1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
// modes.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "modes.h"
#ifndef NDEBUG
#include "des.h"
#endif
NAMESPACE_BEGIN(CryptoPP)
#ifndef NDEBUG
void Modes_TestInstantiations()
{
CFB_Mode<DES>::Encryption m0;
CFB_Mode<DES>::Decryption m1;
OFB_Mode<DES>::Encryption m2;
CTR_Mode<DES>::Encryption m3;
ECB_Mode<DES>::Encryption m4;
CBC_Mode<DES>::Encryption m5;
}
#endif
void CTR_ModePolicy::SeekToIteration(lword iterationCount)
{
int carry=0;
for (int i=BlockSize()-1; i>=0; i--)
{
unsigned int sum = m_register[i] + byte(iterationCount) + carry;
m_counterArray[i] = (byte) sum;
carry = sum >> 8;
iterationCount >>= 8;
}
}
inline void CTR_ModePolicy::ProcessMultipleBlocks(byte *output, const byte *input, size_t n)
{
unsigned int s = BlockSize(), j = 0;
for (unsigned int i=1; i<n; i++, j+=s)
IncrementCounterByOne(m_counterArray + j + s, m_counterArray + j, s);
m_cipher->ProcessAndXorMultipleBlocks(m_counterArray, input, output, n);
IncrementCounterByOne(m_counterArray, m_counterArray + s*(n-1), s);
}
void CTR_ModePolicy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
assert(m_cipher->IsForwardTransformation()); // CTR mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
unsigned int maxBlocks = m_cipher->OptimalNumberOfParallelBlocks();
if (maxBlocks == 1)
{
unsigned int sizeIncrement = BlockSize();
while (iterationCount)
{
m_cipher->ProcessAndXorBlock(m_counterArray, input, output);
IncrementCounterByOne(m_counterArray, sizeIncrement);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= 1;
}
}
else
{
unsigned int sizeIncrement = maxBlocks * BlockSize();
while (iterationCount >= maxBlocks)
{
ProcessMultipleBlocks(output, input, maxBlocks);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= maxBlocks;
}
if (iterationCount > 0)
ProcessMultipleBlocks(output, input, iterationCount);
}
}
void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv)
{
unsigned int s = BlockSize();
CopyOrZero(m_register, iv, s);
m_counterArray.New(s * m_cipher->OptimalNumberOfParallelBlocks());
CopyOrZero(m_counterArray, iv, s);
}
void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
m_cipher->SetKey(key, length, params);
ResizeBuffers();
if (IsResynchronizable())
Resynchronize(GetIVAndThrowIfInvalid(params));
}
void BlockOrientedCipherModeBase::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (!length)
return;
unsigned int s = BlockSize();
assert(length % s == 0);
if (!RequireAlignedInput() || IsAlignedOn(inString, m_cipher->BlockAlignment()))
ProcessBlocks(outString, inString, length / s);
else
{
do
{
memcpy(m_buffer, inString, s);
ProcessBlocks(outString, m_buffer, 1);
inString += s;
outString += s;
length -= s;
} while (length > 0);
}
}
void CBC_Encryption::ProcessBlocks(byte *outString, const byte *inString, size_t numberOfBlocks)
{
unsigned int blockSize = BlockSize();
xorbuf(m_register, inString, blockSize);
while (--numberOfBlocks)
{
m_cipher->ProcessBlock(m_register, outString);
inString += blockSize;
xorbuf(m_register, inString, outString, blockSize);
outString += blockSize;
}
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, blockSize);
}
void CBC_CTS_Encryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
if (length <= BlockSize())
{
if (!m_stolenIV)
throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");
// steal from IV
memcpy(outString, m_register, length);
outString = m_stolenIV;
}
else
{
// steal from next to last block
xorbuf(m_register, inString, BlockSize());
m_cipher->ProcessBlock(m_register);
inString += BlockSize();
length -= BlockSize();
memcpy(outString+BlockSize(), m_register, length);
}
// output last full ciphertext block
xorbuf(m_register, inString, length);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, BlockSize());
}
void CBC_Decryption::ProcessBlocks(byte *outString, const byte *inString, size_t numberOfBlocks)
{
unsigned int blockSize = BlockSize();
do
{
memcpy(m_temp, inString, blockSize); // make copy in case we're doing in place decryption
m_cipher->ProcessAndXorBlock(m_temp, m_register, outString);
m_register.swap(m_temp);
inString += blockSize;
outString += blockSize;
} while (--numberOfBlocks);
}
void CBC_CTS_Decryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
const byte *pn, *pn1;
bool stealIV = length <= BlockSize();
if (stealIV)
{
pn = inString;
pn1 = m_register;
}
else
{
pn = inString + BlockSize();
pn1 = inString;
length -= BlockSize();
}
// decrypt last partial plaintext block
memcpy(m_temp, pn1, BlockSize());
m_cipher->ProcessBlock(m_temp);
xorbuf(m_temp, pn, length);
if (stealIV)
memcpy(outString, m_temp, length);
else
{
memcpy(outString+BlockSize(), m_temp, length);
// decrypt next to last plaintext block
memcpy(m_temp, pn, length);
m_cipher->ProcessBlock(m_temp);
xorbuf(outString, m_temp, m_register, BlockSize());
}
}
NAMESPACE_END
#endif
|