summaryrefslogtreecommitdiff
path: root/plugins/AdvaImg/src/LibPNG/png.c
blob: 55fbc8fcc1d9bc9df3752070079066ccce1dedab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874

/* png.c - location for general purpose libpng functions
 *
 * Last changed in libpng 1.5.11 [June 14, 2012]
 * Copyright (c) 1998-2012 Glenn Randers-Pehrson
 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
 *
 * This code is released under the libpng license.
 * For conditions of distribution and use, see the disclaimer
 * and license in png.h
 */

#include "pngpriv.h"

/* Generate a compiler error if there is an old png.h in the search path. */
typedef png_libpng_version_1_5_13 Your_png_h_is_not_version_1_5_13;

/* Tells libpng that we have already handled the first "num_bytes" bytes
 * of the PNG file signature.  If the PNG data is embedded into another
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
 * or write any of the magic bytes before it starts on the IHDR.
 */

#ifdef PNG_READ_SUPPORTED
void PNGAPI
png_set_sig_bytes(png_structp png_ptr, int num_bytes)
{
   png_debug(1, "in png_set_sig_bytes");

   if (png_ptr == NULL)
      return;

   if (num_bytes > 8)
      png_error(png_ptr, "Too many bytes for PNG signature");

   png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
}

/* Checks whether the supplied bytes match the PNG signature.  We allow
 * checking less than the full 8-byte signature so that those apps that
 * already read the first few bytes of a file to determine the file type
 * can simply check the remaining bytes for extra assurance.  Returns
 * an integer less than, equal to, or greater than zero if sig is found,
 * respectively, to be less than, to match, or be greater than the correct
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
 */
int PNGAPI
png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
{
   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};

   if (num_to_check > 8)
      num_to_check = 8;

   else if (num_to_check < 1)
      return (-1);

   if (start > 7)
      return (-1);

   if (start + num_to_check > 8)
      num_to_check = 8 - start;

   return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
}

#endif /* PNG_READ_SUPPORTED */

#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
/* Function to allocate memory for zlib */
PNG_FUNCTION(voidpf /* PRIVATE */,
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
{
   png_voidp ptr;
   png_structp p=(png_structp)png_ptr;
   png_uint_32 save_flags=p->flags;
   png_alloc_size_t num_bytes;

   if (png_ptr == NULL)
      return (NULL);

   if (items > PNG_UINT_32_MAX/size)
   {
     png_warning (p, "Potential overflow in png_zalloc()");
     return (NULL);
   }
   num_bytes = (png_alloc_size_t)items * size;

   p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
   ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
   p->flags=save_flags;

   return ((voidpf)ptr);
}

/* Function to free memory for zlib */
void /* PRIVATE */
png_zfree(voidpf png_ptr, voidpf ptr)
{
   png_free((png_structp)png_ptr, (png_voidp)ptr);
}

/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
 * in case CRC is > 32 bits to leave the top bits 0.
 */
void /* PRIVATE */
png_reset_crc(png_structp png_ptr)
{
   /* The cast is safe because the crc is a 32 bit value. */
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
}

/* Calculate the CRC over a section of data.  We can only pass as
 * much data to this routine as the largest single buffer size.  We
 * also check that this data will actually be used before going to the
 * trouble of calculating it.
 */
void /* PRIVATE */
png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
{
   int need_crc = 1;

   if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
   {
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
         need_crc = 0;
   }

   else /* critical */
   {
      if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
         need_crc = 0;
   }

   /* 'uLong' is defined as unsigned long, this means that on some systems it is
    * a 64 bit value.  crc32, however, returns 32 bits so the following cast is
    * safe.  'uInt' may be no more than 16 bits, so it is necessary to perform a
    * loop here.
    */
   if (need_crc && length > 0)
   {
      uLong crc = png_ptr->crc; /* Should never issue a warning */

      do
      {
         uInt safeLength = (uInt)length;
         if (safeLength == 0)
            safeLength = (uInt)-1; /* evil, but safe */

         crc = crc32(crc, ptr, safeLength);

         /* The following should never issue compiler warnings, if they do the
          * target system has characteristics that will probably violate other
          * assumptions within the libpng code.
          */
         ptr += safeLength;
         length -= safeLength;
      }
      while (length > 0);

      /* And the following is always safe because the crc is only 32 bits. */
      png_ptr->crc = (png_uint_32)crc;
   }
}

/* Check a user supplied version number, called from both read and write
 * functions that create a png_struct
 */
int
png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
{
   if (user_png_ver)
   {
      int i = 0;

      do
      {
         if (user_png_ver[i] != png_libpng_ver[i])
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
      } while (png_libpng_ver[i++]);
   }

   else
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;

   if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
   {
     /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
      * we must recompile any applications that use any older library version.
      * For versions after libpng 1.0, we will be compatible, so we need
      * only check the first digit.
      */
      if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
          (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
          (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
      {
#ifdef PNG_WARNINGS_SUPPORTED
         size_t pos = 0;
         char m[128];

         pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
         pos = png_safecat(m, sizeof m, pos, user_png_ver);
         pos = png_safecat(m, sizeof m, pos, " but running with ");
         pos = png_safecat(m, sizeof m, pos, png_libpng_ver);

         png_warning(png_ptr, m);
#endif

#ifdef PNG_ERROR_NUMBERS_SUPPORTED
         png_ptr->flags = 0;
#endif

         return 0;
      }
   }

   /* Success return. */
   return 1;
}

/* Allocate the memory for an info_struct for the application.  We don't
 * really need the png_ptr, but it could potentially be useful in the
 * future.  This should be used in favour of malloc(png_sizeof(png_info))
 * and png_info_init() so that applications that want to use a shared
 * libpng don't have to be recompiled if png_info changes size.
 */
PNG_FUNCTION(png_infop,PNGAPI
png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
{
   png_infop info_ptr;

   png_debug(1, "in png_create_info_struct");

   if (png_ptr == NULL)
      return (NULL);

#ifdef PNG_USER_MEM_SUPPORTED
   info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
      png_ptr->malloc_fn, png_ptr->mem_ptr);
#else
   info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
#endif
   if (info_ptr != NULL)
      png_info_init_3(&info_ptr, png_sizeof(png_info));

   return (info_ptr);
}

/* This function frees the memory associated with a single info struct.
 * Normally, one would use either png_destroy_read_struct() or
 * png_destroy_write_struct() to free an info struct, but this may be
 * useful for some applications.
 */
void PNGAPI
png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
{
   png_infop info_ptr = NULL;

   png_debug(1, "in png_destroy_info_struct");

   if (png_ptr == NULL)
      return;

   if (info_ptr_ptr != NULL)
      info_ptr = *info_ptr_ptr;

   if (info_ptr != NULL)
   {
      png_info_destroy(png_ptr, info_ptr);

#ifdef PNG_USER_MEM_SUPPORTED
      png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
          png_ptr->mem_ptr);
#else
      png_destroy_struct((png_voidp)info_ptr);
#endif
      *info_ptr_ptr = NULL;
   }
}

/* Initialize the info structure.  This is now an internal function (0.89)
 * and applications using it are urged to use png_create_info_struct()
 * instead.
 */

void PNGAPI
png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
{
   png_infop info_ptr = *ptr_ptr;

   png_debug(1, "in png_info_init_3");

   if (info_ptr == NULL)
      return;

   if (png_sizeof(png_info) > png_info_struct_size)
   {
      png_destroy_struct(info_ptr);
      info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
      *ptr_ptr = info_ptr;
   }

   /* Set everything to 0 */
   png_memset(info_ptr, 0, png_sizeof(png_info));
}

void PNGAPI
png_data_freer(png_structp png_ptr, png_infop info_ptr,
   int freer, png_uint_32 mask)
{
   png_debug(1, "in png_data_freer");

   if (png_ptr == NULL || info_ptr == NULL)
      return;

   if (freer == PNG_DESTROY_WILL_FREE_DATA)
      info_ptr->free_me |= mask;

   else if (freer == PNG_USER_WILL_FREE_DATA)
      info_ptr->free_me &= ~mask;

   else
      png_warning(png_ptr,
         "Unknown freer parameter in png_data_freer");
}

void PNGAPI
png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
   int num)
{
   png_debug(1, "in png_free_data");

   if (png_ptr == NULL || info_ptr == NULL)
      return;

#ifdef PNG_TEXT_SUPPORTED
   /* Free text item num or (if num == -1) all text items */
   if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
   {
      if (num != -1)
      {
         if (info_ptr->text && info_ptr->text[num].key)
         {
            png_free(png_ptr, info_ptr->text[num].key);
            info_ptr->text[num].key = NULL;
         }
      }

      else
      {
         int i;
         for (i = 0; i < info_ptr->num_text; i++)
             png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
         png_free(png_ptr, info_ptr->text);
         info_ptr->text = NULL;
         info_ptr->num_text=0;
      }
   }
#endif

