summaryrefslogtreecommitdiff
path: root/plugins/CryptoPP/crypto/src/rijndael.cpp
blob: 42a35ce5100a09c7b308d0d09415939c89e1adee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// rijndael.cpp - modified by Chris Morgan <cmorgan@wpi.edu>
// and Wei Dai from Paulo Baretto's Rijndael implementation
// The original code and all modifications are in the public domain.

// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM rijndael.cpp" to generate MASM code

/*
Defense against timing attacks was added in July 2006 by Wei Dai.

The code now uses smaller tables in the first and last rounds,
and preloads them into L1 cache before usage (by loading at least 
one element in each cache line). 

We try to delay subsequent accesses to each table (used in the first 
and last rounds) until all of the table has been preloaded. Hopefully
the compiler isn't smart enough to optimize that code away.

After preloading the table, we also try not to access any memory location
other than the table and the stack, in order to prevent table entries from 
being unloaded from L1 cache, until that round is finished.
(Some popular CPUs have 2-way associative caches.)
*/

// This is the original introductory comment:

/**
 * version 3.0 (December 2000)
 *
 * Optimised ANSI C code for the Rijndael cipher (now AES)
 *
 * author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
 * author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
 * author Paulo Barreto <paulo.barreto@terra.com.br>
 *
 * This code is hereby placed in the public domain.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM

#include "rijndael.h"
#include "misc.h"
#include "cpu.h"

NAMESPACE_BEGIN(CryptoPP)

void Rijndael::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &)
{
	AssertValidKeyLength(keylen);

	m_rounds = keylen/4 + 6;
	m_key.New(4*(m_rounds+1));

	word32 temp, *rk = m_key;
	const word32 *rc = rcon;

	GetUserKey(BIG_ENDIAN_ORDER, rk, keylen/4, userKey, keylen);

	while (true)
	{
		temp  = rk[keylen/4-1];
		rk[keylen/4] = rk[0] ^
			(word32(Se[GETBYTE(temp, 2)]) << 24) ^
			(word32(Se[GETBYTE(temp, 1)]) << 16) ^
			(word32(Se[GETBYTE(temp, 0)]) << 8) ^
			Se[GETBYTE(temp, 3)] ^
			*(rc++);
		rk[keylen/4+1] = rk[1] ^ rk[keylen/4];
		rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1];
		rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2];

		if (rk + keylen/4 + 4 == m_key.end())
			break;

		if (keylen == 24)
		{
			rk[10] = rk[ 4] ^ rk[ 9];
			rk[11] = rk[ 5] ^ rk[10];
		}
		else if (keylen == 32)
		{
    		temp = rk[11];
    		rk[12] = rk[ 4] ^
				(word32(Se[GETBYTE(temp, 3)]) << 24) ^
				(word32(Se[GETBYTE(temp, 2)]) << 16) ^
				(word32(Se[GETBYTE(temp, 1)]) << 8) ^
				Se[GETBYTE(temp, 0)];
    		rk[13] = rk[ 5] ^ rk[12];
    		rk[14] = rk[ 6] ^ rk[13];
    		rk[15] = rk[ 7] ^ rk[14];
		}
		rk += keylen/4;
	}

	if (!IsForwardTransformation())
	{
		unsigned int i, j;
		rk = m_key;

