1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
/*
dbx_tree: tree database driver for Miranda IM
Copyright 2007-2008 Michael "Protogenes" Kunz,
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "HC256.h"
#include <stdlib.h>
#include <string.h>
#ifndef _MSC_VER
#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n))))
#else
#define rotr(x,n) _lrotr(x,n)
#endif
#define h1(x,y) { \
uint8_t a,b,c,d; \
a = (uint8_t) (x); \
b = (uint8_t) ((x) >> 8); \
c = (uint8_t) ((x) >> 16); \
d = (uint8_t) ((x) >> 24); \
(y) = Q[a]+Q[256+b]+Q[512+c]+Q[768+d]; \
}
#define h2(x,y) { \
uint8_t a,b,c,d; \
a = (uint8_t) (x); \
b = (uint8_t) ((x) >> 8); \
c = (uint8_t) ((x) >> 16); \
d = (uint8_t) ((x) >> 24); \
(y) = P[a]+P[256+b]+P[512+c]+P[768+d]; \
}
#define step_A(u,v,a,b,c,d,m){ \
uint32_t tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \
(a) = (u); \
h1((d),tem3); \
(m) ^= tem3 ^ (u) ; \
}
#define step_B(u,v,a,b,c,d,m){ \
uint32_t tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \
(a) = (u); \
h2((d),tem3); \
(m) ^= tem3 ^ (u) ; \
}
#define f1(x) (rotr((x),7) ^ rotr((x),18) ^ ((x) >> 3))
#define f2(x) (rotr((x),17) ^ rotr((x),19) ^ ((x) >> 10))
#define f(a,b,c,d) (f2((a)) + (b) + f1((c)) + (d))
#define feedback_1(u,v,b,c) { \
uint32_t tem0,tem1,tem2; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \
}
#define feedback_2(u,v,b,c) { \
uint32_t tem0,tem1,tem2; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \
}
const wchar_t * HC256::Name()
{
return cName;
}
const wchar_t * HC256::Description()
{
return cDescription;
}
const uint32_t HC256::BlockSizeBytes()
{
return cBlockSizeBytes;
}
const bool HC256::IsStreamCipher()
{
return cIsStreamCipher;
}
HC256::HC256()
{
}
HC256::~HC256()
{
}
CCipher::TCipherInterface* HC256::Create()
{
return (new HC256())->m_Interface;
}
void HC256::SetKey(void* Key, uint32_t KeyLength)
{
uint8_t k[32] = {0};
for (uint32_t i = 0; i < KeyLength; ++i)
{
k[i & 0x1f] ^= ((uint8_t *)Key)[i];
}
CreateTables(k);
}
void HC256::Encrypt(void* Data, uint32_t Size, uint32_t Nonce, uint32_t StartByte)
{
memcpy(X, BackX, sizeof(X));
memcpy(Y, BackY, sizeof(Y));
memcpy(P, BackP, sizeof(P));
memcpy(Q, BackQ, sizeof(Q));
counter2048 = (Nonce + (Nonce >> 11) + (Nonce >> 22)) & 0x7ff;
for (uint32_t i = 0; i <= Size - BlockSizeBytes(); i += BlockSizeBytes())
{
EncryptBlock((uint32_t*)((uint8_t*)Data + i));
StartByte += BlockSizeBytes();
}
}
void HC256::Decrypt(void* Data, uint32_t Size, uint32_t Nonce, uint32_t StartByte)
{
Encrypt(Data, Size, Nonce, StartByte);
}
inline void HC256::EncryptBlock(uint32_t *Data)
{
uint32_t cc,dd;
cc = counter2048 & 0x3ff;
dd = (cc + 16) & 0x3ff;
if (counter2048 < 1024)
{
counter2048 = (counter2048 + 16) & 0x7ff;
step_A(P[cc+0], P[cc+1], X[0], X[6], X[13],X[4], Data[0]);
step_A(P[cc+1], P[cc+2], X[1], X[7], X[14],X[5], Data[1]);
step_A(P[cc+2], P[cc+3], X[2], X[8], X[15],X[6], Data[2]);
step_A(P[cc+3], P[cc+4], X[3], X[9], X[0], X[7], Data[3]);
step_A(P[cc+4], P[cc+5], X[4], X[10],X[1], X[8], Data[4]);
step_A(P[cc+5], P[cc+6], X[5], X[11],X[2], X[9], Data[5]);