#ifdef PNG_tRNS_SUPPORTED
   /* Free any tRNS entry */
   if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->trans_alpha);
      info_ptr->trans_alpha = NULL;
      info_ptr->valid &= ~PNG_INFO_tRNS;
   }
#endif

#ifdef PNG_sCAL_SUPPORTED
   /* Free any sCAL entry */
   if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->scal_s_width);
      png_free(png_ptr, info_ptr->scal_s_height);
      info_ptr->scal_s_width = NULL;
      info_ptr->scal_s_height = NULL;
      info_ptr->valid &= ~PNG_INFO_sCAL;
   }
#endif

#ifdef PNG_pCAL_SUPPORTED
   /* Free any pCAL entry */
   if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->pcal_purpose);
      png_free(png_ptr, info_ptr->pcal_units);
      info_ptr->pcal_purpose = NULL;
      info_ptr->pcal_units = NULL;
      if (info_ptr->pcal_params != NULL)
         {
            int i;
            for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
            {
               png_free(png_ptr, info_ptr->pcal_params[i]);
               info_ptr->pcal_params[i] = NULL;
            }
            png_free(png_ptr, info_ptr->pcal_params);
            info_ptr->pcal_params = NULL;
         }
      info_ptr->valid &= ~PNG_INFO_pCAL;
   }
#endif

#ifdef PNG_iCCP_SUPPORTED
   /* Free any iCCP entry */
   if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->iccp_name);
      png_free(png_ptr, info_ptr->iccp_profile);
      info_ptr->iccp_name = NULL;
      info_ptr->iccp_profile = NULL;
      info_ptr->valid &= ~PNG_INFO_iCCP;
   }
#endif

#ifdef PNG_sPLT_SUPPORTED
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
   if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
   {
      if (num != -1)
      {
         if (info_ptr->splt_palettes)
         {
            png_free(png_ptr, info_ptr->splt_palettes[num].name);
            png_free(png_ptr, info_ptr->splt_palettes[num].entries);
            info_ptr->splt_palettes[num].name = NULL;
            info_ptr->splt_palettes[num].entries = NULL;
         }
      }

      else
      {
         if (info_ptr->splt_palettes_num)
         {
            int i;
            for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
               png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);

            png_free(png_ptr, info_ptr->splt_palettes);
            info_ptr->splt_palettes = NULL;
            info_ptr->splt_palettes_num = 0;
         }
         info_ptr->valid &= ~PNG_INFO_sPLT;
      }
   }
#endif

#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
   if (png_ptr->unknown_chunk.data)
   {
      png_free(png_ptr, png_ptr->unknown_chunk.data);
      png_ptr->unknown_chunk.data = NULL;
   }

   if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
   {
      if (num != -1)
      {
          if (info_ptr->unknown_chunks)
          {
             png_free(png_ptr, info_ptr->unknown_chunks[num].data);
             info_ptr->unknown_chunks[num].data = NULL;
          }
      }

      else
      {
         int i;

         if (info_ptr->unknown_chunks_num)
         {
            for (i = 0; i < info_ptr->unknown_chunks_num; i++)
               png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);

            png_free(png_ptr, info_ptr->unknown_chunks);
            info_ptr->unknown_chunks = NULL;
            info_ptr->unknown_chunks_num = 0;
         }
      }
   }
#endif

#ifdef PNG_hIST_SUPPORTED
   /* Free any hIST entry */
   if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->hist);
      info_ptr->hist = NULL;
      info_ptr->valid &= ~PNG_INFO_hIST;
   }
#endif

   /* Free any PLTE entry that was internally allocated */
   if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
   {
      png_zfree(png_ptr, info_ptr->palette);
      info_ptr->palette = NULL;
      info_ptr->valid &= ~PNG_INFO_PLTE;
      info_ptr->num_palette = 0;
   }

#ifdef PNG_INFO_IMAGE_SUPPORTED
   /* Free any image bits attached to the info structure */
   if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
   {
      if (info_ptr->row_pointers)
      {
         int row;
         for (row = 0; row < (int)info_ptr->height; row++)
         {
            png_free(png_ptr, info_ptr->row_pointers[row]);
            info_ptr->row_pointers[row] = NULL;
         }
         png_free(png_ptr, info_ptr->row_pointers);
         info_ptr->row_pointers = NULL;
      }
      info_ptr->valid &= ~PNG_INFO_IDAT;
   }
#endif

   if (num != -1)
      mask &= ~PNG_FREE_MUL;

   info_ptr->free_me &= ~mask;
}

/* This is an internal routine to free any memory that the info struct is
 * pointing to before re-using it or freeing the struct itself.  Recall
 * that png_free() checks for NULL pointers for us.
 */
void /* PRIVATE */
png_info_destroy(png_structp png_ptr, png_infop info_ptr)
{
   png_debug(1, "in png_info_destroy");

   png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);

#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
   if (png_ptr->num_chunk_list)
   {
      png_free(png_ptr, png_ptr->chunk_list);
      png_ptr->chunk_list = NULL;
      png_ptr->num_chunk_list = 0;
   }
#endif

   png_info_init_3(&info_ptr, png_sizeof(png_info));
}
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */

/* This function returns a pointer to the io_ptr associated with the user
 * functions.  The application should free any memory associated with this
 * pointer before png_write_destroy() or png_read_destroy() are called.
 */
png_voidp PNGAPI
png_get_io_ptr(png_structp png_ptr)
{
   if (png_ptr == NULL)
      return (NULL);

   return (png_ptr->io_ptr);
}

#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
#  ifdef PNG_STDIO_SUPPORTED
/* Initialize the default input/output functions for the PNG file.  If you
 * use your own read or write routines, you can call either png_set_read_fn()
 * or png_set_write_fn() instead of png_init_io().  If you have defined
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
 * function of your own because "FILE *" isn't necessarily available.
 */
void PNGAPI
png_init_io(png_structp png_ptr, png_FILE_p fp)
{
   png_debug(1, "in png_init_io");

   if (png_ptr == NULL)
      return;

   png_ptr->io_ptr = (png_voidp)fp;
}
#  endif

#  ifdef PNG_TIME_RFC1123_SUPPORTED
/* Convert the supplied time into an RFC 1123 string suitable for use in
 * a "Creation Time" or other text-based time string.
 */
png_const_charp PNGAPI
png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
{
   static PNG_CONST char short_months[12][4] =
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

   if (png_ptr == NULL)
      return (NULL);

   if (ptime->year > 9999 /* RFC1123 limitation */ ||
       ptime->month == 0    ||  ptime->month > 12  ||
       ptime->day   == 0    ||  ptime->day   > 31  ||
       ptime->hour  > 23    ||  ptime->minute > 59 ||
       ptime->second > 60)
   {
      png_warning(png_ptr, "Ignoring invalid time value");
      return (NULL);
   }

   {
      size_t pos = 0;
      char number_buf[5]; /* enough for a four-digit year */

#     define APPEND_STRING(string)\
         pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
            pos, (string))
#     define APPEND_NUMBER(format, value)\
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
#     define APPEND(ch)\
         if (pos < (sizeof png_ptr->time_buffer)-1)\
            png_ptr->time_buffer[pos++] = (ch)

      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
      APPEND(' ');
      APPEND_STRING(short_months[(ptime->month - 1)]);
      APPEND(' ');
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
      APPEND(' ');
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
      APPEND(':');
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
      APPEND(':');
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */

#     undef APPEND
#     undef APPEND_NUMBER
#     undef APPEND_STRING
   }

   return png_ptr->time_buffer;
}
#  endif /* PNG_TIME_RFC1123_SUPPORTED */

#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */

png_const_charp PNGAPI
png_get_copyright(png_const_structp png_ptr)
{
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
#ifdef PNG_STRING_COPYRIGHT
   return PNG_STRING_COPYRIGHT
#else
#  ifdef __STDC__
   return PNG_STRING_NEWLINE \
     "libpng version 1.5.13 - September 27, 2012" PNG_STRING_NEWLINE \
     "Copyright (c) 1998-2012 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
     "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
     "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
     PNG_STRING_NEWLINE;
#  else
      return "libpng version 1.5.13 - September 27, 2012\
      Copyright (c) 1998-2012 Glenn Randers-Pehrson\
      Copyright (c) 1996-1997 Andreas Dilger\
      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
#  endif
#endif
}