		/* invert the order of the round keys: */
		for (i = 0, j = 4*m_rounds; i < j; i += 4, j -= 4) {
			temp = rk[i    ]; rk[i    ] = rk[j    ]; rk[j    ] = temp;
			temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
			temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
			temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
		}
		/* apply the inverse MixColumn transform to all round keys but the first and the last: */
		for (i = 1; i < m_rounds; i++) {
			rk += 4;
			rk[0] =
				Td[0*256+Se[GETBYTE(rk[0], 3)]] ^
				Td[1*256+Se[GETBYTE(rk[0], 2)]] ^
				Td[2*256+Se[GETBYTE(rk[0], 1)]] ^
				Td[3*256+Se[GETBYTE(rk[0], 0)]];
			rk[1] =
				Td[0*256+Se[GETBYTE(rk[1], 3)]] ^
				Td[1*256+Se[GETBYTE(rk[1], 2)]] ^
				Td[2*256+Se[GETBYTE(rk[1], 1)]] ^
				Td[3*256+Se[GETBYTE(rk[1], 0)]];
			rk[2] =
				Td[0*256+Se[GETBYTE(rk[2], 3)]] ^
				Td[1*256+Se[GETBYTE(rk[2], 2)]] ^
				Td[2*256+Se[GETBYTE(rk[2], 1)]] ^
				Td[3*256+Se[GETBYTE(rk[2], 0)]];
			rk[3] =
				Td[0*256+Se[GETBYTE(rk[3], 3)]] ^
				Td[1*256+Se[GETBYTE(rk[3], 2)]] ^
				Td[2*256+Se[GETBYTE(rk[3], 1)]] ^
				Td[3*256+Se[GETBYTE(rk[3], 0)]];
		}
	}

	ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key.begin(), m_key.begin(), 16);
	ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key + m_rounds*4, m_key + m_rounds*4, 16);
}

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void Rijndael_Enc_ProcessAndXorBlock(const word32 *table, word32 cacheLineSize, const word32 *k, const word32 *kLoopEnd, const byte *inBlock, const byte *xorBlock, byte *outBlock);
}
#endif

#pragma warning(disable: 4731)	// frame pointer register 'ebp' modified by inline assembly code

void Rijndael::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
#endif	// #ifdef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
	Rijndael_Enc_ProcessAndXorBlock(Te, g_cacheLineSize, m_key, m_key + m_rounds*4, inBlock, xorBlock, outBlock);
	return;
#endif

#if defined(CRYPTOPP_X86_ASM_AVAILABLE)
	#ifdef CRYPTOPP_GENERATE_X64_MASM
		ALIGN   8
	Rijndael_Enc_ProcessAndXorBlock	PROC FRAME
		rex_push_reg rbx
		push_reg rsi
		push_reg rdi
		push_reg r12
		push_reg r13
		push_reg r14
		push_reg r15
		.endprolog
		mov		AS_REG_7, rcx
		mov		rdi, [rsp + 5*8 + 7*8]			; inBlock
	#else
	if (HasMMX())
	{
		const word32 *k = m_key;
		const word32 *kLoopEnd = k + m_rounds*4;
	#endif

		#if CRYPTOPP_BOOL_X64
			#define K_REG			r8
			#define K_END_REG		r9
			#define SAVE_K
			#define RESTORE_K
			#define RESTORE_K_END
			#define SAVE_0(x)		AS2(mov	r13d, x)
			#define SAVE_1(x)		AS2(mov	r14d, x)
			#define SAVE_2(x)		AS2(mov	r15d, x)
			#define RESTORE_0(x)	AS2(mov	x, r13d)
			#define RESTORE_1(x)	AS2(mov	x, r14d)
			#define RESTORE_2(x)	AS2(mov	x, r15d)
		#else
			#define K_REG			esi
			#define K_END_REG		edi
			#define SAVE_K			AS2(movd	mm4, esi)
			#define RESTORE_K		AS2(movd	esi, mm4)
			#define RESTORE_K_END	AS2(movd	edi, mm5)
			#define SAVE_0(x)		AS2(movd	mm0, x)
			#define SAVE_1(x)		AS2(movd	mm1, x)
			#define SAVE_2(x)		AS2(movd	mm2, x)
			#define RESTORE_0(x)	AS2(movd	x, mm0)
			#define RESTORE_1(x)	AS2(movd	x, mm1)
			#define RESTORE_2(x)	AS2(movd	x, mm2)
		#endif
#ifdef __GNUC__
		word32 t0, t1, t2, t3;
		__asm__ __volatile__
		(
		".intel_syntax noprefix;"
	#if CRYPTOPP_BOOL_X64
		AS2(	mov		K_REG, rsi)
		AS2(	mov		K_END_REG, rcx)
	#else
		AS1(	push	ebx)
		AS1(	push	ebp)
		AS2(	movd	mm5, ecx)
	#endif
		AS2(	mov		AS_REG_7, WORD_REG(ax))
#elif CRYPTOPP_BOOL_X86
	#if _MSC_VER < 1300
		const word32 *t = Te;
		AS2(	mov		eax, t)
	#endif
		AS2(	mov		edx, g_cacheLineSize)
		AS2(	mov		WORD_REG(di), inBlock)
		AS2(	mov		K_REG, k)
		AS2(	movd	mm5, kLoopEnd)
	#if _MSC_VER < 1300
		AS1(	push	ebx)
		AS1(	push	ebp)
		AS2(	mov		AS_REG_7, eax)
	#else
		AS1(	push	ebp)
		AS2(	lea		AS_REG_7, Te)
	#endif
#endif
		AS2(	mov		eax, [K_REG+0*4])	// s0
		AS2(	xor		eax, [WORD_REG(di)+0*4])
		SAVE_0(eax)
		AS2(	mov		ebx, [K_REG+1*4])
		AS2(	xor		ebx, [WORD_REG(di)+1*4])
		SAVE_1(ebx)
		AS2(	and		ebx, eax)
		AS2(	mov		eax, [K_REG+2*4])
		AS2(	xor		eax, [WORD_REG(di)+2*4])
		SAVE_2(eax)
		AS2(	and		ebx, eax)
		AS2(	mov		ecx, [K_REG+3*4])
		AS2(	xor		ecx, [WORD_REG(di)+3*4])
		AS2(	and		ebx, ecx)

