1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
// mars.cpp - modified by Sean Woods from Brian Gladman's mars6.c for Crypto++
// key setup updated by Wei Dai to reflect IBM's "tweak" proposed in August 1999
/* This is an independent implementation of the MARS encryption */
/* algorithm designed by a team at IBM as a candidate for the US */
/* NIST Advanced Encryption Standard (AES) effort. The algorithm */
/* is subject to Patent action by IBM, who intend to offer royalty */
/* free use if a Patent is granted. */
/* */
/* Copyright in this implementation is held by Dr B R Gladman but */
/* I hereby give permission for its free direct or derivative use */
/* subject to acknowledgment of its origin and compliance with any */
/* constraints that IBM place on the use of the MARS algorithm. */
/* */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 4th October 1998 */
#include "pch.h"
#include "mars.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
ANONYMOUS_NAMESPACE_BEGIN
static word32 gen_mask(word32 x)
{
word32 m;
m = (~x ^ (x >> 1)) & 0x7fffffff;
m &= (m >> 1) & (m >> 2); m &= (m >> 3) & (m >> 6);
if(!m)
return 0;
m <<= 1; m |= (m << 1); m |= (m << 2); m |= (m << 4);
m |= (m << 1) & ~x & 0x80000000;
return m & 0xfffffffc;
};
NAMESPACE_END
void MARS::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &)
{
AssertValidKeyLength(length);
// Initialize T[] with the key data
FixedSizeSecBlock<word32, 15> T;
GetUserKey(LITTLE_ENDIAN_ORDER, T.begin(), 15, userKey, length);
T[length/4] = length/4;
for (unsigned int j=0; j<4; j++) // compute 10 words of K[] in each iteration
{
unsigned int i;
// Do linear transformation
for (i=0; i<15; i++)
T[i] = T[i] ^ rotlFixed(T[(i+8)%15] ^ T[(i+13)%15], 3) ^ (4*i+j);
// Do four rounds of stirring
for (unsigned int k=0; k<4; k++)
for (i=0; i<15; i++)
T[i] = rotlFixed(T[i] + Sbox[T[(i+14)%15]%512], 9);
// Store next 10 key words into K[]
for (i=0; i<10; i++)
EK[10*j+i] = T[4*i%15];
}
// Modify multiplication key-words
for(unsigned int i = 5; i < 37; i += 2)
{
word32 w = EK[i] | 3;
word32 m = gen_mask(w);
if(m)
w ^= (rotlMod(Sbox[265 + (EK[i] & 3)], EK[i-1]) & m);
EK[i] = w;
}
}
#define f_mix(a,b,c,d) \
r = rotrFixed(a, 8); \
b ^= Sbox[a & 255]; \
b += Sbox[(r & 255) + 256]; \
r = rotrFixed(a, 16); \
a = rotrFixed(a, 24); \
c += Sbox[r & 255]; \
d ^= Sbox[(a & 255) + 256]
#define b_mix(a,b,c,d) \
r = rotlFixed(a, 8); \
b ^= Sbox[(a & 255) + 256]; \
c -= Sbox[r & 255]; \
r = rotlFixed(a, 16); \
a = rotlFixed(a, 24); \
d -= Sbox[(r & 255) + 256]; \
d ^= Sbox[a & 255]
#define f_ktr(a,b,c,d,i) \
m = a + EK[i]; \
a = rotlFixed(a, 13); \
r = a * EK[i + 1]; \
l = Sbox[m & 511]; \
r = rotlFixed(r, 5); \
l ^= r; \
c += rotlMod(m, r); \
r = rotlFixed(r, 5); \
l ^= r; \
d ^= r; \
b += rotlMod(l, r)
#define r_ktr(a,b,c,d,i) \
r = a * EK[i + 1]; \
a = rotrFixed(a, 13); \
m = a + EK[i]; \
l = Sbox[m & 511]; \
r = rotlFixed(r, 5); \
l ^= r; \
c -= rotlMod(m, r); \
r = rotlFixed(r, 5); \
l ^= r; \
d ^= r; \
b -= rotlMod(l, r)
typedef BlockGetAndPut<word32, LittleEndian> Block;
void MARS::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
word32 a, b, c, d, l, m, r;
Block::Get(inBlock)(a)(b)(c)(d);
a += EK[0];
b += EK[1];
c += EK[2];
d += EK[3];
int i;
for (i = 0; i < 2; i++) {
f_mix(a,b,c,d);
a += d;
f_mix(b,c,d,a);
b += c;
f_mix(c,d,a,b);
f_mix(d,a,b,c);
}
f_ktr(a,b,c,d, 4); f_ktr(b,c,d,a, 6); f_ktr(c,d,a,b, 8); f_ktr(d,a,b,c,10);
f_ktr(a,b,c,d,12); f_ktr(b,c,d,a,14); f_ktr(c,d,a,b,16); f_ktr(d,a,b,c,18);
f_ktr(a,d,c,b,20); f_ktr(b,a,d,c,22); f_ktr(c,b,a,d,24); f_ktr(d,c,b,a,26);
f_ktr(a,d,c,b,28); f_ktr(b,a,d,c,30); f_ktr(c,b,a,d,32); f_ktr(d,c,b,a,34);
for (i = 0; i < 2; i++) {
b_mix(a,b,c,d);
b_mix(b,c,d,a);
c -= b;
b_mix(c,d,a,b);
d -= a;
b_mix(d,a,b,c);
}
a -= EK[36];
b -= EK[37];
c -= EK[38];
d -= EK[39];
Block::Put(xorBlock, outBlock)(a)(b)(c)(d);
}
void MARS::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
word32 a, b, c, d, l, m, r;
Block::Get(inBlock)(d)(c)(b)(a);
d += EK[36];
c += EK[37];
b += EK[38];
a += EK[39];
int i;
for (i = 0; i < 2; i++) {
f_mix(a,b,c,d);
a += d;
f_mix(b,c,d,a);
b += c;
f_mix(c,d,a,b);
f_mix(d,a,b,c);
}
r_ktr(a,b,c,d,34); r_ktr(b,c,d,a,32); r_ktr(c,d,a,b,30); r_ktr(d,a,b,c,28);
r_ktr(a,b,c,d,26); r_ktr(b,c,d,a,24); r_ktr(c,d,a,b,22); r_ktr(d,a,b,c,20);
r_ktr(a,d,c,b,18); r_ktr(b,a,d,c,16); r_ktr(c,b,a,d,14); r_ktr(d,c,b,a,12);
r_ktr(a,d,c,b,10); r_ktr(b,a,d,c, 8); r_ktr(c,b,a,d, 6); r_ktr(d,c,b,a, 4);
for (i = 0; i < 2; i++) {
b_mix(a,b,c,d);
b_mix(b,c,d,a);
c -= b;
b_mix(c,d,a,b);
d -= a;
b_mix(d,a,b,c);
}
d -= EK[0];
c -= EK[1];
b -= EK[2];
a -= EK[3];
Block::Put(xorBlock, outBlock)(d)(c)(b)(a);
}
NAMESPACE_END
|