/* The following return the library version as a short string in the
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
 * is defined in png.h.
 * Note: now there is no difference between png_get_libpng_ver() and
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
 * it is guaranteed that png.c uses the correct version of png.h.
 */
png_const_charp PNGAPI
png_get_libpng_ver(png_const_structp png_ptr)
{
   /* Version of *.c files used when building libpng */
   return png_get_header_ver(png_ptr);
}

png_const_charp PNGAPI
png_get_header_ver(png_const_structp png_ptr)
{
   /* Version of *.h files used when building libpng */
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
   return PNG_LIBPNG_VER_STRING;
}

png_const_charp PNGAPI
png_get_header_version(png_const_structp png_ptr)
{
   /* Returns longer string containing both version and date */
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
#ifdef __STDC__
   return PNG_HEADER_VERSION_STRING
#  ifndef PNG_READ_SUPPORTED
   "     (NO READ SUPPORT)"
#  endif
   PNG_STRING_NEWLINE;
#else
   return PNG_HEADER_VERSION_STRING;
#endif
}

#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int PNGAPI
png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
{
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
   png_const_bytep p, p_end;

   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
      return PNG_HANDLE_CHUNK_AS_DEFAULT;

   p_end = png_ptr->chunk_list;
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */

   /* The code is the fifth byte after each four byte string.  Historically this
    * code was always searched from the end of the list, so it should continue
    * to do so in case there are duplicated entries.
    */
   do /* num_chunk_list > 0, so at least one */
   {
      p -= 5;
      if (!png_memcmp(chunk_name, p, 4))
         return p[4];
   }
   while (p > p_end);

   return PNG_HANDLE_CHUNK_AS_DEFAULT;
}

int /* PRIVATE */
png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
{
   png_byte chunk_string[5];

   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
   return png_handle_as_unknown(png_ptr, chunk_string);
}
#endif

#ifdef PNG_READ_SUPPORTED
/* This function, added to libpng-1.0.6g, is untested. */
int PNGAPI
png_reset_zstream(png_structp png_ptr)
{
   if (png_ptr == NULL)
      return Z_STREAM_ERROR;

   return (inflateReset(&png_ptr->zstream));
}
#endif /* PNG_READ_SUPPORTED */

/* This function was added to libpng-1.0.7 */
png_uint_32 PNGAPI
png_access_version_number(void)
{
   /* Version of *.c files used when building libpng */
   return((png_uint_32)PNG_LIBPNG_VER);
}



#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
 * at libpng 1.5.5!
 */

/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
#  ifdef PNG_CHECK_cHRM_SUPPORTED

int /* PRIVATE */
png_check_cHRM_fixed(png_structp png_ptr,
   png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
   png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
   png_fixed_point blue_x, png_fixed_point blue_y)
{
   int ret = 1;
   unsigned long xy_hi,xy_lo,yx_hi,yx_lo;

   png_debug(1, "in function png_check_cHRM_fixed");

   if (png_ptr == NULL)
      return 0;

   /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
    * y must also be greater than 0.  To test for the upper limit calculate
    * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
    * cannot overflow.)  At this point we know x and y are >= 0 and (x+y) is
    * <= PNG_FP_1.  The previous test on PNG_MAX_UINT_31 is removed because it
    * pointless (and it produces compiler warnings!)
    */
   if (white_x < 0 || white_y <= 0 ||
         red_x < 0 ||   red_y <  0 ||
       green_x < 0 || green_y <  0 ||
        blue_x < 0 ||  blue_y <  0)
   {
      png_warning(png_ptr,
        "Ignoring attempt to set negative chromaticity value");
      ret = 0;
   }
   /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
   if (white_x > PNG_FP_1 - white_y)
   {
      png_warning(png_ptr, "Invalid cHRM white point");
      ret = 0;
   }

   if (red_x > PNG_FP_1 - red_y)
   {
      png_warning(png_ptr, "Invalid cHRM red point");
      ret = 0;
   }

   if (green_x > PNG_FP_1 - green_y)
   {
      png_warning(png_ptr, "Invalid cHRM green point");
      ret = 0;
   }

   if (blue_x > PNG_FP_1 - blue_y)
   {
      png_warning(png_ptr, "Invalid cHRM blue point");
      ret = 0;
   }

   png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
   png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);

   if (xy_hi == yx_hi && xy_lo == yx_lo)
   {
      png_warning(png_ptr,
         "Ignoring attempt to set cHRM RGB triangle with zero area");
      ret = 0;
   }

   return ret;
}
#  endif /* PNG_CHECK_cHRM_SUPPORTED */

#ifdef PNG_cHRM_SUPPORTED
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
 * cHRM, as opposed to using chromaticities.  These internal APIs return
 * non-zero on a parameter error.  The X, Y and Z values are required to be
 * positive and less than 1.0.
 */
int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
{
   png_int_32 d, dwhite, whiteX, whiteY;

   d = XYZ.redX + XYZ.redY + XYZ.redZ;
   if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
   dwhite = d;
   whiteX = XYZ.redX;
   whiteY = XYZ.redY;

   d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
   if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
   dwhite += d;
   whiteX += XYZ.greenX;
   whiteY += XYZ.greenY;

   d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
   if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
   dwhite += d;
   whiteX += XYZ.blueX;
   whiteY += XYZ.blueY;

   /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
    * thus:
    */
   if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
   if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;

   return 0;
}

int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
{
   png_fixed_point red_inverse, green_inverse, blue_scale;
   png_fixed_point left, right, denominator;

   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
    * have end points with 0 tristimulus values (these are impossible end
    * points, but they are used to cover the possible colors.)
    */
   if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
   if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
   if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
   if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
   if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
   if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
   if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
   if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;

   /* The reverse calculation is more difficult because the original tristimulus
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
    * derived values were recorded in the cHRM chunk;
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
    * therefore an arbitrary ninth value has to be introduced to undo the
    * original transformations.
    *
    * Think of the original end-points as points in (X,Y,Z) space.  The
    * chromaticity values (c) have the property:
    *
    *           C
    *   c = ---------
    *       X + Y + Z
    *
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
    * three chromaticity values (x,y,z) for each end-point obey the
    * relationship:
    *
    *   x + y + z = 1
    *
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
    * and chromaticity is the intersection of the vector from the origin to the
    * (X,Y,Z) value with the chromaticity plane.
    *
    * To fully invert the chromaticity calculation we would need the three
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
    * given all three of the scale factors since:
    *
    *    color-C = color-c * color-scale
    *    white-C = red-C + green-C + blue-C
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
    *
    * But cHRM records only white-x and white-y, so we have lost the white scale
    * factor:
    *
    *    white-C = white-c*white-scale
    *
    * To handle this the inverse transformation makes an arbitrary assumption
    * about white-scale:
    *
    *    Assume: white-Y = 1.0
    *    Hence:  white-scale = 1/white-y
    *    Or:     red-Y + green-Y + blue-Y = 1.0
    *
    * Notice the last statement of the assumption gives an equation in three of
    * the nine values we want to calculate.  8 more equations come from the
    * above routine as summarised at the top above (the chromaticity
    * calculation):
    *
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
    *
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
    * determinants, however this is not as bad as it seems because only 28 of
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
    * Cramer's rule is notoriously numerically unstable because the determinant
    * calculation involves the difference of large, but similar, numbers.  It is
    * difficult to be sure that the calculation is stable for real world values
    * and it is certain that it becomes unstable where the end points are close
    * together.
    *
    * So this code uses the perhaps slightly less optimal but more
    * understandable and totally obvious approach of calculating color-scale.
    *
    * This algorithm depends on the precision in white-scale and that is
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
    * accuracy inherent in the cHRM chunk drops off substantially.
    *
    * libpng arithmetic: a simple invertion of the above equations
    * ------------------------------------------------------------
    *
    *    white_scale = 1/white-y
    *    white-X = white-x * white-scale
    *    white-Y = 1.0
    *    white-Z = (1 - white-x - white-y) * white_scale
    *
    *    white-C = red-C + green-C + blue-C
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
    *
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
    * all the coefficients are now known:
    *
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
    *       = white-x/white-y
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
    *       = (1 - white-x - white-y)/white-y
    *
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
    * three equations together to get an alternative third:
    *
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
    *
    * So now we have a Cramer's rule solution where the determinants are just
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
    * multiplication of three coefficients so we can't guarantee to avoid
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
    * floating point is probably a good choice here, but it's not an option for
    * fixed point.  Instead proceed to simplify the first two equations by
    * eliminating what is likely to be the largest value, blue-scale:
    *
    *    blue-scale = white-scale - red-scale - green-scale
    *
    * Hence:
    *
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
    *                (white-x - blue-x)*white-scale
    *
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
    *                1 - blue-y*white-scale
    *
    * And now we can trivially solve for (red-scale,green-scale):
    *
    *    green-scale =
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
    *                -----------------------------------------------------------
    *                                  green-x - blue-x
    *
    *    red-scale =
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
    *                ---------------------------------------------------------
    *                                  red-y - blue-y
    *
    * Hence:
    *
    *    red-scale =
    *          ( (green-x - blue-x) * (white-y - blue-y) -
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
    * -------------------------------------------------------------------------
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
    *
    *    green-scale =
    *          ( (red-y - blue-y) * (white-x - blue-x) -
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
    * -------------------------------------------------------------------------
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
    *
    * Accuracy:
    * The input values have 5 decimal digits of accuracy.  The values are all in
    * the range 0 < value < 1, so simple products are in the same range but may
    * need up to 10 decimal digits to preserve the original precision and avoid
    * underflow.  Because we are using a 32-bit signed representation we cannot
    * match this; the best is a little over 9 decimal digits, less than 10.
    *
    * The approach used here is to preserve the maximum precision within the
    * signed representation.  Because the red-scale calculation above uses the
    * difference between two products of values that must be in the range -1..+1
    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
    * factor is irrelevant in the calculation because it is applied to both
    * numerator and denominator.
    *
    * Note that the values of the differences of the products of the
    * chromaticities in the above equations tend to be small, for example for
    * the sRGB chromaticities they are:
    *
    * red numerator:    -0.04751
    * green numerator:  -0.08788
    * denominator:      -0.2241 (without white-y multiplication)
    *
    *  The resultant Y coefficients from the chromaticities of some widely used
    *  color space definitions are (to 15 decimal places):
    *
    *  sRGB
    *    0.212639005871510 0.715168678767756 0.072192315360734
    *  Kodak ProPhoto
    *    0.288071128229293 0.711843217810102 0.000085653960605
    *  Adobe RGB
    *    0.297344975250536 0.627363566255466 0.075291458493998
    *  Adobe Wide Gamut RGB
    *    0.258728243040113 0.724682314948566 0.016589442011321
    */
   /* By the argument, above overflow should be impossible here. The return
    * value of 2 indicates an internal error to the caller.
    */
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
   denominator = left - right;