		// read Te0 into L1 cache. this code could be simplifed by using lfence, but that is an SSE2 instruction
		AS2(	and		ebx, 0)
		AS2(	mov		edi, ebx)	// make index depend on previous loads to simulate lfence
		ASL(2)
		AS2(	and		ebx, [AS_REG_7+WORD_REG(di)])
		AS2(	add		edi, edx)
		AS2(	and		ebx, [AS_REG_7+WORD_REG(di)])
		AS2(	add		edi, edx)
		AS2(	and		ebx, [AS_REG_7+WORD_REG(di)])
		AS2(	add		edi, edx)
		AS2(	and		ebx, [AS_REG_7+WORD_REG(di)])
		AS2(	add		edi, edx)
		AS2(	cmp		edi, 1024)
		ASJ(	jl,		2, b)
		AS2(	and		ebx, [AS_REG_7+1020])
#if CRYPTOPP_BOOL_X64
		AS2(	xor		r13d, ebx)
		AS2(	xor		r14d, ebx)
		AS2(	xor		r15d, ebx)
#else
		AS2(	movd	mm6, ebx)
		AS2(	pxor	mm2, mm6)
		AS2(	pxor	mm1, mm6)
		AS2(	pxor	mm0, mm6)
#endif
		AS2(	xor		ecx, ebx)

		AS2(	mov		edi, [K_REG+4*4])	// t0
		AS2(	mov		eax, [K_REG+5*4])
		AS2(	mov		ebx, [K_REG+6*4])
		AS2(	mov		edx, [K_REG+7*4])
		AS2(	add		K_REG, 8*4)
		SAVE_K

#define QUARTER_ROUND(t, a, b, c, d)	\
	AS2(movzx esi, t##l)\
	AS2(d, [AS_REG_7+0*1024+4*WORD_REG(si)])\
	AS2(movzx esi, t##h)\
	AS2(c, [AS_REG_7+1*1024+4*WORD_REG(si)])\
	AS2(shr e##t##x, 16)\
	AS2(movzx esi, t##l)\
	AS2(b, [AS_REG_7+2*1024+4*WORD_REG(si)])\
	AS2(movzx esi, t##h)\
	AS2(a, [AS_REG_7+3*1024+4*WORD_REG(si)])

#define s0		xor edi
#define s1		xor eax
#define s2		xor ebx
#define s3		xor ecx
#define t0		xor edi
#define t1		xor eax
#define t2		xor ebx
#define t3		xor edx

		QUARTER_ROUND(c, t0, t1, t2, t3)
		RESTORE_2(ecx)
		QUARTER_ROUND(c, t3, t0, t1, t2)
		RESTORE_1(ecx)
		QUARTER_ROUND(c, t2, t3, t0, t1)
		RESTORE_0(ecx)
		QUARTER_ROUND(c, t1, t2, t3, t0)
		SAVE_2(ebx)
		SAVE_1(eax)
		SAVE_0(edi)
#undef QUARTER_ROUND

