS[j], j != (ngrid - 1) ? IRHO[j] : U);
// V-cycle loop
for (jcycle = 0; jcycle < ncycle; jcycle++) {
nf = nn;
// downward stoke of the V
for (jj = j; jj >= 1; jj--) {
// pre-smoothing
for (jpre = 0; jpre < NPRE; jpre++) {
fmg_relaxation(IU[jj], IRHS[jj], nf);
}
fmg_residual(IRES[jj], IU[jj], IRHS[jj], nf);
nf = nf/2 + 1;
// restriction of the residual is the next r.h.s.
fmg_restrict(IRHS[jj-1], IRES[jj], nf);
// zero for initial guess in next relaxation
fmg_fillArrayWithZeros(IU[jj-1]);
}
// bottom of V: solve on coarsest grid
fmg_solve(IU[0], IRHS[0]);
nf = 3;
// upward stroke of V.
for (jj = 1; jj <= j; jj++) {
nf = 2*nf - 1;
// use res for temporary storage inside addint
fmg_addint(IU[jj], IU[jj-1], IRES[jj], nf);
// post-smoothing
for (jpost = 0; jpost < NPOST; jpost++) {
fmg_relaxation(IU[jj], IRHS[jj], nf);
}
}
}
}
// return solution in U
fmg_copyArray(U, IU[ngrid-1]);
// delete allocated arrays
_FREE_ARRAY_GRID_(IRES, ng);
_FREE_ARRAY_GRID_(IRHS, ng);
_FREE_ARRAY_GRID_(IU, ng);
_FREE_ARRAY_GRID_(IRHO, ng);
return TRUE;
} catch(int) {
// delete allocated arrays
_FREE_ARRAY_GRID_(IRES, ng);
_FREE_ARRAY_GRID_(IRHS, ng);
_FREE_ARRAY_GRID_(IU, ng);
_FREE_ARRAY_GRID_(IRHO, ng);
return FALSE;
}
}
// --------------------------------------------------------------------------
/**
Poisson solver based on a multigrid algorithm.
This routine solves a Poisson equation, remap result pixels to [0..1] and returns the solution.
NB: The input image is first stored inside a square image whose size is (2^j + 1)x(2^j + 1) for some integer j,
where j is such that 2^j is the nearest larger dimension corresponding to MAX(image width, image height).
@param Laplacian Laplacian image
@param ncycle Number of cycles in the multigrid algorithm (usually 2 or 3)
@return Returns the solved PDE equations if successful, returns NULL otherwise
*/
FIBITMAP* DLL_CALLCONV
FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) {
if(!FreeImage_HasPixels(Laplacian)) return NULL;
int width = FreeImage_GetWidth(Laplacian);
int height = FreeImage_GetHeight(Laplacian);
// get nearest larger dimension length that is acceptable by the algorithm
int n = MAX(width, height);
int size = 0;
while((n >>= 1) > 0) size++;
if((1 << size) < MAX(width, height)) {
size++;
}
// size must be of the form 2^j + 1 for some integer j
size = 1 + (1 << size);
// allocate a temporary square image I
FIBITMAP *I = FreeImage_AllocateT(FIT_FLOAT, size, size);
if(!I) return NULL;
// copy Laplacian into I and shift pixels to create a boundary
FreeImage_Paste(I, Laplacian, 1, 1, 255);
// solve the PDE equation
fmg_mglin(I, size, ncycle);
// shift pixels back
FIBITMAP *U = FreeImage_Copy(I, 1, 1, width + 1, height + 1);
FreeImage_Unload(I);
// remap pixels to [0..1]
NormalizeY(U, 0, 1);
// copy metadata from src to dst
FreeImage_CloneMetadata(U, Laplacian);
// return the integrated image
return U;
}
|