   /* Now find the red numerator. */
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;

   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
    * chunk values.  This calculation actually returns the reciprocal of the
    * scale value because this allows us to delay the multiplication of white-y
    * into the denominator, which tends to produce a small number.
    */
   if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
       red_inverse <= xy.whitey /* r+g+b scales = white scale */)
      return 1;

   /* Similarly for green_inverse: */
   if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
   if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
   if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
       green_inverse <= xy.whitey)
      return 1;

   /* And the blue scale, the checks above guarantee this can't overflow but it
    * can still produce 0 for extreme cHRM values.
    */
   blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
      png_reciprocal(green_inverse);
   if (blue_scale <= 0) return 1;


   /* And fill in the png_XYZ: */
   if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
   if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
   if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
      red_inverse))
      return 1;

   if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
   if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
   if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
      green_inverse))
      return 1;

   if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
   if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
   if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
      PNG_FP_1))
      return 1;

   return 0; /*success*/
}

int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
{
   switch (png_XYZ_from_xy(XYZ, xy))
   {
      case 0: /* success */
         return 1;

      case 1:
         /* The chunk may be technically valid, but we got png_fixed_point
          * overflow while trying to get XYZ values out of it.  This is
          * entirely benign - the cHRM chunk is pretty extreme.
          */
         png_warning(png_ptr,
            "extreme cHRM chunk cannot be converted to tristimulus values");
         break;

      default:
         /* libpng is broken; this should be a warning but if it happens we
          * want error reports so for the moment it is an error.
          */
         png_error(png_ptr, "internal error in png_XYZ_from_xy");
         break;
   }

   /* ERROR RETURN */
   return 0;
}
#endif

void /* PRIVATE */
png_check_IHDR(png_structp png_ptr,
   png_uint_32 width, png_uint_32 height, int bit_depth,
   int color_type, int interlace_type, int compression_type,
   int filter_type)
{
   int error = 0;

   /* Check for width and height valid values */
   if (width == 0)
   {
      png_warning(png_ptr, "Image width is zero in IHDR");
      error = 1;
   }

   if (height == 0)
   {
      png_warning(png_ptr, "Image height is zero in IHDR");
      error = 1;
   }

#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
   if (width > png_ptr->user_width_max)

#  else
   if (width > PNG_USER_WIDTH_MAX)
#  endif
   {
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
      error = 1;
   }

#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
   if (height > png_ptr->user_height_max)
#  else
   if (height > PNG_USER_HEIGHT_MAX)
#  endif
   {
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
      error = 1;
   }

   if (width > PNG_UINT_31_MAX)
   {
      png_warning(png_ptr, "Invalid image width in IHDR");
      error = 1;
   }

   if (height > PNG_UINT_31_MAX)
   {
      png_warning(png_ptr, "Invalid image height in IHDR");
      error = 1;
   }

   if (width > (PNG_UINT_32_MAX
                 >> 3)      /* 8-byte RGBA pixels */
                 - 48       /* bigrowbuf hack */
                 - 1        /* filter byte */
                 - 7*8      /* rounding of width to multiple of 8 pixels */
                 - 8)       /* extra max_pixel_depth pad */
      png_warning(png_ptr, "Width is too large for libpng to process pixels");

   /* Check other values */
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
       bit_depth != 8 && bit_depth != 16)
   {
      png_warning(png_ptr, "Invalid bit depth in IHDR");
      error = 1;
   }

   if (color_type < 0 || color_type == 1 ||
       color_type == 5 || color_type > 6)
   {
      png_warning(png_ptr, "Invalid color type in IHDR");
      error = 1;
   }

   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
       ((color_type == PNG_COLOR_TYPE_RGB ||
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
   {
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
      error = 1;
   }

   if (interlace_type >= PNG_INTERLACE_LAST)
   {
      png_warning(png_ptr, "Unknown interlace method in IHDR");
      error = 1;
   }

   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
   {
      png_warning(png_ptr, "Unknown compression method in IHDR");
      error = 1;
   }

#  ifdef PNG_MNG_FEATURES_SUPPORTED
   /* Accept filter_method 64 (intrapixel differencing) only if
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
    * 2. Libpng did not read a PNG signature (this filter_method is only
    *    used in PNG datastreams that are embedded in MNG datastreams) and
    * 3. The application called png_permit_mng_features with a mask that
    *    included PNG_FLAG_MNG_FILTER_64 and
    * 4. The filter_method is 64 and
    * 5. The color_type is RGB or RGBA
    */
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
       png_ptr->mng_features_permitted)
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");

   if (filter_type != PNG_FILTER_TYPE_BASE)
   {
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
          (color_type == PNG_COLOR_TYPE_RGB ||
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
      {
         png_warning(png_ptr, "Unknown filter method in IHDR");
         error = 1;
      }

      if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
      {
         png_warning(png_ptr, "Invalid filter method in IHDR");
         error = 1;
      }
   }

#  else
   if (filter_type != PNG_FILTER_TYPE_BASE)
   {
      png_warning(png_ptr, "Unknown filter method in IHDR");
      error = 1;
   }
#  endif

   if (error == 1)
      png_error(png_ptr, "Invalid IHDR data");
}

#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
/* ASCII to fp functions */
/* Check an ASCII formated floating point value, see the more detailed
 * comments in pngpriv.h
 */
/* The following is used internally to preserve the sticky flags */
#define png_fp_add(state, flags) ((state) |= (flags))
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))

int /* PRIVATE */
png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
   png_size_tp whereami)
{
   int state = *statep;
   png_size_t i = *whereami;

   while (i < size)
   {
      int type;
      /* First find the type of the next character */
      switch (string[i])
      {
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
      case 46:  type = PNG_FP_SAW_DOT;                    break;
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
      case 49: case 50: case 51: case 52:
      case 53: case 54: case 55: case 56:
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
      case 69:
      case 101: type = PNG_FP_SAW_E;                      break;
      default:  goto PNG_FP_End;
      }

      /* Now deal with this type according to the current
       * state, the type is arranged to not overlap the
       * bits of the PNG_FP_STATE.
       */
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
      {
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
         if (state & PNG_FP_SAW_ANY)
            goto PNG_FP_End; /* not a part of the number */

         png_fp_add(state, type);
         break;

      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
         /* Ok as trailer, ok as lead of fraction. */
         if (state & PNG_FP_SAW_DOT) /* two dots */
            goto PNG_FP_End;

         else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
            png_fp_add(state, type);

         else
            png_fp_set(state, PNG_FP_FRACTION | type);

         break;

      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
         if (state & PNG_FP_SAW_DOT) /* delayed fraction */
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);

         png_fp_add(state, type | PNG_FP_WAS_VALID);

         break;

      case PNG_FP_INTEGER + PNG_FP_SAW_E:
         if ((state & PNG_FP_SAW_DIGIT) == 0)
            goto PNG_FP_End;

         png_fp_set(state, PNG_FP_EXPONENT);

         break;