		RESTORE_K

		ASL(0)
		AS2(	mov		edi, [K_REG+0*4])
		AS2(	mov		eax, [K_REG+1*4])
		AS2(	mov		ebx, [K_REG+2*4])
		AS2(	mov		ecx, [K_REG+3*4])

#define QUARTER_ROUND(t, a, b, c, d)	\
	AS2(movzx esi, t##l)\
	AS2(a, [AS_REG_7+3*1024+4*WORD_REG(si)])\
	AS2(movzx esi, t##h)\
	AS2(b, [AS_REG_7+2*1024+4*WORD_REG(si)])\
	AS2(shr e##t##x, 16)\
	AS2(movzx esi, t##l)\
	AS2(c, [AS_REG_7+1*1024+4*WORD_REG(si)])\
	AS2(movzx esi, t##h)\
	AS2(d, [AS_REG_7+0*1024+4*WORD_REG(si)])

		QUARTER_ROUND(d, s0, s1, s2, s3)
		RESTORE_2(edx)
		QUARTER_ROUND(d, s3, s0, s1, s2)
		RESTORE_1(edx)
		QUARTER_ROUND(d, s2, s3, s0, s1)
		RESTORE_0(edx)
		QUARTER_ROUND(d, s1, s2, s3, s0)
		RESTORE_K
		SAVE_2(ebx)
		SAVE_1(eax)
		SAVE_0(edi)

		AS2(	mov		edi, [K_REG+4*4])
		AS2(	mov		eax, [K_REG+5*4])
		AS2(	mov		ebx, [K_REG+6*4])
		AS2(	mov		edx, [K_REG+7*4])

		QUARTER_ROUND(c, t0, t1, t2, t3)
		RESTORE_2(ecx)
		QUARTER_ROUND(c, t3, t0, t1, t2)
		RESTORE_1(ecx)
		QUARTER_ROUND(c, t2, t3, t0, t1)
		RESTORE_0(ecx)
		QUARTER_ROUND(c, t1, t2, t3, t0)
		SAVE_2(ebx)
		SAVE_1(eax)
		SAVE_0(edi)

		RESTORE_K
		RESTORE_K_END
		AS2(	add		K_REG, 8*4)
		SAVE_K
		AS2(	cmp		K_END_REG, K_REG)
		ASJ(	jne,	0, b)

#undef QUARTER_ROUND
#undef s0
#undef s1
#undef s2
#undef s3
#undef t0
#undef t1
#undef t2
#undef t3

		AS2(	mov		eax, [K_END_REG+0*4])
		AS2(	mov		ecx, [K_END_REG+1*4])
		AS2(	mov		esi, [K_END_REG+2*4])
		AS2(	mov		edi, [K_END_REG+3*4])

#define QUARTER_ROUND(a, b, c, d)	\
	AS2(	movzx	ebx, dl)\
	AS2(	movzx	ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
	AS2(	shl		ebx, 3*8)\
	AS2(	xor		a, ebx)\
	AS2(	movzx	ebx, dh)\
	AS2(	movzx	ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
	AS2(	shl		ebx, 2*8)\
	AS2(	xor		b, ebx)\
	AS2(	shr		edx, 16)\
	AS2(	movzx	ebx, dl)\
	AS2(	shr		edx, 8)\
	AS2(	movzx	ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
	AS2(	shl		ebx, 1*8)\
	AS2(	xor		c, ebx)\
	AS2(	movzx	ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(dx)])\
	AS2(	xor		d, ebx)

		QUARTER_ROUND(eax, ecx, esi, edi)
		RESTORE_2(edx)
		QUARTER_ROUND(edi, eax, ecx, esi)
		RESTORE_1(edx)
		QUARTER_ROUND(esi, edi, eax, ecx)
		RESTORE_0(edx)
		QUARTER_ROUND(ecx, esi, edi, eax)