step_A(P[cc+6], P[cc+7], X[6], X[12],X[3], X[10],Data[6]);
step_A(P[cc+7], P[cc+8], X[7], X[13],X[4], X[11],Data[7]);
step_A(P[cc+8], P[cc+9], X[8], X[14],X[5], X[12],Data[8]);
step_A(P[cc+9], P[cc+10],X[9], X[15],X[6], X[13],Data[9]);
step_A(P[cc+10],P[cc+11],X[10],X[0], X[7], X[14],Data[10]);
step_A(P[cc+11],P[cc+12],X[11],X[1], X[8], X[15],Data[11]);
step_A(P[cc+12],P[cc+13],X[12],X[2], X[9], X[0], Data[12]);
step_A(P[cc+13],P[cc+14],X[13],X[3], X[10],X[1], Data[13]);
step_A(P[cc+14],P[cc+15],X[14],X[4], X[11],X[2], Data[14]);
step_A(P[cc+15],P[dd+0], X[15],X[5], X[12],X[3], Data[15]);
} else {
counter2048 = (counter2048 + 16) & 0x7ff;
step_B(Q[cc+0], Q[cc+1], Y[0], Y[6], Y[13],Y[4], Data[0]);
step_B(Q[cc+1], Q[cc+2], Y[1], Y[7], Y[14],Y[5], Data[1]);
step_B(Q[cc+2], Q[cc+3], Y[2], Y[8], Y[15],Y[6], Data[2]);
step_B(Q[cc+3], Q[cc+4], Y[3], Y[9], Y[0], Y[7], Data[3]);
step_B(Q[cc+4], Q[cc+5], Y[4], Y[10],Y[1], Y[8], Data[4]);
step_B(Q[cc+5], Q[cc+6], Y[5], Y[11],Y[2], Y[9], Data[5]);
step_B(Q[cc+6], Q[cc+7], Y[6], Y[12],Y[3], Y[10],Data[6]);
step_B(Q[cc+7], Q[cc+8], Y[7], Y[13],Y[4], Y[11],Data[7]);
step_B(Q[cc+8], Q[cc+9], Y[8], Y[14],Y[5], Y[12],Data[8]);
step_B(Q[cc+9], Q[cc+10],Y[9], Y[15],Y[6], Y[13],Data[9]);
step_B(Q[cc+10],Q[cc+11],Y[10],Y[0], Y[7], Y[14],Data[10]);
step_B(Q[cc+11],Q[cc+12],Y[11],Y[1], Y[8], Y[15],Data[11]);
step_B(Q[cc+12],Q[cc+13],Y[12],Y[2], Y[9], Y[0], Data[12]);
step_B(Q[cc+13],Q[cc+14],Y[13],Y[3], Y[10],Y[1], Data[13]);
step_B(Q[cc+14],Q[cc+15],Y[14],Y[4], Y[11],Y[2], Data[14]);
step_B(Q[cc+15],Q[dd+0], Y[15],Y[5], Y[12],Y[3], Data[15]);
}
}
inline void HC256::CreateTables(uint8_t* Key)
{
uint32_t i, j;
uint8_t iv[32] = "Miranda IM dbx_tree Protogenes!";
//expand the key and iv into P and Q
for (i = 0; i < 8; i++)
P[i] = Key[i];
for (i = 8; i < 16; i++)
P[i] = iv[i - 8];
for (i = 16; i < 528; i++)
P[i] = f(P[i - 2], P[i - 7], P[i - 15], P[i - 16]) + i;
for (i = 0; i < 16; i++)
P[i] = P[i + 512];
for (i = 16; i < 1024; i++)
P[i] = f(P[i - 2], P[i - 7], P[i - 15], P[i - 16]) + 512 + i;
for (i = 0; i < 16; i++)
Q[i] = P[1024 - 16 + i];
for (i = 16; i < 32; i++)
Q[i] = f(Q[i - 2], Q[i - 7], Q[i - 15], Q[i - 16]) + 1520 + i;
for (i = 0; i < 16; i++)
Q[i] = Q[i + 16];
for (i = 16; i < 1024;i++)
Q[i] = f(Q[i - 2], Q[i - 7], Q[i - 15], Q[i - 16]) + 1536 + i;
//run the cipher 4096 steps without generating output
for (i = 0; i < 2; i++)
{
for (j = 0; j < 10; j++)
feedback_1(P[j], P[j + 1], P[(j - 10) & 0x3ff], P[(j - 3) & 0x3ff]);
for (j = 10; j < 1023; j++)
feedback_1(P[j], P[j + 1], P[j - 10], P[j - 3]);
feedback_1(P[1023], P[0], P[1013], P[1020]);
for (j = 0; j < 10; j++)
feedback_2(Q[j], Q[j+1], Q[(j-10) & 0x3ff], Q[(j - 3) & 0x3ff]);
for (j = 10; j < 1023; j++)
feedback_2(Q[j], Q[j + 1], Q[j - 10], Q[j - 3]);
feedback_2(Q[1023], Q[0], Q[1013], Q[1020]);
}
//initialize counter2048, and tables X and Y
counter2048 = 0;
for (i = 0; i < 16; i++)
X[i] = P[1008 + i];
for (i = 0; i < 16; i++)
Y[i] = Q[1008 + i];
}
extern "C" __declspec(dllexport) const TCipherInfo* CipherInfo(void * Reserved)
{
return &HC256::cCipherInfo;
}
|