   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
         goto PNG_FP_End; ** no sign in fraction */

   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
         goto PNG_FP_End; ** Because SAW_DOT is always set */

      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
         png_fp_add(state, type | PNG_FP_WAS_VALID);
         break;

      case PNG_FP_FRACTION + PNG_FP_SAW_E:
         /* This is correct because the trailing '.' on an
          * integer is handled above - so we can only get here
          * with the sequence ".E" (with no preceding digits).
          */
         if ((state & PNG_FP_SAW_DIGIT) == 0)
            goto PNG_FP_End;

         png_fp_set(state, PNG_FP_EXPONENT);

         break;

      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
         if (state & PNG_FP_SAW_ANY)
            goto PNG_FP_End; /* not a part of the number */

         png_fp_add(state, PNG_FP_SAW_SIGN);

         break;

   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
         goto PNG_FP_End; */

      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);

         break;

   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
         goto PNG_FP_End; */

      default: goto PNG_FP_End; /* I.e. break 2 */
      }

      /* The character seems ok, continue. */
      ++i;
   }

PNG_FP_End:
   /* Here at the end, update the state and return the correct
    * return code.
    */
   *statep = state;
   *whereami = i;

   return (state & PNG_FP_SAW_DIGIT) != 0;
}


/* The same but for a complete string. */
int
png_check_fp_string(png_const_charp string, png_size_t size)
{
   int        state=0;
   png_size_t char_index=0;

   if (png_check_fp_number(string, size, &state, &char_index) &&
      (char_index == size || string[char_index] == 0))
      return state /* must be non-zero - see above */;

   return 0; /* i.e. fail */
}
#endif /* pCAL or sCAL */

#ifdef PNG_READ_sCAL_SUPPORTED
#  ifdef PNG_FLOATING_POINT_SUPPORTED
/* Utility used below - a simple accurate power of ten from an integral
 * exponent.
 */
static double
png_pow10(int power)
{
   int recip = 0;
   double d = 1.0;

   /* Handle negative exponent with a reciprocal at the end because
    * 10 is exact whereas .1 is inexact in base 2
    */
   if (power < 0)
   {
      if (power < DBL_MIN_10_EXP) return 0;
      recip = 1, power = -power;
   }

   if (power > 0)
   {
      /* Decompose power bitwise. */
      double mult = 10.0;
      do
      {
         if (power & 1) d *= mult;
         mult *= mult;
         power >>= 1;
      }
      while (power > 0);

      if (recip) d = 1/d;
   }
   /* else power is 0 and d is 1 */

   return d;
}

/* Function to format a floating point value in ASCII with a given
 * precision.
 */
void /* PRIVATE */
png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
    double fp, unsigned int precision)
{
   /* We use standard functions from math.h, but not printf because
    * that would require stdio.  The caller must supply a buffer of
    * sufficient size or we will png_error.  The tests on size and
    * the space in ascii[] consumed are indicated below.
    */
   if (precision < 1)
      precision = DBL_DIG;

   /* Enforce the limit of the implementation precision too. */
   if (precision > DBL_DIG+1)
      precision = DBL_DIG+1;

   /* Basic sanity checks */
   if (size >= precision+5) /* See the requirements below. */
   {
      if (fp < 0)
      {
         fp = -fp;
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
         --size;
      }

      if (fp >= DBL_MIN && fp <= DBL_MAX)
      {
         int exp_b10;       /* A base 10 exponent */
         double base;   /* 10^exp_b10 */

         /* First extract a base 10 exponent of the number,
          * the calculation below rounds down when converting
          * from base 2 to base 10 (multiply by log10(2) -
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
          * be increased.  Note that the arithmetic shift
          * performs a floor() unlike C arithmetic - using a
          * C multiply would break the following for negative
          * exponents.
          */
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */

         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */

         /* Avoid underflow here. */
         base = png_pow10(exp_b10); /* May underflow */

         while (base < DBL_MIN || base < fp)
         {
            /* And this may overflow. */
            double test = png_pow10(exp_b10+1);

            if (test <= DBL_MAX)
               ++exp_b10, base = test;

            else
               break;
         }

         /* Normalize fp and correct exp_b10, after this fp is in the
          * range [.1,1) and exp_b10 is both the exponent and the digit
          * *before* which the decimal point should be inserted
          * (starting with 0 for the first digit).  Note that this
          * works even if 10^exp_b10 is out of range because of the
          * test on DBL_MAX above.
          */
         fp /= base;
         while (fp >= 1) fp /= 10, ++exp_b10;

         /* Because of the code above fp may, at this point, be
          * less than .1, this is ok because the code below can
          * handle the leading zeros this generates, so no attempt
          * is made to correct that here.
          */

         {
            int czero, clead, cdigits;
            char exponent[10];

            /* Allow up to two leading zeros - this will not lengthen
             * the number compared to using E-n.
             */
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
            {
               czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
               exp_b10 = 0;      /* Dot added below before first output. */
            }
            else
               czero = 0;    /* No zeros to add */

            /* Generate the digit list, stripping trailing zeros and
             * inserting a '.' before a digit if the exponent is 0.
             */
            clead = czero; /* Count of leading zeros */
            cdigits = 0;   /* Count of digits in list. */

            do
            {
               double d;

               fp *= 10.0;

               /* Use modf here, not floor and subtract, so that
                * the separation is done in one step.  At the end
                * of the loop don't break the number into parts so
                * that the final digit is rounded.
                */
               if (cdigits+czero-clead+1 < (int)precision)
                  fp = modf(fp, &d);

               else
               {
                  d = floor(fp + .5);

                  if (d > 9.0)
                  {
                     /* Rounding up to 10, handle that here. */
                     if (czero > 0)
                     {
                        --czero, d = 1;
                        if (cdigits == 0) --clead;
                     }

                     else
                     {
                        while (cdigits > 0 && d > 9.0)
                        {
                           int ch = *--ascii;

                           if (exp_b10 != (-1))
                              ++exp_b10;

                           else if (ch == 46)
                           {
                              ch = *--ascii, ++size;
                              /* Advance exp_b10 to '1', so that the
                               * decimal point happens after the
                               * previous digit.
                               */
                              exp_b10 = 1;
                           }

                           --cdigits;
                           d = ch - 47;  /* I.e. 1+(ch-48) */
                        }

                        /* Did we reach the beginning? If so adjust the
                         * exponent but take into account the leading
                         * decimal point.
                         */
                        if (d > 9.0)  /* cdigits == 0 */
                        {
                           if (exp_b10 == (-1))
                           {
                              /* Leading decimal point (plus zeros?), if
                               * we lose the decimal point here it must
                               * be reentered below.
                               */
                              int ch = *--ascii;

                              if (ch == 46)
                                 ++size, exp_b10 = 1;

                              /* Else lost a leading zero, so 'exp_b10' is
                               * still ok at (-1)
                               */
                           }
                           else
                              ++exp_b10;

                           /* In all cases we output a '1' */
                           d = 1.0;
                        }
                     }
                  }
                  fp = 0; /* Guarantees termination below. */
               }

               if (d == 0.0)
               {
                  ++czero;
                  if (cdigits == 0) ++clead;
               }

               else
               {
                  /* Included embedded zeros in the digit count. */
                  cdigits += czero - clead;
                  clead = 0;

                  while (czero > 0)
                  {
                     /* exp_b10 == (-1) means we just output the decimal
                      * place - after the DP don't adjust 'exp_b10' any
                      * more!
                      */
                     if (exp_b10 != (-1))
                     {
                        if (exp_b10 == 0) *ascii++ = 46, --size;
                        /* PLUS 1: TOTAL 4 */
                        --exp_b10;
                     }
                     *ascii++ = 48, --czero;
                  }

                  if (exp_b10 != (-1))
                  {
                     if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
                                                                 above */
                     --exp_b10;
                  }

                  *ascii++ = (char)(48 + (int)d), ++cdigits;
               }
            }
            while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);

            /* The total output count (max) is now 4+precision */

            /* Check for an exponent, if we don't need one we are
             * done and just need to terminate the string.  At
             * this point exp_b10==(-1) is effectively if flag - it got
             * to '-1' because of the decrement after outputing
             * the decimal point above (the exponent required is
             * *not* -1!)
             */
            if (exp_b10 >= (-1) && exp_b10 <= 2)
            {
               /* The following only happens if we didn't output the
                * leading zeros above for negative exponent, so this
                * doest add to the digit requirement.  Note that the
                * two zeros here can only be output if the two leading
                * zeros were *not* output, so this doesn't increase
                * the output count.
                */
               while (--exp_b10 >= 0) *ascii++ = 48;

               *ascii = 0;