#undef QUARTER_ROUND

#if CRYPTOPP_BOOL_X86
		AS1(emms)
		AS1(pop		ebp)
	#if defined(__GNUC__) || (defined(_MSC_VER) && _MSC_VER < 1300)
		AS1(pop		ebx)
	#endif
#endif

#ifdef __GNUC__
		".att_syntax prefix;"
			: "=a" (t0), "=c" (t1), "=S" (t2), "=D" (t3)
			: "a" (Te), "D" (inBlock), "S" (k), "c" (kLoopEnd), "d" (g_cacheLineSize)
			: "memory", "cc"
	#if CRYPTOPP_BOOL_X64
			, "%ebx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15"
	#endif
		);

		if (xorBlock)
		{
			t0 ^= ((const word32 *)xorBlock)[0];
			t1 ^= ((const word32 *)xorBlock)[1];
			t2 ^= ((const word32 *)xorBlock)[2];
			t3 ^= ((const word32 *)xorBlock)[3];
		}
		((word32 *)outBlock)[0] = t0;
		((word32 *)outBlock)[1] = t1;
		((word32 *)outBlock)[2] = t2;
		((word32 *)outBlock)[3] = t3;
#else
	#if CRYPTOPP_BOOL_X64
		mov		rbx, [rsp + 6*8 + 7*8]			; xorBlock
	#else
		AS2(	mov		ebx, xorBlock)
	#endif
		AS2(	test	WORD_REG(bx), WORD_REG(bx))
		ASJ(	jz,		1, f)
		AS2(	xor		eax, [WORD_REG(bx)+0*4])
		AS2(	xor		ecx, [WORD_REG(bx)+1*4])
		AS2(	xor		esi, [WORD_REG(bx)+2*4])
		AS2(	xor		edi, [WORD_REG(bx)+3*4])
		ASL(1)
	#if CRYPTOPP_BOOL_X64
		mov		rbx, [rsp + 7*8 + 7*8]			; outBlock
	#else
		AS2(	mov		ebx, outBlock)
	#endif
		AS2(	mov		[WORD_REG(bx)+0*4], eax)
		AS2(	mov		[WORD_REG(bx)+1*4], ecx)
		AS2(	mov		[WORD_REG(bx)+2*4], esi)
		AS2(	mov		[WORD_REG(bx)+3*4], edi)
#endif

#if CRYPTOPP_GENERATE_X64_MASM
		pop r15
		pop r14
		pop r13
		pop r12
		pop rdi
		pop rsi
		pop rbx
		ret
	Rijndael_Enc_ProcessAndXorBlock ENDP
#else
	}
	else
#endif
#endif	// #ifdef CRYPTOPP_X86_ASM_AVAILABLE
#ifndef CRYPTOPP_GENERATE_X64_MASM
	{
	word32 s0, s1, s2, s3, t0, t1, t2, t3;
	const word32 *rk = m_key;

	s0 = ((const word32 *)inBlock)[0] ^ rk[0];
	s1 = ((const word32 *)inBlock)[1] ^ rk[1];
	s2 = ((const word32 *)inBlock)[2] ^ rk[2];
	s3 = ((const word32 *)inBlock)[3] ^ rk[3];
	t0 = rk[4];
	t1 = rk[5];
	t2 = rk[6];
	t3 = rk[7];
	rk += 8;

	// timing attack countermeasure. see comments at top for more details
	const int cacheLineSize = GetCacheLineSize();
	unsigned int i;
	word32 u = 0;
	for (i=0; i<1024; i+=cacheLineSize)
		u &= *(const word32 *)(((const byte *)Te)+i);
	u &= Te[255];
	s0 |= u; s1 |= u; s2 |= u; s3 |= u;

	// first round
#ifdef IS_BIG_ENDIAN
#define QUARTER_ROUND(t, a, b, c, d)	\
		a ^= rotrFixed(Te[byte(t)], 24);	t >>= 8;\
		b ^= rotrFixed(Te[byte(t)], 16);	t >>= 8;\
		c ^= rotrFixed(Te[byte(t)], 8);	t >>= 8;\
		d ^= Te[t];
#else
#define QUARTER_ROUND(t, a, b, c, d)	\
		d ^= Te[byte(t)];					t >>= 8;\
		c ^= rotrFixed(Te[byte(t)], 8);	t >>= 8;\
		b ^= rotrFixed(Te[byte(t)], 16);	t >>= 8;\
		a ^= rotrFixed(Te[t], 24);
#endif