               /* Total buffer requirement (including the '\0') is
                * 5+precision - see check at the start.
                */
               return;
            }

            /* Here if an exponent is required, adjust size for
             * the digits we output but did not count.  The total
             * digit output here so far is at most 1+precision - no
             * decimal point and no leading or trailing zeros have
             * been output.
             */
            size -= cdigits;

            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */

            /* The following use of an unsigned temporary avoids ambiguities in
             * the signed arithmetic on exp_b10 and permits GCC at least to do
             * better optimization.
             */
            {
               unsigned int uexp_b10;

               if (exp_b10 < 0)
               {
                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
                  uexp_b10 = -exp_b10;
               }

               else
                  uexp_b10 = exp_b10;

               cdigits = 0;

               while (uexp_b10 > 0)
               {
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
                  uexp_b10 /= 10;
               }
            }

            /* Need another size check here for the exponent digits, so
             * this need not be considered above.
             */
            if ((int)size > cdigits)
            {
               while (cdigits > 0) *ascii++ = exponent[--cdigits];

               *ascii = 0;

               return;
            }
         }
      }
      else if (!(fp >= DBL_MIN))
      {
         *ascii++ = 48; /* '0' */
         *ascii = 0;
         return;
      }
      else
      {
         *ascii++ = 105; /* 'i' */
         *ascii++ = 110; /* 'n' */
         *ascii++ = 102; /* 'f' */
         *ascii = 0;
         return;
      }
   }

   /* Here on buffer too small. */
   png_error(png_ptr, "ASCII conversion buffer too small");
}

#  endif /* FLOATING_POINT */

#  ifdef PNG_FIXED_POINT_SUPPORTED
/* Function to format a fixed point value in ASCII.
 */
void /* PRIVATE */
png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
    png_fixed_point fp)
{
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
    * trailing \0, 13 characters:
    */
   if (size > 12)
   {
      png_uint_32 num;

      /* Avoid overflow here on the minimum integer. */
      if (fp < 0)
         *ascii++ = 45, --size, num = -fp;
      else
         num = fp;

      if (num <= 0x80000000) /* else overflowed */
      {
         unsigned int ndigits = 0, first = 16 /* flag value */;
         char digits[10];

         while (num)
         {
            /* Split the low digit off num: */
            unsigned int tmp = num/10;
            num -= tmp*10;
            digits[ndigits++] = (char)(48 + num);
            /* Record the first non-zero digit, note that this is a number
             * starting at 1, it's not actually the array index.
             */
            if (first == 16 && num > 0)
               first = ndigits;
            num = tmp;
         }

         if (ndigits > 0)
         {
            while (ndigits > 5) *ascii++ = digits[--ndigits];
            /* The remaining digits are fractional digits, ndigits is '5' or
             * smaller at this point.  It is certainly not zero.  Check for a
             * non-zero fractional digit:
             */
            if (first <= 5)
            {
               unsigned int i;
               *ascii++ = 46; /* decimal point */
               /* ndigits may be <5 for small numbers, output leading zeros
                * then ndigits digits to first:
                */
               i = 5;
               while (ndigits < i) *ascii++ = 48, --i;
               while (ndigits >= first) *ascii++ = digits[--ndigits];
               /* Don't output the trailing zeros! */
            }
         }
         else
            *ascii++ = 48;

         /* And null terminate the string: */
         *ascii = 0;
         return;
      }
   }

   /* Here on buffer too small. */
   png_error(png_ptr, "ASCII conversion buffer too small");
}
#   endif /* FIXED_POINT */
#endif /* READ_SCAL */

#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
png_fixed_point
png_fixed(png_structp png_ptr, double fp, png_const_charp text)
{
   double r = floor(100000 * fp + .5);

   if (r > 2147483647. || r < -2147483648.)
      png_fixed_error(png_ptr, text);

   return (png_fixed_point)r;
}
#endif

#if defined(PNG_READ_GAMMA_SUPPORTED) || \
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
/* muldiv functions */
/* This API takes signed arguments and rounds the result to the nearest
 * integer (or, for a fixed point number - the standard argument - to
 * the nearest .00001).  Overflow and divide by zero are signalled in
 * the result, a boolean - true on success, false on overflow.
 */
int
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
    png_int_32 divisor)
{
   /* Return a * times / divisor, rounded. */
   if (divisor != 0)
   {
      if (a == 0 || times == 0)
      {
         *res = 0;
         return 1;
      }
      else
      {
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
         double r = a;
         r *= times;
         r /= divisor;
         r = floor(r+.5);

         /* A png_fixed_point is a 32-bit integer. */
         if (r <= 2147483647. && r >= -2147483648.)
         {
            *res = (png_fixed_point)r;
            return 1;
         }
#else
         int negative = 0;
         png_uint_32 A, T, D;
         png_uint_32 s16, s32, s00;

         if (a < 0)
            negative = 1, A = -a;
         else
            A = a;

         if (times < 0)
            negative = !negative, T = -times;
         else
            T = times;

         if (divisor < 0)
            negative = !negative, D = -divisor;
         else
            D = divisor;

         /* Following can't overflow because the arguments only
          * have 31 bits each, however the result may be 32 bits.
          */
         s16 = (A >> 16) * (T & 0xffff) +
                           (A & 0xffff) * (T >> 16);
         /* Can't overflow because the a*times bit is only 30
          * bits at most.
          */
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
         s00 = (A & 0xffff) * (T & 0xffff);

         s16 = (s16 & 0xffff) << 16;
         s00 += s16;

         if (s00 < s16)
            ++s32; /* carry */

         if (s32 < D) /* else overflow */
         {
            /* s32.s00 is now the 64-bit product, do a standard
             * division, we know that s32 < D, so the maximum
             * required shift is 31.
             */
            int bitshift = 32;
            png_fixed_point result = 0; /* NOTE: signed */

            while (--bitshift >= 0)
            {
               png_uint_32 d32, d00;

               if (bitshift > 0)
                  d32 = D >> (32-bitshift), d00 = D << bitshift;

               else
                  d32 = 0, d00 = D;

               if (s32 > d32)
               {
                  if (s00 < d00) --s32; /* carry */
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
               }

               else
                  if (s32 == d32 && s00 >= d00)
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
            }

            /* Handle the rounding. */
            if (s00 >= (D >> 1))
               ++result;

            if (negative)
               result = -result;

            /* Check for overflow. */
            if ((negative && result <= 0) || (!negative && result >= 0))
            {
               *res = result;
               return 1;
            }
         }
#endif
      }
   }

   return 0;
}
#endif /* READ_GAMMA || INCH_CONVERSIONS */

#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
/* The following is for when the caller doesn't much care about the
 * result.
 */
png_fixed_point
png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
    png_int_32 divisor)
{
   png_fixed_point result;

   if (png_muldiv(&result, a, times, divisor))
      return result;

   png_warning(png_ptr, "fixed point overflow ignored");
   return 0;
}
#endif

#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gamma */
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
png_fixed_point
png_reciprocal(png_fixed_point a)
{
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = floor(1E10/a+.5);

   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   png_fixed_point res;

   if (png_muldiv(&res, 100000, 100000, a))
      return res;
#endif

   return 0; /* error/overflow */
}

/* A local convenience routine. */
static png_fixed_point
png_product2(png_fixed_point a, png_fixed_point b)
{
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = a * 1E-5;
   r *= b;
   r = floor(r+.5);

   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   png_fixed_point res;

   if (png_muldiv(&res, a, b, 100000))
      return res;
#endif

   return 0; /* overflow */
}

/* The inverse of the above. */
png_fixed_point
png_reciprocal2(png_fixed_point a, png_fixed_point b)
{
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = 1E15/a;
   r /= b;
   r = floor(r+.5);

   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   /* This may overflow because the range of png_fixed_point isn't symmetric,
    * but this API is only used for the product of file and screen gamma so it
    * doesn't matter that the smallest number it can produce is 1/21474, not
    * 1/100000
    */
   png_fixed_point res = png_product2(a, b);

   if (res != 0)
      return png_reciprocal(res);
#endif

   return 0; /* overflow */
}
#endif /* READ_GAMMA */

#ifdef PNG_CHECK_cHRM_SUPPORTED
/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
 * 2010: moved from pngset.c) */
/*
 *    Multiply two 32-bit numbers, V1 and V2, using 32-bit
 *    arithmetic, to produce a 64-bit result in the HI/LO words.
 *
 *                  A B
 *                x C D
 *               ------
 *              AD || BD
 *        AC || CB || 0
 *
 *    where A and B are the high and low 16-bit words of V1,
 *    C and D are the 16-bit words of V2, AD is the product of
 *    A and D, and X || Y is (X << 16) + Y.
*/

void /* PRIVATE */
png_64bit_product (long v1, long v2, unsigned long *hi_product,
    unsigned long *lo_product)
{
   int a, b, c, d;
   long lo, hi, x, y;

   a = (v1 >> 16) & 0xffff;
   b = v1 & 0xffff;
   c = (v2 >> 16) & 0xffff;
   d = v2 & 0xffff;

   lo = b * d;                   /* BD */
   x = a * d + c * b;            /* AD + CB */
   y = ((lo >> 16) & 0xffff) + x;

   lo = (lo & 0xffff) | ((y & 0xffff) << 16);
   hi = (y >> 16) & 0xffff;

   hi += a * c;                  /* AC */

   *hi_product = (unsigned long)hi;
   *lo_product = (unsigned long)lo;
}
#endif /* CHECK_cHRM */

#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
/* Fixed point gamma.
 *
 * To calculate gamma this code implements fast log() and exp() calls using only
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
 * or 16-bit sample values.
 *
 * The tables used here were calculated using simple 'bc' programs, but C double
 * precision floating point arithmetic would work fine.  The programs are given
 * at the head of each table.
 *
 * 8-bit log table
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
 *   mantissa.  The numbers are 32-bit fractions.
 */
static png_uint_32
png_8bit_l2[128] =
{
#  ifdef PNG_DO_BC
      for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
#  else
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
   24347096U, 0U
#  endif

#if 0
   /* The following are the values for 16-bit tables - these work fine for the
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
    * use these all the shifts below must be adjusted appropriately.
    */
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
   1119, 744, 372
#endif
};

PNG_STATIC png_int_32
png_log8bit(unsigned int x)
{
   unsigned int lg2 = 0;
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
    * because the log is actually negate that means adding 1.  The final
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
    * input), return 7.99998 for the overflow (log 0) case - so the result is
    * always at most 19 bits.
    */
   if ((x &= 0xff) == 0)
      return 0xffffffff;

   if ((x & 0xf0) == 0)
      lg2  = 4, x <<= 4;

   if ((x & 0xc0) == 0)
      lg2 += 2, x <<= 2;

   if ((x & 0x80) == 0)
      lg2 += 1, x <<= 1;

   /* result is at most 19 bits, so this cast is safe: */
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
}

/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
 * get an approximation then multiply the approximation by a correction factor
 * determined by the remaining up to 8 bits.  This requires an additional step
 * in the 16-bit case.
 *
 * We want log2(value/65535), we have log2(v'/255), where:
 *
 *    value = v' * 256 + v''
 *          = v' * f
 *
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
 *
 * This gives a final formula using a calculated value 'x' which is value/v' and
 * scaling by 65536 to match the above table:
 *
 *   log2(x/257) * 65536
 *
 * Since these numbers are so close to '1' we can use simple linear
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
 * (result 367.179).  The values used below are scaled by a further 64 to give
 * 16-bit precision in the interpolation:
 *
 * Start (256): -23591
 * Zero  (257):      0
 * End   (258):  23499
 */
PNG_STATIC png_int_32
png_log16bit(png_uint_32 x)
{
   unsigned int lg2 = 0;

   /* As above, but now the input has 16 bits. */
   if ((x &= 0xffff) == 0)
      return 0xffffffff;

   if ((x & 0xff00) == 0)
      lg2  = 8, x <<= 8;

   if ((x & 0xf000) == 0)
      lg2 += 4, x <<= 4;

   if ((x & 0xc000) == 0)
      lg2 += 2, x <<= 2;

   if ((x & 0x8000) == 0)
      lg2 += 1, x <<= 1;

   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
    * value.
    */
   lg2 <<= 28;
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;

   /* Now we need to interpolate the factor, this requires a division by the top
    * 8 bits.  Do this with maximum precision.
    */
   x = ((x << 16) + (x >> 9)) / (x >> 8);

   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
    * 16 bits to interpolate to get the low bits of the result.  Round the
    * answer.  Note that the end point values are scaled by 64 to retain overall
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
    * the overall scaling by 6-12.  Round at every step.
    */
   x -= 1U << 24;

   if (x <= 65536U) /* <= '257' */
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);

   else
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);

   /* Safe, because the result can't have more than 20 bits: */
   return (png_int_32)((lg2 + 2048) >> 12);
}

/* The 'exp()' case must invert the above, taking a 20-bit fixed point
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
 * each case only the low 16 bits are relevant - the fraction - since the
 * integer bits (the top 4) simply determine a shift.
 *
 * The worst case is the 16-bit distinction between 65535 and 65534, this
 * requires perhaps spurious accuracy in the decoding of the logarithm to
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
 * of getting this accuracy in practice.
 *
 * To deal with this the following exp() function works out the exponent of the
 * frational part of the logarithm by using an accurate 32-bit value from the
 * top four fractional bits then multiplying in the remaining bits.
 */
static png_uint_32
png_32bit_exp[16] =
{
#  ifdef PNG_DO_BC
      for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
#  else
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
   2553802834U, 2445529972U, 2341847524U, 2242560872U
#  endif
};

/* Adjustment table; provided to explain the numbers in the code below. */
#ifdef PNG_DO_BC
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
   11 44937.64284865548751208448
   10 45180.98734845585101160448
    9 45303.31936980687359311872
    8 45364.65110595323018870784
    7 45395.35850361789624614912
    6 45410.72259715102037508096
    5 45418.40724413220722311168
    4 45422.25021786898173001728
    3 45424.17186732298419044352
    2 45425.13273269940811464704
    1 45425.61317555035558641664
    0 45425.85339951654943850496
#endif

PNG_STATIC png_uint_32
png_exp(png_fixed_point x)
{
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
   {
      /* Obtain a 4-bit approximation */
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];

      /* Incorporate the low 12 bits - these decrease the returned value by
       * multiplying by a number less than 1 if the bit is set.  The multiplier
       * is determined by the above table and the shift. Notice that the values
       * converge on 45426 and this is used to allow linear interpolation of the
       * low bits.
       */
      if (x & 0x800)
         e -= (((e >> 16) * 44938U) +  16U) >> 5;

      if (x & 0x400)
         e -= (((e >> 16) * 45181U) +  32U) >> 6;

      if (x & 0x200)
         e -= (((e >> 16) * 45303U) +  64U) >> 7;

      if (x & 0x100)
         e -= (((e >> 16) * 45365U) + 128U) >> 8;

      if (x & 0x080)
         e -= (((e >> 16) * 45395U) + 256U) >> 9;

      if (x & 0x040)
         e -= (((e >> 16) * 45410U) + 512U) >> 10;

      /* And handle the low 6 bits in a single block. */
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;

      /* Handle the upper bits of x. */
      e >>= x >> 16;
      return e;
   }

   /* Check for overflow */
   if (x <= 0)
      return png_32bit_exp[0];

   /* Else underflow */
   return 0;
}

PNG_STATIC png_byte
png_exp8bit(png_fixed_point lg2)
{
   /* Get a 32-bit value: */
   png_uint_32 x = png_exp(lg2);

   /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
    * second, rounding, step can't overflow because of the first, subtraction,
    * step.
    */
   x -= x >> 8;
   return (png_byte)((x + 0x7fffffU) >> 24);
}

PNG_STATIC png_uint_16
png_exp16bit(png_fixed_point lg2)
{
   /* Get a 32-bit value: */
   png_uint_32 x = png_exp(lg2);

   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
   x -= x >> 16;
   return (png_uint_16)((x + 32767U) >> 16);
}
#endif /* FLOATING_ARITHMETIC */

png_byte
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
{
   if (value > 0 && value < 255)
   {
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
         double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
         return (png_byte)r;
#     else
         png_int_32 lg2 = png_log8bit(value);
         png_fixed_point res;

         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
            return png_exp8bit(res);

         /* Overflow. */
         value = 0;
#     endif
   }

   return (png_byte)value;
}

png_uint_16
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
{
   if (value > 0 && value < 65535)
   {
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
         double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
         return (png_uint_16)r;
#     else
         png_int_32 lg2 = png_log16bit(value);
         png_fixed_point res;

         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
            return png_exp16bit(res);

         /* Overflow. */
         value = 0;
#     endif
   }

   return (png_uint_16)value;
}

/* This does the right thing based on the bit_depth field of the
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
 * is nominally a 16-bit value if bit depth is 8 then the result is
 * 8-bit (as are the arguments.)
 */
png_uint_16 /* PRIVATE */
png_gamma_correct(png_structp png_ptr, unsigned int value,
    png_fixed_point gamma_val)
{
   if (png_ptr->bit_depth == 8)
      return png_gamma_8bit_correct(value, gamma_val);

   else
      return png_gamma_16bit_correct(value, gamma_val);
}

/* This is the shared test on whether a gamma value is 'significant' - whether
 * it is worth doing gamma correction.
 */
int /* PRIVATE */
png_gamma_significant(png_fixed_point gamma_val)
{
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
}