	QUARTER_ROUND(s3, t0, t1, t2, t3)
	QUARTER_ROUND(s2, t3, t0, t1, t2)
	QUARTER_ROUND(s1, t2, t3, t0, t1)
	QUARTER_ROUND(s0, t1, t2, t3, t0)
#undef QUARTER_ROUND

	// Nr - 2 full rounds:
    unsigned int r = m_rounds/2 - 1;
    do
	{
#define QUARTER_ROUND(t, a, b, c, d)	\
		a ^= Te[3*256+byte(t)]; t >>= 8;\
		b ^= Te[2*256+byte(t)]; t >>= 8;\
		c ^= Te[1*256+byte(t)]; t >>= 8;\
		d ^= Te[t];

		s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3];

		QUARTER_ROUND(t3, s0, s1, s2, s3)
		QUARTER_ROUND(t2, s3, s0, s1, s2)
		QUARTER_ROUND(t1, s2, s3, s0, s1)
		QUARTER_ROUND(t0, s1, s2, s3, s0)

		t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7];

		QUARTER_ROUND(s3, t0, t1, t2, t3)
		QUARTER_ROUND(s2, t3, t0, t1, t2)
		QUARTER_ROUND(s1, t2, t3, t0, t1)
		QUARTER_ROUND(s0, t1, t2, t3, t0)
#undef QUARTER_ROUND

        rk += 8;
    } while (--r);

	// timing attack countermeasure. see comments at top for more details
	u = 0;
	for (i=0; i<256; i+=cacheLineSize)
		u &= *(const word32 *)(Se+i);
	u &= *(const word32 *)(Se+252);
	t0 |= u; t1 |= u; t2 |= u; t3 |= u;

	word32 tbw[4];
	byte *const tempBlock = (byte *)tbw;
	word32 *const obw = (word32 *)outBlock;
	const word32 *const xbw = (const word32 *)xorBlock;

#define QUARTER_ROUND(t, a, b, c, d)	\
	tempBlock[a] = Se[byte(t)]; t >>= 8;\
	tempBlock[b] = Se[byte(t)]; t >>= 8;\
	tempBlock[c] = Se[byte(t)]; t >>= 8;\
	tempBlock[d] = Se[t];

	QUARTER_ROUND(t2, 15, 2, 5, 8)
	QUARTER_ROUND(t1, 11, 14, 1, 4)
	QUARTER_ROUND(t0, 7, 10, 13, 0)
	QUARTER_ROUND(t3, 3, 6, 9, 12)
#undef QUARTER_ROUND

	if (xbw)
	{
		obw[0] = tbw[0] ^ xbw[0] ^ rk[0];
		obw[1] = tbw[1] ^ xbw[1] ^ rk[1];
		obw[2] = tbw[2] ^ xbw[2] ^ rk[2];
		obw[3] = tbw[3] ^ xbw[3] ^ rk[3];
	}
	else
	{
		obw[0] = tbw[0] ^ rk[0];
		obw[1] = tbw[1] ^ rk[1];
		obw[2] = tbw[2] ^ rk[2];
		obw[3] = tbw[3] ^ rk[3];
	}
	}
}

void Rijndael::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
	word32 s0, s1, s2, s3, t0, t1, t2, t3;
	const word32 *rk = m_key;

	s0 = ((const word32 *)inBlock)[0] ^ rk[0];
	s1 = ((const word32 *)inBlock)[1] ^ rk[1];
	s2 = ((const word32 *)inBlock)[2] ^ rk[2];
	s3 = ((const word32 *)inBlock)[3] ^ rk[3];
	t0 = rk[4];
	t1 = rk[5];
	t2 = rk[6];
	t3 = rk[7];
	rk += 8;

	// timing attack countermeasure. see comments at top for more details
	const int cacheLineSize = GetCacheLineSize();
	unsigned int i;
	word32 u = 0;
	for (i=0; i<1024; i+=cacheLineSize)
		u &= *(const word32 *)(((const byte *)Td)+i);
	u &= Td[255];
	s0 |= u; s1 |= u; s2 |= u; s3 |= u;

	// first round
#ifdef IS_BIG_ENDIAN
#define QUARTER_ROUND(t, a, b, c, d)	\
		a ^= rotrFixed(Td[byte(t)], 24);	t >>= 8;\
		b ^= rotrFixed(Td[byte(t)], 16);	t >>= 8;\
		c ^= rotrFixed(Td[byte(t)], 8);		t >>= 8;\
		d ^= Td[t];
#else
#define QUARTER_ROUND(t, a, b, c, d)	\
		d ^= Td[byte(t)];					t >>= 8;\
		c ^= rotrFixed(Td[byte(t)], 8);		t >>= 8;\
		b ^= rotrFixed(Td[byte(t)], 16);	t >>= 8;\
		a ^= rotrFixed(Td[t], 24);
#endif

	QUARTER_ROUND(s3, t2, t1, t0, t3)
	QUARTER_ROUND(s2, t1, t0, t3, t2)
	QUARTER_ROUND(s1, t0, t3, t2, t1)
	QUARTER_ROUND(s0, t3, t2, t1, t0)
#undef QUARTER_ROUND

	// Nr - 2 full rounds:
    unsigned int r = m_rounds/2 - 1;
    do
	{
#define QUARTER_ROUND(t, a, b, c, d)	\
		a ^= Td[3*256+byte(t)]; t >>= 8;\
		b ^= Td[2*256+byte(t)]; t >>= 8;\
		c ^= Td[1*256+byte(t)]; t >>= 8;\
		d ^= Td[t];

		s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3];

		QUARTER_ROUND(t3, s2, s1, s0, s3)
		QUARTER_ROUND(t2, s1, s0, s3, s2)
		QUARTER_ROUND(t1, s0, s3, s2, s1)
		QUARTER_ROUND(t0, s3, s2, s1, s0)

		t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7];

		QUARTER_ROUND(s3, t2, t1, t0, t3)
		QUARTER_ROUND(s2, t1, t0, t3, t2)
		QUARTER_ROUND(s1, t0, t3, t2, t1)
		QUARTER_ROUND(s0, t3, t2, t1, t0)
#undef QUARTER_ROUND

        rk += 8;
    } while (--r);

	// timing attack countermeasure. see comments at top for more details
	u = 0;
	for (i=0; i<256; i+=cacheLineSize)
		u &= *(const word32 *)(Sd+i);
	u &= *(const word32 *)(Sd+252);
	t0 |= u; t1 |= u; t2 |= u; t3 |= u;

	word32 tbw[4];
	byte *const tempBlock = (byte *)tbw;
	word32 *const obw = (word32 *)outBlock;
	const word32 *const xbw = (const word32 *)xorBlock;

#define QUARTER_ROUND(t, a, b, c, d)	\
	tempBlock[a] = Sd[byte(t)]; t >>= 8;\
	tempBlock[b] = Sd[byte(t)]; t >>= 8;\
	tempBlock[c] = Sd[byte(t)]; t >>= 8;\
	tempBlock[d] = Sd[t];

	QUARTER_ROUND(t2, 7, 2, 13, 8)
	QUARTER_ROUND(t1, 3, 14, 9, 4)
	QUARTER_ROUND(t0, 15, 10, 5, 0)
	QUARTER_ROUND(t3, 11, 6, 1, 12)
#undef QUARTER_ROUND

	if (xbw)
	{
		obw[0] = tbw[0] ^ xbw[0] ^ rk[0];
		obw[1] = tbw[1] ^ xbw[1] ^ rk[1];
		obw[2] = tbw[2] ^ xbw[2] ^ rk[2];
		obw[3] = tbw[3] ^ xbw[3] ^ rk[3];
	}
	else
	{
		obw[0] = tbw[0] ^ rk[0];
		obw[1] = tbw[1] ^ rk[1];
		obw[2] = tbw[2] ^ rk[2];
		obw[3] = tbw[3] ^ rk[3];
	}
}

NAMESPACE_END

#endif
#endif