/* Internal function to build a single 16-bit table - the table consists of
 * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount
 * to shift the input values right (or 16-number_of_signifiant_bits).
 *
 * The caller is responsible for ensuring that the table gets cleaned up on
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
 * should be somewhere that will be cleaned.
 */
static void
png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
{
   /* Various values derived from 'shift': */
   PNG_CONST unsigned int num = 1U << (8U - shift);
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
   unsigned int i;

   png_uint_16pp table = *ptable =
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));

   for (i = 0; i < num; i++)
   {
      png_uint_16p sub_table = table[i] =
          (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));

      /* The 'threshold' test is repeated here because it can arise for one of
       * the 16-bit tables even if the others don't hit it.
       */
      if (png_gamma_significant(gamma_val))
      {
         /* The old code would overflow at the end and this would cause the
          * 'pow' function to return a result >1, resulting in an
          * arithmetic error.  This code follows the spec exactly; ig is
          * the recovered input sample, it always has 8-16 bits.
          *
          * We want input * 65535/max, rounded, the arithmetic fits in 32
          * bits (unsigned) so long as max <= 32767.
          */
         unsigned int j;
         for (j = 0; j < 256; j++)
         {
            png_uint_32 ig = (j << (8-shift)) + i;
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
               /* Inline the 'max' scaling operation: */
               double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
               sub_table[j] = (png_uint_16)d;
#           else
               if (shift)
                  ig = (ig * 65535U + max_by_2)/max;

               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
#           endif
         }
      }
      else
      {
         /* We must still build a table, but do it the fast way. */
         unsigned int j;

         for (j = 0; j < 256; j++)
         {
            png_uint_32 ig = (j << (8-shift)) + i;

            if (shift)
               ig = (ig * 65535U + max_by_2)/max;

            sub_table[j] = (png_uint_16)ig;
         }
      }
   }
}

/* NOTE: this function expects the *inverse* of the overall gamma transformation
 * required.
 */
static void
png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
{
   PNG_CONST unsigned int num = 1U << (8U - shift);
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
   unsigned int i;
   png_uint_32 last;

   png_uint_16pp table = *ptable =
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));

   /* 'num' is the number of tables and also the number of low bits of the
    * input 16-bit value used to select a table.  Each table is itself indexed
    * by the high 8 bits of the value.
    */
   for (i = 0; i < num; i++)
      table[i] = (png_uint_16p)png_malloc(png_ptr,
          256 * png_sizeof(png_uint_16));

   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
    * pow(out,g) is an *input* value.  'last' is the last input value set.
    *
    * In the loop 'i' is used to find output values.  Since the output is
    * 8-bit there are only 256 possible values.  The tables are set up to
    * select the closest possible output value for each input by finding
    * the input value at the boundary between each pair of output values
    * and filling the table up to that boundary with the lower output
    * value.
    *
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
    * values the code below uses a 16-bit value in i; the values start at
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
    * entries are filled with 255).  Start i at 128 and fill all 'last'
    * table entries <= 'max'
    */
   last = 0;
   for (i = 0; i < 255; ++i) /* 8-bit output value */
   {
      /* Find the corresponding maximum input value */
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */

      /* Find the boundary value in 16 bits: */
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);

      /* Adjust (round) to (16-shift) bits: */
      bound = (bound * max + 32768U)/65535U + 1U;

      while (last < bound)
      {
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
         last++;
      }
   }

   /* And fill in the final entries. */
   while (last < (num << 8))
   {
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
      last++;
   }
}

/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
 * typically much faster).  Note that libpng currently does no sBIT processing
 * (apparently contrary to the spec) so a 256-entry table is always generated.
 */
static void
png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
   PNG_CONST png_fixed_point gamma_val)
{
   unsigned int i;
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);

   if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
      table[i] = png_gamma_8bit_correct(i, gamma_val);

   else for (i=0; i<256; ++i)
      table[i] = (png_byte)i;
}

/* Used from png_read_destroy and below to release the memory used by the gamma
 * tables.
 */
void /* PRIVATE */
png_destroy_gamma_table(png_structp png_ptr)
{
   png_free(png_ptr, png_ptr->gamma_table);
   png_ptr->gamma_table = NULL;

   if (png_ptr->gamma_16_table != NULL)
   {
      int i;
      int istop = (1 << (8 - png_ptr->gamma_shift));
      for (i = 0; i < istop; i++)
      {
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
      }
   png_free(png_ptr, png_ptr->gamma_16_table);
   png_ptr->gamma_16_table = NULL;
   }

#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
   png_free(png_ptr, png_ptr->gamma_from_1);
   png_ptr->gamma_from_1 = NULL;
   png_free(png_ptr, png_ptr->gamma_to_1);
   png_ptr->gamma_to_1 = NULL;

   if (png_ptr->gamma_16_from_1 != NULL)
   {
      int i;
      int istop = (1 << (8 - png_ptr->gamma_shift));
      for (i = 0; i < istop; i++)
      {
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
      }
   png_free(png_ptr, png_ptr->gamma_16_from_1);
   png_ptr->gamma_16_from_1 = NULL;
   }
   if (png_ptr->gamma_16_to_1 != NULL)
   {
      int i;
      int istop = (1 << (8 - png_ptr->gamma_shift));
      for (i = 0; i < istop; i++)
      {
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
      }
   png_free(png_ptr, png_ptr->gamma_16_to_1);
   png_ptr->gamma_16_to_1 = NULL;
   }
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
}

/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
 * tables, we don't make a full table if we are reducing to 8-bit in
 * the future.  Note also how the gamma_16 tables are segmented so that
 * we don't need to allocate > 64K chunks for a full 16-bit table.
 */
void /* PRIVATE */
png_build_gamma_table(png_structp png_ptr, int bit_depth)
{
  png_debug(1, "in png_build_gamma_table");

  /* Remove any existing table; this copes with multiple calls to
   * png_read_update_info.  The warning is because building the gamma tables
   * multiple times is a performance hit - it's harmless but the ability to call
   * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
   * to warn if the app introduces such a hit.
   */
  if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
  {
    png_warning(png_ptr, "gamma table being rebuilt");
    png_destroy_gamma_table(png_ptr);
  }

  if (bit_depth <= 8)
  {
     png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);

#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
     {
        png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
            png_reciprocal(png_ptr->gamma));

        png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
            png_ptr->gamma/* Probably doing rgb_to_gray */);
     }
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
  }
  else
  {
     png_byte shift, sig_bit;

     if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
     {
        sig_bit = png_ptr->sig_bit.red;

        if (png_ptr->sig_bit.green > sig_bit)
           sig_bit = png_ptr->sig_bit.green;

        if (png_ptr->sig_bit.blue > sig_bit)
           sig_bit = png_ptr->sig_bit.blue;
     }
     else
        sig_bit = png_ptr->sig_bit.gray;

     /* 16-bit gamma code uses this equation:
      *
      *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
      *
      * Where 'iv' is the input color value and 'ov' is the output value -
      * pow(iv, gamma).
      *
      * Thus the gamma table consists of up to 256 256-entry tables.  The table
      * is selected by the (8-gamma_shift) most significant of the low 8 bits of
      * the color value then indexed by the upper 8 bits:
      *
      *   table[low bits][high 8 bits]
      *
      * So the table 'n' corresponds to all those 'iv' of:
      *
      *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
      *
      */
     if (sig_bit > 0 && sig_bit < 16U)
        shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */

     else
        shift = 0; /* keep all 16 bits */

     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
     {
        /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
         * the significant bits in the *input* when the output will
         * eventually be 8 bits.  By default it is 11.
         */
        if (shift < (16U - PNG_MAX_GAMMA_8))
           shift = (16U - PNG_MAX_GAMMA_8);
     }

     if (shift > 8U)
        shift = 8U; /* Guarantees at least one table! */

     png_ptr->gamma_shift = shift;

#ifdef PNG_16BIT_SUPPORTED
     /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
      * PNG_COMPOSE).  This effectively smashed the background calculation for
      * 16-bit output because the 8-bit table assumes the result will be reduced
      * to 8 bits.
      */
     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
#endif
         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
         png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);

#ifdef PNG_16BIT_SUPPORTED
     else
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
         png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);
#endif

#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
     {
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
            png_reciprocal(png_ptr->gamma));

        /* Notice that the '16 from 1' table should be full precision, however
         * the lookup on this table still uses gamma_shift, so it can't be.
         * TODO: fix this.
         */
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
            png_ptr->gamma/* Probably doing rgb_to_gray */);
     }
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
  }
}
#endif /* READ_GAMMA */
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */